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Summary In this paper we are continuing our work [6], concerning
a-priori error estimates for the velocity tracking of two-dimensional
evolutionary Navier-Stokes flows. The controls are of distributed type,
and subject to point-wise control constraints. The discretization scheme
of the state and adjoint equations is based on a discontinuous time-
stepping scheme (in time) combined with conforming finite elements
(in space) for the velocity and pressure. Provided that the time
and space discretization parameters, τ and h respectively, satisfy

τ ≤ Ch2, error estimates of order O(h2) and O(h
3
2
− 2

p ) with p > 3
depending on the regularity of the target and the initial velocity, are
proved for the difference between the locally optimal controls and
their discrete approximations, when the controls are discretized by
the variational discretization approach and by using piecewise-linear
functions in space respectively. Both results are based on new duality
arguments for the evolutionary Navier-Stokes equations.

⋆ This author was partially supported by the Spanish Ministerio de Economı́a
y Competitividad under project MTM2011-22711
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1 Introduction

In this paper we are continuing our work of [6] regarding the approx-
imation of the following velocity tracking problem:

(P)

{
min J(u)
u ∈ Uad

where

J(u) =
1

2

∫ T

0

∫
Ω
|yu(t, x)− yd(t, x)|2 dxdt+

γ

2

∫
Ω
|yu(T, x)− yΩ(x)|2 dx

+
λ

2

∫ T

0

∫
Ω
|u(t, x)|2 dxdt.

Here yu denotes the solution of the 2d evolution Navier-Stokes equa-
tionsyt − ν∆y + (y · ∇)y +∇p = f + u in ΩT = (0, T )×Ω,

divy = 0 in ΩT , y(0) = y0 in Ω,
y = 0 on ΣT = (0, T )× Γ,

(1.1)

and Uad is the set of feasible controls, defined for −∞ ≤ αj < βj ≤
+∞, j = 1, 2, by

Uad = {u ∈ L2(0, T ;L2(Ω)) : αj ≤ uj ≤ βj a.e. in ΩT , j = 1, 2}.

The scope of the velocity tracking problem is to influence and even-
tually drive the velocity vector field to a given target field, by using a
control function of distributed type. In our setting, the control func-
tion satisfies certain constraints and λ > 0 is a penalty parameter,
which is typically small compared to the actual size of the data. The
inclusion of the terminal term is motivated by the need to obtain
effective approximations at the end point of the time interval. We
refer the reader to [21] for an related discussions, references regard-
ing the computational significance of such optimal control problem.
The analysis of the above control problem is well understood, (see
e.g. [1,5,21,26,40,44] and references within), where various aspects,
including first and second order necessary conditions are developed
and analyzed.

To the contrary, numerical analysis of such optimal control prob-
lems is quite limited. This is due to the fact that the restricted
regularity of solutions of the evolutionary Navier-Stokes equations,
as well as the divergence free condition, and the convective nature
of the adjoint equation of the first order necessary condition, pose
significant difficulties when analyzing numerical schemes. Standard



Error estimates for the discretization of the velocity tracking problem 3

techniques developed for the numerical analysis of the uncontrolled
Navier-Stokes equations can not be directly applied in the optimal
control setting. Furthermore, the presence of control constraints, cre-
ate many additional difficulties and hence require special techniques
involving both first and second order necessary and sufficient condi-
tions.

Our work further analyzes the numerical scheme proposed in [6]
which is based on the discontinuous time-stepping Galerkin scheme
for the piecewise constant time combined with standard conforming
finite element subspaces for the discretization in space. In [6] we pre-
sented space-time error estimates of order O(h), under suitable regu-
larity assumptions on the data, when the controls are discretized by
piecewise constants in space and time. Two parameters τ and h are as-
sociated to the numerical scheme (here τ and h, indicating the size of
the grids in time and space) and they were needed to satisfy the usual
assumption τ ≤ Ch2 in order to prove that the discrete equation has
a unique solution, and our estimate was optimal in L2(0, T ;H1(Ω))
norms for the state and adjoint. We emphasize that if we discretize
the state equation only in time, not in space, then we cannot prove
uniqueness of a solution for the resulting elliptic system. Indeed, this
discrete elliptic system is very close to the stationary Navier-Stokes
system, for which there is no a uniqueness result. Therefore, it is not
surprising that the discretization parameter τ is needed to be small
compared with h if we want to prove the uniqueness of a solution
for the full discrete system. The key idea of [6] was to utilize ideas
from [8] developed for the stationary Navier-Stokes, together with a
detailed error analysis of the uncontrolled state and adjoint equations
of the underlying scheme.

Here, we also make use of this condition to prove improved error
estimates in two distinct cases. First, we prove optimal estimates
of order O(h2) in the L2(0, T ;L2(Ω)) norms, when the variational
discretization approach (see e.g. [25])is being used, and estimates of

order O(h
3
2
− 2

p ) for some p > 3, when piecewise linears (in space)
are being used for the discretization of the controls. The main novel
feature of our work is the development of suitable duality arguments
for the state and adjoint equations, which result optimal estimate of
order O(h2) for the discretization of the control to state mapping,
and its adjoint. Here, we emphasize that the convective nature of the
adjoint equation also requires special attention. Then, we combine
these estimates within the framework of [10,8,7] (related to nonlinear
elliptic pde control constraint problems), by exploring a localization
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argument and the second order condition. To our best knowledge our
estimates are new.

1.1 Related results

The literature regarding numerical analysis for optimal control prob-
lems related to evolutionary Navier-Stokes equations is very limited.
In [23,24] convergence of a gradient algorithm is proven, in case of
distributed controls, and of bounded distributed controls. Error esti-
mates for the semi-discrete (in space) discretization are derived in [14]
in case of distributed controls without control constraints by using
a variational discretization approach. Space-time error estimates for
the approximation of control problems associated to parabolic semi-
linear equations are presented in [35], by using both the variational
discretization and the piecewise linears for the discretization of the
controls. They discretize the state equation in two steps, first in time
and then in space. Note that by taking advantage of the bounded-
ness in time-space of the states they obtain error estimates for the
controls without the assumption τ ≤ Ch2. However, they make a
strong second order condition that we do not need. Their approach
is not easy to be translated to the control of Navier-Stokes systems
because the non-linearity involves the gradient of the state and the
boundedness of the states fails. Moreover, the discretization in time
of the state equation leads to a stationary Navier-Stokes system, for
which we cannot guarantee the uniqueness of a solution.

For earlier work on these schemes within the context of optimal
control problems we refer the reader to [31], [32] for error estimates
for an optimal control problem for the heat equation, with and with-
out control constraints respectively, and to [12] for a convergence
result for a semilinear parabolic optimal control problem. Error es-
timates for higher order discontinuous time-stepping schemes were
presented in [11], while an analysis of second order Petrov-Galerkin
Crank-Nicolson scheme and of a Crank-Nicolson scheme, for an op-
timal control problem for the heat equation were analyzed in [33]
and [2] respectively where estimates of second-order (in time) are de-
rived. However, the regularity assumptions on the control, state and
adjoint variables are not present in the nonlinear setting of Navier-
Stokes equations. For general results related to discontinuous time
step schemes for linear parabolic uncontrolled pdes, we refer the
reader to [15–18,42] (see also references within). Finally in the re-
cent work of [13], discontinuous time-stepping schemes of arbitrary
order for the Navier-Stokes equations in 2d and 3d where examined.
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Further results concerning the analysis and numerical analysis of the
uncontrolled Navier-Stokes can be found in the classical works of [20],
[27], [28], [41]. For several issues related to the analysis and numer-
ics of optimal control problems we refer the reader to [43] (see also
references within).

2 Assumptions and preliminary results

Ω is a bounded open and convex subset in R2, Γ being its bound-
ary. The outward unit normal vector to Γ at a point x ∈ Γ is
denoted by n(x). Given 0 < T < +∞, we denote ΩT = (0, T ) ×
Ω and ΣT = (0, T ) × Γ . We fix the notation for Sobolev spaces:
H1(Ω) = H1(Ω;R2), H1

0(Ω) = H1
0 (Ω;R2), H−1(Ω) = (H1

0(Ω))′ and
Ws,p(Ω) = W s,p(Ω;R2) for 1 ≤ p ≤ ∞ and s > 0. We also consider
the spaces of integrable functions

L2
0(Ω) = {w ∈ L2(Ω) :

∫
Ω
w(x) dx = 0};

Lp(Ω) = Lp(Ω;R2) and, for a given Banach space X, Lp(0, T ;X) will
denote the integrable functions defined in (0, T ) and taking values in
X endowed with the usual norm. Following Lions and Magenes [29,
Vol. 1] we put

H2,1(ΩT ) =

{
y ∈ L2(ΩT ) :

∂y

∂xi
,

∂2y

∂xixj
,
∂y

∂t
∈ L2(ΩT ), 1 ≤ i, j ≤ 2

}
equipped with the standard norm. In [29, Vol. 1] it is proved that
every element of H2,1(ΩT ), after a modification over a zero measure
set, is a continuous function from [0, T ] −→ H1(Ω). We also set
H2,1(ΩT ) = H2,1(ΩT )×H2,1(ΩT ).

We introduce the usual spaces of divergence-free vector fields:

Y = {y ∈ H1
0(Ω) : divy = 0 in Ω},

H = {y ∈ L2(Ω) : divy = 0 in Ω and y · n = 0 on Γ}.

Along this paper, we will assume that f ,yd ∈ L2(0, T ;L2(Ω))
and y0,yΩ ∈ Y. A solution of (1.1) will be sought in the space
W(0, T ) = {y ∈ L2(0, T ;Y) : yt ∈ L2(0, T ;Y∗)}. It is well known
that W(0, T ) ⊂ Cw([0, T ],H), where Cw([0, T ],H) is the space of
weakly continuous functions y : [0, T ] −→ H.

Let us introduce the weak formulation of (1.1). To this end we
define the bilinear and trilinear forms a : H1(Ω)×H1(Ω) −→ R and
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c : L4(Ω)×H1(Ω)×H1(Ω) −→ R by

a(y, z) = ν

∫
Ω
(∇y : ∇z) dx = ν

2∑
i,j=1

∫
Ω
∂xiyj ∂xizj dx

c(y, z,w) =
1

2
[ĉ(y, z,w)− ĉ(y,w, z)]

with ĉ(y, z,w) =

2∑
i,j=1

∫
Ω
yj

(
∂zi
∂xj

)
wi dx.

Now, we seek y ∈ W(0, T ) such that for a.e. t ∈ (0, T ),{
(yt,w) + a(y,w) + c(y,y,w) = (f + u,w) ∀w ∈ Y
y(0) = y0.

(2.1)

Above (· , ·) denotes the scalar product in L2(Ω). This notation will
be frequently used along the paper and ∥·∥ will denote the associated
norm. Any other norm will be indicated by a subscript.

Equation (2.1) has a unique solution in W(0, T ). Once the ve-
locity y is obtained, then the existence of a pressure p ∈ D(ΩT ) is
proved in such a way that the first equation of (1.1) holds in a dis-
tribution sense. Thanks to the regularity assumed on f , y0 and Ω,
then some extra regularity is proved for (y, p). Indeed, we have that
y ∈ H2,1(ΩT ) ∩ C([0, T ],Y) and p ∈ L2(0, T ;H1(Ω)), the pressure
being unique up to an additive constant; see, for instance, Ladyzhen-
skaya [27], Lions [28], Temam [41].

The next properties of the trilinear form c will be used later. The
proof can be found in many books; see [27], [28] or [41].

Lemma 1 The trilinear form c satisfies

c(y,w, z) = ĉ(y, z,w) = −ĉ(y,w, z) ∀y ∈ Y and ∀z,w ∈ H1
0(Ω),

c(y, z,w) = −c(y,w, z) ∀y ∈ L4(Ω) and ∀z,w ∈ H1(Ω),

c(y,w,w) = 0 ∀y ∈ L4(Ω) and ∀w ∈ H1(Ω).

Moreover, the following inequalities hold

|c(y, z,w)| ≤ ∥y∥Lp(Ω)∥∇z∥L2(Ω)∥w∥Lq(Ω), (1/p) + (1/q) = (1/2),

|c(y, z,w)| ≤ ∥y∥L4(Ω)∥∇z∥L2(Ω)∥w∥L4(Ω).

By using the interpolation inequality

∥z∥L4(Ω) ≤ 21/4∥z∥1/2
L2(Ω)

∥∇z∥1/2
L2(Ω)

∀z ∈ H1
0 (Ω), (2.2)
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(see [41, Lema 3.3, page 91]) we obtain ∀y,w ∈ H1
0(Ω) and ∀z ∈

H1(Ω)

|c(y, z,w)| ≤ C∥y∥1/2
L2(Ω)

∥∇y∥1/2
L2(Ω)

∥∇z∥L2(Ω)∥w∥1/2
L2(Ω)

∥∇w∥1/2
L2(Ω)

.

(2.3)
Returning back to the control problem (P), we will assume

λ > 0, γ ≥ 0, yd ∈ L2(0, T ;L2(Ω)) and yΩ ∈ Y. (2.4)

Since the mapping G : L2(0, T ;L2(Ω)) → H2,1(ΩT ) ∩ C([0, T ];Y),
associating to each control u the corresponding state G(u) = yu solu-
tion of (2.1), is well defined and continuous, then the cost functional
J : L2(0, T ;L2(Ω)) −→ R is also well defined and continuous.

The rest of the session is devoted to the first and second order
optimality conditions for local solutions. The reader is referred to [6]
for a detailed analysis and proofs. By standard arguments it is easy to
show that problem (P) has at least one global solution. Since (P) is
not convex we can also have local solutions. The following theorems
state for the differentiability of the mappings G and J , respectively.

Theorem 1 (Casas [5]) The mapping G is of class C∞. Moreover,
for any u,v ∈ L2(0, T ;L2(Ω)), if we denote yu = G(u), zv = G′(u)v
and zvv = G′′(u)v2, then zv and zvv are the unique solutions of the
following equations, ∀w ∈ Y{

(zv,t,w) + a(zv,w) + c(zv,yu,w) + c(yu, zv,w) = (v,w),
zv(0) = 0,

(2.5) (zvv,t,w) + a(zvv,w) + c(zvv,yu,w) + c(yu, zvv,w)
+2c(zv, zv,w) = 0,

zvv(0) = 0.
(2.6)

Theorem 2 (Casas and Chrysafinos [6]) The objective functional
J : L2(0, T ;L2(Ω)) −→ R is of class C∞ and for every u,v ∈
L2(0, T ;L2(Ω)) we have

J ′(u)v =

∫ T

0

∫
Ω
(φu + λu)v dxdt, (2.7)

J ′′(u)v2 =

∫ T

0

∫
Ω
(|zv|2 − 2(zv · ∇)zvφu)dxdt

+γ

∫
Ω
|zv(T )|2 dx+ λ

∫ T

0

∫
Ω
|v|2dxdt, (2.8)
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where zv = G′(u)v is the solution of (2.5) and φu ∈ H2,1(ΩT ) ∩
C([0, T ],Y) is the unique element satisfying

−(φu,t,w) + a(φu,w) + c(w,yu,φu) + c(yu,w,φu)
= (yu − yd,w) ∀w ∈ Y,

φu(T ) = γ(y(T )− yΩ).

(2.9)

From this theorem we can deduce the first order optimality con-
ditions (see e.g. [6, Theorem 3.3]).

Theorem 3 Let us assume that ū is a local solution of problem (P),
then there exist ȳ and φ̄ belonging to H2,1(ΩT ) ∩ C([0, T ],Y) such
that{

(ȳt,w) + a(ȳ,w) + c(ȳ, ȳ,w) = (f + ū,w) ∀w ∈ Y,
ȳ(0) = y0,

(2.10)−(φ̄t,w) + a(φ̄,w) + c(w, ȳ, φ̄) + c(ȳ,w, φ̄)
= (ȳu − yd,w) ∀w ∈ Y,

φ̄(T ) = γ(ȳ(T )− yΩ),
(2.11)

∫ T

0

∫
Ω
(φ̄+ λū)(u− ū) dxdt ≥ 0 ∀u ∈ Uad. (2.12)

Moreover, the regularity property ū ∈ H1(ΩT ) ∩ C([0, T ],H1(Ω)) ∩
L2(0, T ;W1,p(Ω)) holds for all 1 ≤ p < +∞.

From relation (2.12), we get the usual projection formula for j = 1, 2

ūj(t, x) = Proj[αj ,βj ]

(
− 1

λ
φ̄j(t, x)

)
for a.a. (t, x) ∈ ΩT . (2.13)

To write the second order conditions we need to define the cone
of critical directions. To this end, let us introduce the function

d̄ = φ̄+ λū. (2.14)

Now we set

Cū = {v ∈ L2(0, T ;L2(Ω)) : v satisfies (2.16)− (2.18)}, (2.15)

vj(t, x) ≥ 0 if −∞ < αj = ūj(t, x), (2.16)

vj(t, x) ≤ 0 if ūj(t, x) = βj < +∞, j = 1, 2, (2.17)

vj(t, x) = 0 if d̄j(t, x) ̸= 0. (2.18)



Error estimates for the discretization of the velocity tracking problem 9

Let us notice that

J ′(ū)v =

∫ T

0

∫
Ω
d̄(t, x) · v(t, x) dxdt,

d̄(t, x) · v(t, x) = 0 for a.a. (t, x) ∈ ΩT and ∀v ∈ Cū.
(2.19)

We also deduce as usual from (2.12), for almost all (t, x) ∈ ΩT

and j = 1, 2, 
ūj(t, x) = αj ⇒ d̄j(t, x) ≥ 0,

ūj(t, x) = βj ⇒ d̄j(t, x) ≤ 0,

αj < ūj(t, x) < βj ⇒ d̄j(t, x) = 0,

(2.20)

{
d̄j(t, x) > 0 ⇒ ūj(t, x) = αj ,

d̄j(t, x) < 0 ⇒ ūj(t, x) = βj .

Theorem 4 Let ū be a local solution of problem (P), then J ′′(ū)v2 ≥
0 ∀v ∈ Cū. Conversely, let us assume that ū ∈ Uad satisfies

J ′(ū)(u− ū) ≥ 0 ∀u ∈ Uad, (2.21)

J ′′(ū)v2 > 0 ∀v ∈ Cū \ {0}, (2.22)

then there exist ε > 0 and δ > 0 such that

J(ū) +
δ

2
∥u− ū∥2L2(0,T ;L2(Ω)) ≤ J(u) ∀u ∈ Uad ∩Bε(ū), (2.23)

where Bε(ū) is the L2(0, T ;L2(Ω))-ball of center ū and radius ε.

Finally, we point out that the sufficient second order condition
(2.22) is equivalent to the following:

∃δ > 0 such that J ′′(ū)v2 ≥ δ∥v∥2 ∀v ∈ Cū. (2.24)

3 Approximation of the state and adjoint-state equations

We consider a family of triangulations {Kh}h>0 of Ω̄, defined in the
standard way. To each element K ∈ Kh, we associate two parameters
hK and ϱK , where hK denotes the diameter of the set K and ϱK is
the diameter of the largest ball contained in K. Define the size of
the mesh by h = maxK∈Kh

hK . We also assume that the standard
regularity assumptions on the triangulation:

(i) – There exist two positive constants ϱK and δK such that hK
ϱK

≤ ϱK

and h
hK

≤ δK ∀K ∈ Kh and ∀h > 0.
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(ii) – Define Ωh = ∪K∈Kh
K, and let Ωh and Γh denote its interior

and its boundary, respectively. We assume that the vertices of Kh

placed on the boundary Γh are points of Γ .
Since Ω is convex, from the last assumption we have that Ωh is

also convex. Moreover, we know that

|Ω \Ωh| ≤ Ch2; (3.1)

see, for instance, [36, estimate (5.2.19)].
On the mesh Kh we consider two finite dimensional spaces Zh ⊂

H1
0(Ω) and Qh ⊂ L2

0(Ω) formed by piecewise polynomials in Ωh and
vanishing in Ω \ Ωh. We make the following assumptions on these
spaces.

(A1) If z ∈ H1+l(Ω) ∩H1
0(Ω), then

inf
zh∈Zh

∥z−zh∥Hs(Ωh) ≤ Chl+1−s∥z∥H1+l(Ω), for 0 ≤ l ≤ 1 and s = 0, 1.

(3.2)
(A2) If q ∈ H l(Ω) ∩ L2

0(Ω), then

inf
qh∈Qh

∥q − qh∥L2(Ωh) ≤ Ch∥q∥H1(Ω). (3.3)

(A3) The subspaces Zh and Qh satisfy the inf-sup condition:
∃c > 0 such that

inf
qh∈Qh

sup
zh∈Zh

b(zh, qh)

∥zh∥H1(Ωh)∥qh∥L2(Ωh)
≥ c, (3.4)

where b : H1(Ω)× L2(Ω) −→ R is defined by

b(z, q) =

∫
Ω
q(x)div z(x) dx.

These assumptions are satisfied by the usual finite elements consid-
ered in the discretization of Navier-Stokes equations: ”Taylor-Hood”,
P1-Bubble finite element, and some others; see [20, Chapter 2].

We also consider a subspace Yh of Zh defined by

Yh = {yh ∈ Zh : b(yh, qh) = 0 ∀qh ∈ Qh}.

We proceed now with the discretization in time. Let us consider a
grid of points 0 = t0 < t1 < . . . < tNτ = T . We denote τn = tn− tn−1.
We make the following assumption

∃ϱ0 > 0 s.t. τ = max
1≤n≤Nτ

τn < ϱ0τn ∀1 ≤ n ≤ Nτ and ∀τ > 0. (3.5)



Error estimates for the discretization of the velocity tracking problem 11

Given a triangulation Kh of Ω and a grid of points {tn}Nτ
n=0 of

[0, T ], we set σ = (τ, h). Finally, we consider the following spaces

Yσ = {yσ ∈ L2(0, T ;Yh) : yσ |(tn−1,tn)
∈ Yh for 1 ≤ n ≤ Nτ},

Qσ = {qσ ∈ L2(0, T ;Qh) : qσ |(tn−1,tn)
∈ Qh for 1 ≤ n ≤ Nτ}.

We have that the functions of Yσ and Qσ are piecewise constant
in time. The elements of Yσ can be written in the form

yσ =

Nτ∑
n=1

yn,hχn, with yn,h ∈ Yh, (3.6)

where χn is the characteristic function of (tn−1, tn). For every discrete
state yσ we will fix yσ(tn) = yn,h, so that yσ is continuous on the
left. In particular, we have yσ(T ) = yσ(tNτ ) = yNτ ,h.

3.1 The discrete state equation

To define the discrete control problem we have to consider the nu-
merical discretization of the state equation (1.1) or equivalently (2.1).
We achieve this goal by using a discontinuous time-stepping Galerkin
method, with piecewise constants in time and conforming finite ele-
ment spaces in space. For any u ∈ L2(0, T ;L2(Ω)) the discrete state
equation is given by

For n = 1, . . . , Nτ ,(
yn,h − yn−1,h

τn
,wh

)
+ a(yn,h,wh) + c(yn,h,yn,h,wh)

= (fn + un,wh) ∀wh ∈ Yh,
y0,h = y0h,

(3.7)

where

(fn,wh) =
1

τn

∫ tn

tn−1

(f(t),wh)dt, (un,wh) =
1

τn

∫ tn

tn−1

(u(t),wh)dt,(3.8)

y0h ∈ Yh with ∥y0 − y0h∥L2(Ωh) ≤ Ch, and ∥y0h∥H1(Ωh) ≤ C. (3.9)

Let us consider the projection operator Ph : L2(Ω) −→ Yh given by

(Phy,wh) = (y,wh) ∀wh ∈ Yh.

We also define Pσ : C([0, T ],L2(Ω)) −→ Yσ by (Pσy)n,h = Phy(tn)
for 1 ≤ n ≤ Nτ . This is the standard projection associated to the
discontinuous time-stepping scheme of the lowest order in time. The
next estimate was proven in [6, Lemma 4.2].
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Lemma 2 There exists a constant C > 0 independent of σ such that
for every y ∈ H2,1(ΩT ) ∩ C([0, T ];Y) the following estimates hold

∥y− Pσy∥L2(0,T ;L2(Ωh))

≤ C
{
τ∥y′∥L2(0,T ;L2(Ω)) + h2∥y∥L2(0,T ;H2(Ω))

}
, (3.10)

∥y− Pσy∥L2(0,T ;H1(Ωh))

≤ C
{τ
h
∥y′∥L2(0,T ;L2(Ω)) + h∥y∥L2(0,T ;H2(Ω))

}
. (3.11)

It well known that the discrete equation (3.7) has at least one solu-
tion. Concerning uniqueness and error estimates under the prescribed
regularity assumptions, the following results was proven in [6, Theo-
rem 4.7].

Theorem 5 Given u ∈ L2(0, T ;L2(Ω)), let us denote the solution of
(2.1) by y ∈ H2,1(ΩT )∩C([0, T ];Y), and let yσ ∈ Yσ be any solution
of (3.7). Then, there exists a constant C > 0 independent of u, y
and σ such that

max
1≤n≤Nτ

∥y(tn)− yσ(tn)∥+ ∥y − yσ∥L2(0,T ;H1(Ωh))

≤ C
{τ
h
∥y′∥L2(0,T ;L2(Ω)) + h∥y∥L2(0,T ;H2(Ω)) + h∥y0∥H1(Ω)

}
.(3.12)

∥y − yσ∥L∞(0,T ;L2(Ωh)) ≤ C
{(τ

h
+

√
τ
)
∥y′∥L2(0,T ;L2(Ω))

+h∥y∥L2(0,T ;H2(Ω)) + h∥y0∥H1(Ω)

}
. (3.13)

Moreover, if there exists a constant C0 > 0 such that τ ≤ C0h
2 for

every σ = (τ, h), then {yσ}σ is bounded in L∞(0, T ;H1(Ωh)) and
(3.7) has a unique solution.

By using the above results, and a suitable duality argument we
deduce the improved estimate on L2[0, T ;L2(Ω)] for state variable.

Theorem 6 Under the notation and assumptions of theorem 5 and
including the hypothesis τ ≤ C0h

2 for some constant C0, the following
estimate holds:

∥y − yσ∥L2(0,T ;L2(Ωh)) ≤ Ch2, (3.14)

where C is independent of σ, f and u.
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Proof Let us define e = y − yσ = (y − ŷσ) + (ŷσ − yσ) = ê + eσ,
where ŷσ is the solution of the following discrete equation:

For n = 1, . . . , Nτ , and ∀wh ∈ Yh,(
ŷn,h − ŷn−1,h

τn
,wh

)
+ a(ŷn,h,wh) = (f̂n,wh),

ŷ0,h = y0h,

(3.15)

where (f̂n,wh) =
1
τn

∫ tn
tn−1

{a(y(t),wh) + (y′(t),wh)} dt. Then, (3.15)
has a unique solution ŷσ ∈ Yσ. Moreover, [6, Lemma 4.6] states that
{ŷσ}σ is bounded in L∞(0, T ;H1(Ωh)), and in addition there exists
a constant C > 0 independent of σ such that the following estimates
hold:

max
1≤n≤Nτ

∥y(tn)− ŷσ(tn)∥+ ∥y − ŷσ∥L2(0,T ;H1(Ωh)) (3.16)

≤ C
{τ
h
∥y′∥L2(0,T ;L2(Ω)) + h∥y∥L2(0,T ;H2(Ω)) + h∥y0∥H1(Ω)

}
,

∥y − ŷσ∥L∞(0,T ;L2(Ωh)) (3.17)

≤ C
{(τ

h
+

√
τ
)
∥y′∥L2(0,T ;L2(Ω)) + h∥y∥L2(0,T ;H2(Ω)) + h∥y0∥H1(Ω)

}
.

The proof consists of two parts. First, we employ a duality argument
to deduce the inequality,

∥eσ∥L2(0,T ;L2(Ωh)) ≤ C(∥ê∥L2(0,T ;L2(Ω)) + h2), (3.18)

with C independent of σ. Second, we estimate the first term on the
right hand side, and then inserting (3.16) into (3.18) we obtain the
increased rate (3.14).

Step 1-Proof of (3.18). We begin by defining a dual problem−(ϕt,w) + a(ϕ,w) + c(w,yσ,ϕ) + c(y,w,ϕ)
= (eσ,w) ∀w ∈ Y,
ϕ(T ) = 0.

(3.19)

Note that ϕ has similar convective structure to the adjoint equation,
but it is different from the solution φu of (2.9). Recall that according
to Theorem 5, the sequence {yσ}σ is bounded in L∞(0, T ;H1(Ω))
and {eσ}σ is also bounded in L2(0, T ;L2(Ω)). Well known regularity
theorems state that ϕ ∈ H2,1(ΩT ) ∩ L∞(0, T ;Y) and its norm is
estimated by ∥eσ∥L2(ΩT ); see for instance [5]. The discrete version
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(within the context of discontinuous time-stepping schemes) takes
the form:

for n = Nτ , . . . , 1, and ∀wh ∈ Yh,

(ϕn,h − ϕn+1,h,wh) +

∫ tn

tn−1

{a(ϕn,h,wh) + c(wh,yn,h,ϕn,h)

+c(y(t),wh,ϕn,h)} dt =
∫ tn

tn−1

(en,h,wh) dt,

ϕNτ+1,h = 0.
(3.20)

Note that unlike the discrete states yσ, we will set for the discrete
adjoint states ϕσ(tn−1) = ϕn,h for every 1 ≤ n ≤ Nτ . Now, [6,
Theorem 4.11] implies that

∥ϕ− ϕσ∥L2(0,T ;H1(Ωh)) ≤ Ch∥eσ∥L2(0,T ;L2(Ωh)). (3.21)

Setting wh = en,h = eσ(tn) in (3.20), we obtain,∫ tn

tn−1

∥en,h∥2L2(Ωh)
dt = (ϕn,h − ϕn+1,h, en,h) (3.22)

+

∫ tn

tn−1

{
a(ϕn,h, en,h) + c(en,h,yn,h,ϕn,h) + c(y(t), en,h,ϕn,h)

}
dt.

From the definition (3.15) of ŷσ, and taking w = wh in (2.1), we
obtain for every 1 ≤ n ≤ Nτ

(ê(tn)− ê(tn−1),wh) +

∫ tn

tn−1

a(ê(t),wh) dt = 0 ∀wh ∈ Yh. (3.23)

Subtracting (3.7) from (2.1) with w ≡ wh, the orthogonality con-
dition for the discrete state equation takes the form

(e(tn)− e(tn−1),wh) +

∫ tn

tn−1

a(e(t),wh) dt (3.24)

=

∫ tn

tn−1

{c(yn,h,yn,h,wh)− c(y(t),y(t),wh)}dt.

Using the decomposition e = ê + eσ into the previous relation and
invoking (3.23) with wh ≡ ϕn,h it follows,

(en,h − en−1,h,ϕn,h) +

∫ tn

tn−1

a(en,h,ϕn,h) dt (3.25)

=

∫ tn

tn−1

{c(yn,h,yn,h,ϕn,h)− c(y(t),y(t),ϕn,h)} dt.
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For the last two nonlinear terms, using the definition of e and the
decomposition e = ê+ eσ, we obtain:

c(yn,h,yn,h,ϕn,h)− c(y(t),y(t),ϕn,h)

= −c(e(t),yn,h,ϕn,h)− c(y(t), e(t),ϕn,h)

= −c(ê(t),yn,h,ϕn,h)− c(en,h,yn,h,ϕn,h)

−c(y(t), ê(t),ϕn,h)− c(y(t), en,h,ϕn,h)

Combining this identity with (3.25) we arrive to:

(en,h − en−1,h,ϕn,h) +

∫ tn

tn−1

{a(en,h,ϕn,h) (3.26)

+c(en,h,yn,h,ϕn,h) + c(y(t), en,h,ϕn,h)}dt

= −
∫ tn

tn−1

{c(ê(t),yn,h,ϕn,h) + c(y(t), ê(t),ϕn,h)} dt.

Combining now (3.22) and (3.26), we get:∫ tn

tn−1

∥en,h∥2L2(Ωh)
dt = (ϕn,h − ϕn+1,h, en,h)− (en,h − en−1,h,ϕn,h)

−
∫ tn

tn−1

{c(ê(t),yn,h,ϕn,h) + c(y(t), ê(t),ϕn,h)}dt.

Summing the above equalities, from n = 1 to n = Nτ , and noting
that ϕNτ ,h = 0 and e0,h = 0 we deduce that

∥eσ∥2L2(0,T ;L2(Ωh))
(3.27)

= −
∫ T

0
{c(ê(t),yσ(t),ϕσ(t)) + c(y(t), ê(t),ϕσ(t))}dt.

Using (3.16), (3.21), along with Lemma 1 and the boundedness of
{yσ}σ in L∞(0, T ;H1(Ωh)) stated in Theorem 5, we deduce from
(3.27)

∥eσ∥2L2(0,T ;L2(Ωh))
= −

∫ T

0
{c(ê(t),yσ(t),ϕ(t)) + c(y(t), ê(t),ϕ(t)) dt

+

∫ T

0
{c(ê(t),yσ(t),ϕ(t)− ϕσ(t)) + c(y(t), ê(t),ϕ(t)− ϕσ(t)) dt

≤ C∥ê∥L2(0,T ;L2(Ωh))(∥yσ∥L∞(0,T ;H1(Ωh))+∥y∥L∞(0,T ;H1(Ω)))∥ϕ∥L2(0,T ;H2(Ω))

+C(∥yσ∥L∞(0,T ;H1(Ωh))+∥y∥L∞(0,T ;H1(Ω)))∥ê∥L2(0,T ;H1(Ωh))∥ϕ−ϕσ∥L2(0,T ;H1(Ωh))
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≤ C(∥ê∥L2(0,T ;L2(Ωh)) + h2)∥eσ∥L2(0,T ;L2(Ωh)).

This completes the proof of the first step.

Step 2-Proof of the estimate for ∥ê∥L2(0,T ;L2(Ωh)). We begin by
considering the decomposition ê = êp + êσ with êp = y − Pσy and
êσ = Pσy − ŷσ. From Lemma 1 for τ ≤ C0h

2, we know that

∥êp∥L2(0,T ;L2(Ωh)) + h∥êp∥L2(0,T ;H1(Ωh)) ≤ Ch2∥y∥H2,1(ΩT ). (3.28)

It remains to estimate êσ. For the later, we proceed by defining a suit-
able duality argument. To this end we now introduce ϕ ∈ H2,1(ΩT ),
solution of, {

−(ϕt,w) + a(ϕ,w) = (êσ,w) ∀w ∈ Y,
ϕ(T ) = 0,

(3.29)

The discrete version takes the form:

for n = Nτ , . . . , 1,

(ϕn,h − ϕn+1,h,wh) +

∫ tn

tn−1

a(ϕn,h,wh) dt

=

∫ tn

tn−1

(ên,h,wh) dt, ∀wh ∈ Yh,

ϕNτ+1,h = 0.

(3.30)

Inserting the decomposition of ê = êp + êσ into (3.23), and taking
into account that (êp(tn),wh) = (y(tn)− Phy(tn),wh) = 0 for every
n = 1, .., Nτ and all wh ∈ Yh, we obtain ∀wh ∈ Yh, 1 ≤ n ≤ Nτ .

(ên,h − ên−1,h,wh) +

∫ tn

tn−1

a(ên,h,wh) dt = −
∫ tn

tn−1

a(êp(t),wh) dt.

(3.31)
Taking wh = ên,h into (3.30), and wh = ϕn,h into (3.31), and sub-
tracting the resulting equations, we arrive to

∥ên,h∥2L2(tn−1,tn;L2(Ωh))
= (ϕn,h − ϕn+1,h, ên,h)− (ên,h − ên−1,h,ϕn,h)

−
∫ tn

tn−1

a(êp(t),ϕn,h) dt.

Summing the above equalities from n = 1 to n = Nτ , inserting ϕ on
the right hand side, we obtain

∥êσ∥2L2(0,T ;L2(Ωh))

≤ −
∫ T

0
a(êp(t),ϕσ(t)− ϕ(t)) dt+

∫ T

0
a(êp(t),ϕ(t)) dt.
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From the linear equations (3.29) and (3.30), working similarly to [13,
Theorem 4.6], we obtain ∥ϕσ−ϕ∥L2(0,T ;H1(Ωh)) ≤ Ch∥êσ∥L2(0,T ;L2(Ωh)).
Using this fact in the above inequality and (3.28), and integrating by
parts in the last integral, we finally conclude

∥êσ∥2L2(0,T ;L2(Ωh))
≤ C(∥êp∥L2(0,T ;H1(Ωh))∥ϕσ − ϕ∥L2(0,T ;H1(Ωh))

+∥êp∥L2(0,T ;L2(Ωh))∥ϕ∥L2(0,T ;H2(Ω))) ≤ Ch2∥êσ∥L2(0,T ;L2(Ωh)).

Combining Theorem 6 with [6, Corollary 4.11], we get

Corollary 1 Assume that max{∥u∥L2(0,T ;L2(Ω)), ∥v∥L2(0,T ;L2(Ω))} ≤
M . Let yu ∈ H2,1(ΩT ) ∩ C([0, T ];Y) be the solution of (2.1) and
yσ(v) ∈ Yσ the solution of the discrete equation (3.7) corresponding
to the control v. Then, there exists a constant CM > 0 such that

∥yu − yσ(v)∥L2(0,T ;L2(Ωh))

+h(∥yu − yσ(v)∥L∞(0,T ;L2(Ωh)) + ∥yu − yσ(v)∥L2(0,T ;H1(Ωh)))

≤ CM

{
h2 + ∥u− v∥L2(0,T ;L2(Ω))

}
(3.32)

Moreover, if uσ ∈ Uσ ∀σ and uσ ⇀ u weakly in L2(0, T ;L2(Ω)), then
∥yu − yσ(uσ)∥L2(0,T ;H1(Ωh)) → 0,
∥yu − yσ(uσ)∥Lp(0,T ;L2(Ωh)) → 0 ∀1 ≤ p < +∞,
∥yu(T )− yσ(uσ)(T )∥L2(0,T ;L2(Ωh)) → 0.

(3.33)

3.2 The discrete adjoint-state equation

In this section, the assumption τ ≤ C0h
2 will be assumed. Then,

associated to the discrete state equation (3.7), the cost functional J
is approximated by Jσ : L2(0, T ;L2(Ω)) −→ R, given by

Jσ(u) =
1

2

∫ T

0

∫
Ωh

|yσ(u)− yd|2dxdt

+
γ

2

∫
Ωh

|yσ(T )− yΩh
|2dx+

λ

2

∫ T

0

∫
Ωh

|u|2dxdt,

where yΩh
∈ Yh is a convenient approximation of yΩ to be fixed later

and yσ = yσ(u) is the discrete state corresponding to the control u.



18 Eduardo Casas, Konstantinos Chrysafinos

The functional Jσ is of class C∞, and we have a first expression of
its derivative as follows

J ′
σ(u)v =

∫ T

0

∫
Ωh

(yσ − yd)zσ dxdt

+γ

∫
Ωh

(yσ(T )− yΩh
)zσ(T ) dx+ λ

∫ T

0

∫
Ωh

uv dxdt,

where zσ is the solution of the linearized equation

For n = 1, . . . , Nτ ,(
zn,h − zn−1,h

τn
,wh

)
+ a(zn,h,wh) + c(zn,h,yn,h,wh)

+c(yn,h, zn,h,wh) =
1
τn

∫ tn
tn−1

(v(t),wh) dt ∀wh ∈ Yh,

z0,h = 0;

(3.34)

see [6, Theorem 4.12]. By using the adjoint state equation

for n = Nτ , . . . , 1, and ∀wh ∈ Yh,(
φn,h −φn+1,h

τn
,wh

)
+ a(φn,h,wh) + c(wh,yn,h,φn,h)

+c(yn,h,wh,φn,h) =
1
τn

∫ tn
tn−1

(yn,h − yd(t),wh) dt,

φNτ+1,h = γ(yNτ ,h − yΩh
),

(3.35)

the derivative of Jσ can be expressed as

J ′
σ(u)v =

∫ T

0

∫
Ωh

(φσ + λu)v dxdt. (3.36)

Observe that in the above system (3.35), first we compute φNτ ,h

from φNτ+1,h = γ(yNτ ,h−yΩh
) and then we descend in n until n = 1.

As mentioned before, unlike the discrete states yσ, we will set for
the discrete adjoint states φσ(tn−1) = φn,h for every 1 ≤ n ≤ Nτ .
Analogously to the Corollary 1, we have the following result.

Theorem 7 Assume that max{∥u∥L2(0,T ;L2(Ω)), ∥v∥L2(0,T ;L2(Ω))} ≤
M . Let φu ∈ H2,1(ΩT ) ∩ C([0, T ];Y) be the solution of (2.9) and
φσ(v) ∈ Yσ the solution of the discrete equation (3.35) corresponding
to the control v. Then, there exists a constant CM > 0 such that

∥φu −φσ(v)∥L2(0,T ;L2(Ωh))

+h(∥φu −φσ(v)∥L∞(0,T ;L2(Ωh)) + ∥φu −φσ(v)∥L2(0,T ;H1(Ωh))

≤ CM

{
h2 + ∥u− v∥L2(0,T ;L2(Ω))

}
(3.37)
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Proof The only difference of this Theorem with respect to [6, Corol-
lary 4.14] (see also [6, Theorem 4.13]) is the L2(0, T ;L2(Ωh)) estimate
for the discretization of the adjoint state equation. Let us prove these
estimates. For simplicity we denote φ instead of φu and similarly for
its discrete approximation. First, we define Rσ : C([0, T ];L2(Ω)) −→
Yσ, the analogous operator to Pσ, for the backwards (in time) adjoint
state by (Rσw)n,h = Phw(tn−1) for 1 ≤ n ≤ Nτ . Here Ph denotes the
standard L2 projection on Yh already considered in the definition of
Pσ. As for the discrete adjoint states, we fix (Rσw)(tn−1) = (Rσw)n,h.
Analogously to (3.10) and (3.11), we have the estimates for every
w ∈ H2,1(ΩT ) ∩ C([0, T ],Y)

∥w −Rσw∥L2(0,T ;L2(Ωh))

≤ C
{
τ∥w′∥L2(0,T ;L2(Ω)) + h2∥w∥L2(0,T ;H2(Ω))

}
, (3.38)

∥w −Rσw∥L2(0,T ;H1(Ωh))

≤ C
{τ
h
∥w′∥L2(0,T ;L2(Ω)) + h∥w∥L2(0,T ;H2(Ω))

}
. (3.39)

Analogously to the discrete state equation we introduce the notation
η = φ−φσ = (φ−Rσφ)+ (Rσφ−φσ) = η̂+ησ. Due to (3.38) it is
enough to estimate ησ in L2(0, T ;L2(Ωh)). Using [6, Theorem 4.11]
and (3.39) we obtain

∥ησ∥L2(0,T ;H1(Ωh)) + ∥η∥L2(0,T ;H1(Ωh)) ≤ Ch. (3.40)

We employ a duality argument, similarly to the proof of Theorem 6.{
(zt,w) + a(z,w) + c(z,yu,w) + c(yu, z,w) = (ησ,w),
zv(0) = 0,

(3.41)

The discrete version of (3.41) associated to the discrete state yσ ≈ y
is given by

For n = 1, . . . , Nτ , and ∀wh ∈ Yh,

(zn,h − zn−1,h,wh) +

∫ tn

tn−1

{a(zn,h,wh) + c(zn,h,yn,h,wh)

+c(yn,h, zn,h,wh)}dt =
∫ tn

tn−1

(ηn,h,wh) dt,

z0,h = 0;

(3.42)

These are the linearized versions of the continuous and discrete Navier-
Stokes operators. The following error estimates can be derived easily
by using techniques similar to [6, Theorem 4.13].

∥zσ − z∥L∞(0,T ;L2(Ωh)) + ∥zσ − z∥L2(0,T ;H1(Ωh))

≤ Ch∥z∥H2,1(ΩT ) ≤ Ch∥ησ∥L2(0,T ;L2(Ωh)). (3.43)
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Subtracting equations (2.9) and (3.35), and taking w = wh = zn,h
we obtain for η = ϕ− ϕσ,

(η(tn−1)− η(tn), zn,h) +

∫ tn

tn−1

{a(η, zn,h)

+c(y(t), zn,h,φ(t)) + c(zn,h,y(t),φ(t))

−c(yn,h, zn,h,φn,h)− c(zn,h,yn,h,φn,h)}dt

=

∫ tn

tn−1

(e(t), zn,h) dt.

Now, using the decomposition η = η̂ + ησ and taking into account
(η̂(tj),wh) = 0 for all j = 1, . . . , Nτ , we infer from the above relation

(ηn,h − ηn+1,h, zn,h) +

∫ tn

tn−1

{a(ηn,h, zn,h) (3.44)

+c(y(t), zn,h,φ(t)) + c(zn,h,y(t),φ(t))

−c(yn,h, zn,h,φn,h)− c(zn,h,yn,h,φn,h)} dt

=

∫ tn

tn−1

(e(t), zn,h) dt−
∫ tn

tn−1

a(η̂(t), zn,h) dt.

Taking wh = ηn,h in (3.42) and subtracting (3.44) to the resulting
equation we get,∫ tn

tn−1

∥ηn,h∥2L2(Ωh)
dt = (zn,h − zn−1,h,ηn,h)− (ηn,h − ηn+1,h, zn,h)

+

∫ tn

tn−1

{c(zn,h,yn,h,ηn,h) + c(yn,h, zn,h,ηn,h)

−c(y(t), zn,h,φ(t))− c(zn,h,y(t),φ(t))

+c(yn,h, zn,h,φn,h) + c(zn,h,yn,h,φn,h)}dt

+

∫ tn

tn−1

(e(t), zn,h) dt−
∫ tn

tn−1

a(η̂(t), zn,h) dt.

With the identities e = y − yσ and η = φ−φσ, we get∫ tn

tn−1

∥ηn,h∥2L2(Ωh)
dt = (zn,h − zn−1,h,ηn,h)− (ηn,h − ηn+1,h, zn,h)

+

∫ tn

tn−1

{c(zn,h,yn,h,ηn,h) + c(yn,h, zn,h,ηn,h)

−c(e(t), zn,h,φ(t))− c(zn,h, e(t),φ(t))
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−c(yn,h, zn,h,η(t))− c(zn,h,yn,h,η(t))} dt

+

∫ tn

tn−1

(e(t), zn,h) dt−
∫ tn

tn−1

a(η̂(t), zn,h) dt.

Recalling that ησ − η = −η̂, and canceling appropriate terms, the
previous identity is reduced to∫ tn

tn−1

∥ηn,h∥2L2(Ωh)
dt = (zn,h − zn−1,h,ηn,h)− (ηn,h − ηn+1,h, zn,h)

−
∫ tn

tn−1

{c(e(t), zn,h,φ(t)) + c(zn,h, e(t),φ(t))

+c(yn,h, zn,h, η̂(t)) + c(zn,h,yn,h, η̂(t))} dt

+

∫ tn

tn−1

(e(t), zn,h) dt−
∫ tn

tn−1

a(η̂(t), zn,h) dt.

Adding the above equalities from n = Nτ to n = 1, and using that
z0,h = ηNτ ,h = 0, we obtain∫ T

0
∥ηn,h∥2L2(Ωh)

dt = −
∫ T

0
{c(e(t), zn,h,φ(t)) + c(zn,h, e(t),φ(t))

+c(yn,h, zn,h, η̂(t)) + c(zn,h,yn,h, η̂(t))} dt

+

∫ T

0
(e(t), zn,h) dt−

∫ T

0
a(η̂(t), zn,h) dt. (3.45)

It remains to bound each term on the right hand side. For the first
term, note that ∫ T

0
c(e(t), zn,h,φ(t)) dt

≤ C∥e∥L2(0,T ;L2(Ωh))∥zσ∥L∞(0,T ;H1(Ωh))∥φ∥L2(0,T ;H2(Ω))

≤ Ch2∥ησ∥L2(0,T ;L2(Ωh)),

where we have used the estimate (3.14) and stability estimates of zσ
and φ. The second can be handled similarly. For the third one, we
proceed as follows:∫ T

0
c(yn,h, zn,h, η̂(t)) dt =

∫ T

0
c(yn,h, zn,h − z(t), η̂(t)) dt

+

∫ T

0
c(yn,h, z(t), η̂(t)) dt

≤ C∥yσ∥L∞(0,T ;H1(Ωh))∥z− zσ∥L2(0,T ;H1(Ωh))∥η̂∥L2(0,T ;H1(Ωh))
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+∥yσ∥L∞(0,T ;H1(Ωh))∥z∥L2(0,T ;H2(Ω))∥η̂∥L2(0,T ;L2(Ωh))

≤ Ch2∥ησ∥L2(0,T ;L2(Ωh)).

The above inequalities follow from the estimates (3.38), (3.39), (3.43)
and stability properties as before. The forth term of (3.45) is handled
similar to the previous estimate, the fifth one is consequence of (3.14)
and the stability of zσ, while the last one can be treated as follows,∫ T

0
a(η̂(t), zn,h) dt =

∫ T

0
a(η̂(t), zn,h − z(t)) dt+

∫ T

0
a(η̂(t), z(t)) dt

≤ C(∥η̂∥L2(0,T ;H1(Ωh))∥z− zσ∥L2(0,T ;H1(Ωh))

+∥η̂∥L2(0,T ;L2(Ωh))∥z∥L2(0,T ;H2(Ω))) ≤ Ch2∥ησ∥L2(0,T ;L2(Ωh)).

4 Error estimates of the discrete optimal control problem

As in §3.2, the hypothesis τ ≤ C0h
2 will be assumed throughout this

section. Now, we are ready to prove the main result regarding the
error estimates in the L2(0, T ;L2(Ω)) norm. First, we formulate the
discrete control problem as follows

(Pσ)

{
min Jσ(uσ)
uσ ∈ Uσ,ad

Jσ(uσ) =
1

2

∫ T

0

∫
Ωh

|yσ(uσ)− yd|2dxdt

+
γ

2

∫
Ωh

|yσ(T )− yΩh
|2dx+

λ

2

∫ T

0

∫
Ωh

|uσ|2dxdt,

where yΩh
∈ Yh, with ∥yΩ−yΩh

∥L2(Ωh) ≤ Ch and ∥yΩh
∥H1(Ωh) ≤ C

∀h > 0; yσ(uσ) is defined in (3.7) with right hand side uσ; and
Uσ,ad = Uad ∩ Uσ. There are three standard ways of choosing Uσ.

1-Piecewise constant controls:

Uh = Uh,0 = {uh ∈ L2(Ωh) : uh|K ≡ uK ∈ R2 ∀K ∈ Kh}

and

Uσ = Uσ,0 = {uσ ∈ L2(0, T ;Uh) : uσ|(tn−1,tn] ∈ Uh, for 1 ≤ n ≤ Nτ}.

2-Piecewise linear controls:

Uh = Uh,1 = {uh ∈ C(Ω̄h) : uh|K ∈ P1(K)2 ∀K ∈ Kh}
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and

Uσ = Uσ,1 = {uσ ∈ L2(0, T ;Uh) : uσ |(tn−1,tn)
∈ Uh for 1 ≤ n ≤ Nτ}.

3-Variational discretization: Uh = Uh,2 = L2(Ωh) and Uσ = Uσ,2 =
L2(0, T ;L2(Ωh)).

It is easy to check that for any of the three precedent choices, the
discrete problem (Pσ) has at least one solution. The next theorem
states that the family of problems (Pσ) realizes a good approxima-
tion of problem (P). We refer the reader to [6, Theorems 4.13 and
4.15] for a detailed proof.

Theorem 8 For every σ = (τ, h) let ūσ be a global solution of prob-
lem (Pσ), then the sequence {ūσ}σ is bounded in L2(0, T ;L2(Ω)) and
there exist subsequences, denoted in the same way, converging to a
point ū weakly in L2(0, T ;L2(Ω)). Any of these limit points is a so-
lution of problem (P). Moreover, we have

lim
σ→0

∥ū− ūσ∥L2(0,T ;L2(Ωh)) = 0 and lim
σ→0

Jσ(ūσ) = J(ū). (4.1)

Conversely, let ū be a strict local minimum of (P), then there exists
a sequence {ūσ}σ of local minima of problems (Pσ) such that (4.1)
holds.

The key ingredient of the proof is the use of the projection of any
solution ũ of problem (P) on Uσ,ad. Then, if uσ is the L2(0, T ;L2(Ωh))
projection of ũ on Uσ,ad, then ∥ũ−uσ∥L2(0,T ;L2(Ωh)) → 0 when σ → 0.
In the case Uσ = Uσ,0, then uσ is given by

uσ =

Nτ∑
n=1

∑
K∈Kh

un,KχnχK , with un,K =
1

|K|τn

∫ tn

tn−1

∫
K
ũ(t, x) dxdt,

where χn, χK denote the characteristic functions on (tn−1, tn] and on
the element T respectively. Then, uσ is the L2(0, T ;L2(Ωh)) projec-
tion of ũ on Uσ.

If Uσ = Uσ,2, then uσ = ũ. Though we do not have an explicit
expression for the projection in the case Uσ = Uσ,1, it is not difficult
to prove that such a projection satisfies ∥ũ − uσ∥L2(0,T ;L2(Ωh)) → 0.
Indeed, it is enough to use that

∥ũ− uσ∥L2(0,T ;L2(Ωh)) ≤ ∥ũ− Iσũ∥L2(0,T ;L2(Ωh)) → 0,

where

Iσũ =

Nτ∑
n=1

1

τn

∫ tn

tn−1

Ihũ(t) dt χn,
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Ih : C(Ω̄)2 → Uh,1 denoting the standard linear interpolation opera-
tor. Recall that Theorem (3) states that any local solution ũ of (P)
belongs to L2(0, T ;W1,p(Ω)) ⊂ L2(0, T ;C(Ω̄)2) for p > 2.

Theorem 8 can be also deduced by using the abstract result [9,
Theorem 2.11]. Indeed, with the notation of [9], we can takeA = U2 =
U∞ = L2(0, T ;L2(Ω)) and the assumptions (A1) and (A3)-(A6) of
[9] can be easily proved by using the previous analysis carried out in
the sections §2 and §3.

Hereafter, ū will denote a local solution of (P) and for every σ, ūσ

denotes a local solution of (Pσ) such that ∥ū− ūσ∥L2(0,T ;L2(Ωh)) → 0;
see Theorem 8. We also denote by ȳ and φ̄ the state and adjoint
associated to ū, and ȳσ and φ̄σ will denote the discrete state and
adjoint state corresponding to ūσ. The goal is to estimate the rate of
the convergence (ūσ, ȳσ, φ̄σ) → (ū, ȳ, φ̄). As in [6, Section 4] and [9],
all the elements uσ ∈ Uσ, for Uσ = Uσ,0 and Uσ = Uσ,1, are extended
to (0, T )×Ω by setting uσ(t, x) = ū(t, x) for (t, x) ∈ (0, T )×(Ω\Ωh).

Let us write ū = (ū1, ū2). Associated to the components ūj , j =
1, 2, for every t ∈ (0, T ), and motivated by (2.19)-(2.20), we split
the elements In × K, with In = (tn−1, tn] and K ∈ Kh, as follows:

Tσ = T j
σ,1 ∪ T j

σ,2 ∪ T j
σ,3, j = 1, 2, where

Tσ = {In ×K : 1 ≤ n ≤ Nτ and K ∈ Kh},

T j
σ,1 = {In ×K ∈ Tσ : φ̄j(t, x) + λūj(t, x) ̸= 0 ∀(t, x) ∈ In ×K},

T j
σ,2 = {In ×K ∈ Tσ : φ̄j(t, x) + λūj(t, x) = 0 ∀(t, x) ∈ In ×K},

T j
σ,3 = Tσ \ (T j

σ,1 ∪ T j
σ,2).

Finally, let us denote

Eσ = ∥ū− ūσ∥L2(0,T ;L2(Ωh))

+∥ȳ − ȳσ∥L2(0,T ;L2(Ωh)) + ∥φ̄− φ̄σ∥L2(0,T ;L2(Ωh)), (4.2)

Eσ = ∥ȳ − ȳσ∥L∞(0,T ;L2(Ωh)) + ∥ȳ − ȳσ∥L2(0,T ;H1(Ωh))

+∥φ̄− φ̄σ∥L∞(0,T ;L2(Ωh)) + ∥φ̄− φ̄σ∥L2(0,T ;H1(Ωh)). (4.3)

Then we have the following error estimates.

Theorem 9 Suppose that (2.22) holds. Moreover, if Uσ = Uσ,1 we
also assume that yd ∈ Lp(ΩT ), yΩ ∈ Y∩W1,p(Ω), with 3 < p < +∞,
Γ is of class C3, and for some constant M > 0

2∑
j=1

∑
In×K∈T j

σ,3

|K|τn ≤ Mh. (4.4)
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Then, then we have the following estimates

Eσ ≤


Ch if Uσ = Uσ,0,

Cph
3
2
− 2

p if Uσ = Uσ,1,

Ch2 if Uσ = Uσ,2,

(4.5)

Eσ ≤ Ch in all cases. (4.6)

Proof First we observe that it is enough to prove the estimates for
∥ū− ūσ∥L2(0,T ;L2(Ωh)), the others are consequence of Corollary 1 and
Theorem 7. To prove this estimate, we will use [9, Theorem 2.14].
It is immediate to verify that the assumptions of [9, Theorem 2.14]
hold. From (2.7), (3.36) and (3.37) we deduce

|[J ′
σ(u)− J ′(u)](uσ − ū)

≤ Ch2∥uσ − ū∥L2(0,T ;L2(Ωh)) ∀(u,uσ) ∈ Uad × Uσ,ad.

This means that εh = Ch2 in assumption (A7) of [9]. Hence, the
inequality (2.19) of [9, Theorem 2.14] can be written

∥ū− ūσ∥L2(0,T ;L2(Ωh))

≤ C[h4 + ∥ū− uσ∥2L2(0,T ;L2(Ωh))
+ J ′(ū)(uσ − ū)]1/2 (4.7)

for every uσ ∈ Uσ,ad and for all |σ| < |σ0|. Now, we have to choose
uσ conveniently to obtain (4.5). To this end, we will distinguish the
three different choices for Uσ.

Case 1: Uσ = Uσ,0. Here we take uσ as the L2-projection of ū on
Uσ, which is given by

uσ =

Nτ∑
n=1

∑
K∈Kh

un,KχnχK , with un,K =
1

|K|τn

∫ tn

tn−1

∫
K
ū(t, x) dxdt.

Then, we have that uσ ∈ Uσ,ad and

∥ū− uσ∥2L2(0,T ;L2(Ωh))
+ J ′(ū)(uσ − ū) ≤ Ch2;

see [6, Lemma 4.17 and (4.45)] for the proof. It is enough to insert
this inequality in (4.7) to obtain the desired estimate.

Case 2: Uσ = Uσ,1. Now we take

uσ = Iσū =

Nτ∑
n=1

1

τn

∫ tn

tn−1

Ihū(t) dt χn,
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Ih : C(Ω̄)2 → Uh,1 denoting the standard linear interpolation oper-
ator. Again we have that uσ ∈ Uσ,ad, and from Lemma 3 below, we
deduce

∥ū− uσ∥2L2(0,T ;L2(Ωh))
+ J ′(ū)(uσ − ū) ≤ Ch3−4/p.

Once again this inequality and (4.7) proves the estimate.
Case 3: Uσ = Uσ,2. It is enough to take uσ = ū in (4.7) to deduce

the estimate of order h2.

Lemma 3 Let us assume that yd ∈ Lp(ΩT ), yΩ ∈ Y∩W1,p(Ω), with
3 < p < +∞, Γ is of class C3, and (4.4) holds. Let uσ = Iσū, then
we have the estimates

∥ū− uσ∥L2(0,T ;L2(Ωh)) ≤ Ch
3
2
− 1

p , (4.8)

J ′(ū)(uσ − ū) ≤ Ch
3− 4

p . (4.9)

Proof The proof is divided into two parts.
1 - Proof of the estimate (4.8).

∥ū− uσ∥L2(0,T ;L2(Ωh))

=

{
Nτ∑
n=1

∫ tn

tn−1

∥ū(t)− 1

τn

∫ tn

tn−1

Ihū(s) ds∥2L2(Ωh)
dt

}1/2

≤

{
Nτ∑
n=1

1

τn

∫ tn

tn−1

∫ tn

tn−1

∥ū(t)− Ihū(s)∥2L2(Ωh)
ds dt

}1/2

≤

{
Nτ∑
n=1

1

τn

∫ tn

tn−1

∫ tn

tn−1

∥ū(t)− ū(s)∥2L2(Ωh)
ds dt

}1/2

+

{
Nτ∑
n=1

1

τn

∫ tn

tn−1

∫ tn

tn−1

∥ū(s)− Ihū(s)∥2L2(Ωh)
ds dt

}1/2

≤ τ

{∫ T

0
∥ū′(θ)∥2L2(Ωh)

dθ

}1/2

+

{∫ T

0
∥ū(s)− Ihū(s)∥2L2(Ωh)

ds

}1/2

≤ Ch2∥ū′∥L2(0,T ;L2(Ωh)) +

{∫ T

0
∥ū(s)− Ihū(s)∥2L2(Ωh)

ds

}1/2

.
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Let us estimate the last term. First we write{∫ T

0
∥ū(s)− Ihū(s)∥2L2(Ωh)

ds

}1/2

≤
2∑

j=1


Nτ∑
n=1

∑
K∈Th

∫ tn

tn−1
∥ūj(t)− Ihūj(t)∥2L2(K) dt


1/2

.

Now, from (2.12) we deduce that ūj ≡ αj or ūj ≡ βj in In ×K for

every In × K ∈ T j
σ,1, therefore ∥ūj(t) − Ihūj(t)∥2L2(K) = 0 for every

t ∈ In.
To deal with the other two components of Tσ we use the regu-

larity assumptions. From Solonnikov’s Theorem [39], see also [19],
we deduce that φ̄ ∈ Lp(0, T ;W2,p(Ω)) ⊂ Lp(0, T ;C1(Ω̄)) and φ̄′ ∈
Lp(ΩT ), hence (2.12) implies that ū ∈ W1,p(ΩT ).

Let us consider the case In×K ∈ T j
σ,2, then φ̄j(t, x)+λūj(t, x) = 0

in In ×K. Therefore, we have that ūj ∈ Lp(0, T ;W2,p(K)), hence∑
In×K∈T j

σ,2

∫ tn

tn−1

∥ūj(t)− Ihūj(t)∥2L2(K) dt

≤
∑

In×K∈T j
σ,2

τ
p−2
p

n |K|
p−2
p

(∫ tn

tn−1

∥ūj(t)− Ihūj(t)∥pLp(K) dt

) 2
p

≤ Ch4
∑

In×K∈T j
σ,2

τ
p−2
p

n |K|
p−2
p

(∫ tn

tn−1

∥ūj∥pW2,p(K)
dt

) 2
p

=
C

λ2
h4

∑
In×K∈T j

σ,2

τ
p−2
p

n |K|
p−2
p

(∫ tn

tn−1

∥φ̄j∥pW2,p(K)
dt

) 2
p

≤ Ch4

 ∑
In×K∈T j

σ,2

|K|τn


p−2
p

∥φ̄j∥2Lp(0,T ;W2,p(Ω))

≤ C(|Ω|T )
p−2
p h4∥φ̄j∥2Lp(0,T ;W2,p(Ω)).

Finally, we consider the case where In ×K ∈ T j
σ,3. Now, we have∑

In×K∈T j
σ,3

∫ tn

tn−1

∥ūj(t)− Ihūj(t)∥2L2(K) dt
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≤
∑

In×K∈T j
σ,3

(|K|τn)
p−2
p

(∫ tn

tn−1

∥ūj(t)− Ihūj(t)∥pLp(K) dt

) 2
p

≤ Ch2
∑

In×K∈T j
σ,3

(|K|τn)
p−2
p

(∫ tn

tn−1

∥ūj(t)∥pW1,p(K)
dt

) 2
p

≤ Ch2

 ∑
In×K∈T j

σ,3

|K|τn


p−2
p

∥ūj∥2Lp(0,T ;W1,p(Ω))

≤ Ch
3− 2

p ∥ūj∥2Lp(0,T ;W1,p(Ω)),

where we have used (4.4).
The last arguments lead to{∫ T

0
∥ū(s)− Ihū(s)∥2L2(Ωh)

ds

}1/2

≤ Ch
3
2
− 1

p
(
∥φ̄∥Lp(0,T ;W2,p(Ω)) + ∥ū∥Lp(0,T ;W1,p(Ω))

)
,

which concludes the proof of (4.8).
2 - Proof of the estimate (4.9). Let us set d̄ = φ̄ + λū and d̄ =

(d̄1, d̄2). Recalling that, as every element of Uσ, uσ is extended to
Ω \Ωh by uσ(t, x) = ū(t, x) for x ∈ Ω \Ωh, we have

J ′(ū)(uσ − ū) =

2∑
j=1

Nτ∑
n=1

∑
K∈Th

∫ tn

tn−1

∫
K
d̄j(uj − ūj) dxdt.

This expression can be simplified as follows. As we already mentioned
in the proof of the previous lemma, if In ×K ∈ T j

σ,1, then uj(t, x) =
ū(t, x) for all (t, x) ∈ In×K, both of them being either αj or βj at the

same time. Therefore, the integral in In×K is zero. If In×K ∈ T j
σ,2,

then d̄j(t, x) = 0 for every (t, x) ∈ In×K. Hence, the integral in In×K

is again zero. Finally, if In×K ∈ T j
σ,3, then d̄j ̸≡ 0 in In×K, but there

exists at least one point (sjn, ξ
j
K) ∈ In ×K such that d̄j(s

j
n, ξ

j
K) = 0.

Hence, we have
J ′(ū)(uσ − ū) =

2∑
j=1

∑
In×K∈T j

σ,3

∫ tn

tn−1

∫
K
(d̄j(t, x)− d̄j(s

j
n, ξ

j
K))(uj(t, x)− ūj(t, x)) dxdt
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≤


2∑

j=1

∑
In×K∈T j

σ,3

∫ tn

tn−1

∫
K
(d̄j(t, x)− d̄j(s

j
n, ξ

j
K))2dxdt


1
2

∥uσ−ū∥L2(ΩT )

≤ Ch
3
2
− 1

p


2∑

j=1

∑
In×K∈T j

σ,3

∫ tn

tn−1

∫
K
(d̄j(t, x)− d̄j(s

j
n, ξ

j
K))2dxdt


1
2

,

(4.10)
the last inequality being an immediate consequence of (4.8). Now, we
use that d̄ ∈ Lp(0, T ;W2,p(Ω)) and, due to p > 3, d̄ ∈ W1,p(ΩT ) ⊂
C0,η(Ω̄T ) for η = 1 − 3

p ; see, for instance, Nečas [34]. Using this
properties, we get

2∑
j=1

∑
In×K∈T j

σ,3

∫ tn

tn−1

∫
K
(d̄j(t, x)− d̄j(s

j
n, ξ

j
K))2dxdt


1
2

≤ Ch
1− 3

p


∑

In×K∈T j
σ,3

∫ tn

tn−1

∫
K
∥d̄∥2W1,p(ΩT )dxdt


1
2

≤ Ch
1− 3

p

 ∑
In×K∈T j

σ,3

|K|τn


1
2

∥d̄∥W1,p(ΩT ) ≤ Ch
3
2
− 3

p ∥d̄∥2W1,p(ΩT ).

This estimate along with (4.10) lead to (4.9).
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