A DISCONTINUOUS GALERKIN TIME-STEPPING SCHEME FOR
THE VELOCITY TRACKING PROBLEM*

EDUARDO CASAST AND KONSTANTINOS CHRYSAFINOS?

Abstract. The velocity tracking problem for the evolutionary Navier-Stokes equations in 2d is
studied. The controls are of distributed type and they are submitted to bound constraints. First
and second order necessary and sufficient conditions are proved. A fully-discrete scheme based on
discontinuous (in time) Galerkin approach combined with conforming finite element subspaces in
space, is proposed and analyzed. Provided that the time and space discretization parameters, 7 and
h respectively, satisfy 7 < Ch?, then L2 error estimates of order O(h) are proved for the difference
between the locally optimal controls and their discrete approximations.
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1. Introduction. In this paper we prove some error estimates for the numerical
approximation of a distributed optimal control problem governed by the evolution
Navier—Stokes equations, with pointwise control constraints. More precisely, we con-
sider the following problem:

P) { min J(u)

u € Uyg

T
g = 5 [ [ ivalta) = yato) dodt+ 7 [ iya(Tia) = yolo) P da

AT )
+ - [u(t, z)|” dadt.
2Jo Ja

Here y, denotes the solution of the 2d evolution Navier-Stokes equations

vi—VvAy +(y-V)y+Vp=f+u in Qpr =(0,T) x Q,
(1.1)
divy =0 in Qp, y(0)=yo inQ, y=0 on 37 =(0,T) x T,

and U, is the set of feasible controls
Upg = {u € L*(0,T;L*(Q)) : aj < wy(t,z) < B ae. (t,x) € Qr, j=1,2}
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where —oo < a; < f8; < +00, j = 1,2. Hereinafter, we will denote o = (1, ar2) and
ﬁ = (ﬂ1752)'

The scope of the above optimal control problem is to match the velocity vector field
to a given target field, by influencing the behavior of the system through a control
function. The control function is of distributed type and satisfies certain constraints.
This is achieved by minimizing the standard tracking type functional, while the pa-
rameter A > 0 denotes a penalty parameter, which is typically small compared to the
actual size of the data. The terminal term has been included in order to obtain more
effective approximations near the end point of the time interval. For related discussion
and references regarding the computational significance of the above optimal control
problem we refer the reader to [13].

The analysis of such optimal control problems is well understood. However, when
it comes to the approximation and to the numerical analysis of such problems the
existing literature is quite limited. This is due to the fact that the regularity of so-
lutions of Navier-Stokes equations, within the optimal setting is very limited, which
creates additional difficulties in analyzing suitable schemes for optimal control prob-
lems. Standard techniques developed for the numerical analysis of the uncontrolled
Navier-Stokes equations can not be directly applied in the optimal control setting. In
addition, optimal control problems constrained to nonlinear evolutionary pdes with
control constraints typically exhibit fine properties and hence require special tech-
niques involving both first and second order necessary and sufficient conditions.

Our work analyzes a numerical scheme based on the discontinuous time-stepping
Galerkin scheme for the piecewise constant time combined with standard conforming
finite element subspaces for the discretization in space. The main result of our work
is to derive space-time error estimates, under suitable regularity assumptions on the
data by utilizing ideas from [4] developed for the stationary Navier-Stokes, together
with a detailed error analysis of the uncontrolled state and adjoint equations of the
underlying scheme. A key part of our work is to show that the discrete problem
possesses similar regularity properties to the continuous one. To our best knowledge
our estimates are new. For some related earlier work, we refer the reader to [1], [14],
[15], [16], [17], [24], [25], [29] and the reference cited therein.

The discontinuous Galerkin time-stepping schemes are known to perform well in a va-
riety of problems whose solutions satisfy low regularity properties. For earlier work on
discontinuous time-stepping schemes within the context of optimal control problems
we refer the reader to [21], [22] for error estimates for an optimal control problem for
the heat equation, with and without control constraints respectively, and to [6] for
a convergence result for a semilinear parabolic optimal control problem. For general
results related to discontinuous time step schemes for linear parabolic uncontrolled
pdes, we refer the reader to [8, 9, 10, 11, 27] (see also references within). Finally in
the recent work of [7], discontinuous time-stepping schemes of arbitrary order for the
Navier-Stokes equations in 2d and 3d where examined. Further results concerning the
analysis and numerical analysis of the uncontrolled Navier-Stokes can be found in the
classical works of [12], [18], [19], [26]. For several issues related to the analysis and
numerics of optimal control problems we refer the reader to [28] (see also references
within).

2. Assumptions and preliminary results. (2 is a bounded open and convex
subset in R%, T being its boundary. The outward unit normal vector to I' at a
point & € T is denoted by n(z). Given 0 < T < 400, we denote Qr = (0,T) x  and
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Y7 = (0,T)xI. Let us introduce some function spaces and operators. Throughout the
following lines we fix the notation for Sobolev spaces: H'(Q2) = H!(Q;R?), H{(Q) =
HYQ;R?), HL(Q) = (HY(Q)) and WP(Q) = W*P(;R?) for 1 < p < oo and
s > 0. We also consider the spaces of integrable functions

LA(Q) = {w e L*(Q) : / w(z)dx =0}

Q

LP(Q) = LP(Q;R?) and, for a given Banach space X, LP(0,T;X) will denote the
integrable functions defined in (0,7") and taking values in X endowed with the usual
norm. Following Lions and Magenes [20, Vol. 1] we put

oy 0% Jy
Ox;’ Ox;x;’ Ot

Iyl - / w2+ 2] dsar
YiH vl(QT) - Qr Yy at

+Z/ Oy dxdt—i—Z/

ox;
In [20, Vol. 1] it is proved that every element of H*!(Qr), after a modification over
a zero measure set, is a continuous function from [0,7] — H'(Q2). We also set
H2’1(QT) = Hz’l(QT) X H2’1(QT).

We introduce the usual spaces of divergence-free vector fields:

H> (Qr) = {y € L*(Qr): € LXQy), 1<i,j < 2}

and

1/2

2
dzdt

ox; x]

Y = {y € H}(Q) : divy = 0 in Q}

H={ycL*Q):divy=0inQ and y-n=0onT}.

Along this paper, we will assume that f,u € L?(0,T;L?(Q2)) and yo € Y. A solution
of (1.1) will be sought in the space

W(0,T) = {y € L*(0,T;Y) : y: € L*(0,T;Y*)}.

It is well known that W(0,T) C C([0,7],H), where C,([0,T],H) is the space of
weakly continuous functions y : [0,7] — H.

It is well known that (2.1) has a unique solution in W(0,7"). Once the velocity y is
obtained, then the existence of a pressure p € D({r) is proved in such a way that the
first equation of (1.1) holds in a distribution sense. Thanks to the regularity assumed
on f, yo and Q, then some extra regularity is proved for (y,p). Indeed, we have that
y € H*Y(Q7)NC([0,T),Y) and p € L2(0,T; H'(Q2)), the pressure being unique up to
an additive constant; see, for instance, Ladyzhenskaya [18], Lions [19], Temam [26].

Let us introduce the weak formulation of (1.1). To this end we define the bilinear and
trilinear forms a : H'(Q) x H}(Q) — R and ¢ : L*(2) x HY(Q) x H!(Q) — R by

a(y, )—y/(Vy Vz)dz =v Z / Oy, Yj Oz, 2j Az

i,j=1
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and

N |

c(y,z,w) =

2
[é(Y7ZaW) - é(Y?‘NaZ)] with é(y7Z,W) = Z / Y <8z$> W, dx.
Q ax]-

ij=1

The following weak formulation is frequently used: we seek y € W(0,T) such that
for a.e. t € (0,7,

(2.1) { (e, w) +aly,w) +cly,y,w)=f+u,w) VweyY

y(0) = yo.
Above (-,-) denotes the scalar product in L2(£2). This notation will be frequently

used along the paper and || - || will denote the associated norm. Any other norm will
be indicated by a subscript.

Returning back to the control problem (P), we note that the mapping associating to
each control u € L?(0,T; L?(2)) the corresponding state y,, € H>1(Q7)NC([0,7],Y)
is well defined, and continuous. Therefore, by assuming that y4 € L?(0,T;L?(Q)) and
yao € L2(Q), we have that the cost functional J : L?(0,T;L?(Q)) — R is well defined
and continuous. Since the problem (P) is not convex, we will deal in the next sections
with global and local solutions. A control u € U,q is said a local solution of (P) if
there exists € > 0 such that J(u) < J(u) for every u € Uy,q N B:(0), where B.(q)
denote the open ball of L?(0,T;L?(f2)) centered at u and radius e. The following
regularity assumption will be assumed for the data defining J:

(2.2) A>0, v>0, yqe L*0,T;L%(Q)) and yq €Y.

Under these assumptions, the proof of the existence of at least one solution of (P) is
standard.

Before finishing this section, let us state some properties of the trilinear form ¢ that
we will use later. The proof can be found in many books; see [18], [19] or [26].

LEMMA 2.1. The trilinear form satisfies

cy,w,z) = é(y,z,w) = —é(y,w,z) Vy €Y and Vz,w € H}(Q),
c(y,z,w) = —c(y,w,z) Vy € LY(Q) and Vz,w € H (Q),
cy,w,w) =0 Yy € LYQ) and ¥w € H(Q).

Moreover, the following inequalities hold

le(y, 2, w)| < Iy llee @) IV2lLz @) WllLe@),  (1/p) + (1/q) = (1/2),
le(ys 2, W)l < Iy llee @ [ V2[lez @ Wl -

By using the interpolation inequality

1/2 1/2
(2.3) I2ll sy < 2412l T0) V2l gy W2 € HE (),

(see [26, Lema 3.3, page 91]) we obtain Vy, w € H}(Q) and Vz € H'(Q)

1/2 1/2 1/2 1/2
(2.4) (v, 2, W)| < Clly ooy IVY Ity V2l 0 [ W Loty I VW g
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3. Optimality conditions. In this section, we are going to prove first- and
second-order optimality conditions for a local solution of problem (P) . To this end,
we begin analyzing the differentiability of the control-to-state mapping. We denote by
G : L?(0,T;L%(Q)) — H>Y(Qr)NC([0,T]; Y) the mapping associating to each control
u the corresponding state G(u) = yy solution of (2.1). The next theorem establishes
the differentiability of G and provide the first and second derivatives, which are crucial
to derive the optimality conditions.

THEOREM 3.1. The mapping G : L?(0,T;L%(Q)) — H>Y(Qr) N C([0,T);Y) is of
class C*°. Moreover, for any u,v € L?(0,T;L%(Q)), if we denote yy = G(u), z, =
G'(0)v and zy = G"()v?, then zy and zyy are the unique solutions of the following
equations Vw € Y

(3.1) { (Zi?éi‘l)o—’# A(Zy, W) + (Zy, Yu, W) + ¢(Yu, Zv, W) = (V, W)

(3 2) { (Zvv,ta W) + CL(Zvv, W) + C(Zvva YIUW) + C(Yua Zyvy, W) + 2C(Zva Zv, W) =0
’ Zvv(0) = 0.

The proof of this theorem is based on the following result.

THEOREM 3.2 (Casas [3]). Let f € L*(0,T;L?(2)), g € L¥(0,T; L*(Q)), with divg =
0in Qr, e € L>=(0,T;Y)NL32(0,T; H2(Q)) and zo € Y. Then there exists a unique
element z € H>1(Qr) N C([0,T),Y) solution of the following problem

(3.3) { (z¢, W) + a(z,w) + c(g,2, W) + c(z,e,w) = (f,w) Ywe Y

z(0) = zp.

Moreover, there exists an increasing function n : [0, +00) — [0, +00) depending only
on 2 and v such that

(3.4) 2]l 210 < 0 (I1Zolly + IfllL20,miL2(0)) + 118l 50,7519 0))

+ llellze<,ry) + lle

‘L3/2(0,T;H2(Q))) :

Proof of Theorem 3.1. Let us denote by
F: [H>Y(Qr)NC([0,T],Y)] x L*(0, T;L*(Q)) — L*(0,T;L*(Q)) x Y
the mapping given by
F(y,u) = (y: — vAy + By — f —u,y(0) — yo),
where B: Y — Y™ is defined as follows
(3.5) (By,w) =c(y,y,w).

Then, B is well defined and continuous; recall Lemma 2.1. Moreover, for every y €
H?(Q)N'Y we have

By, w)| < Cllyllua@)llyllwre@)llwllLz@)
< Cllyllv llyllaz @ lwllLe ) -
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Thus we have that By € L?(0,T;L?(Q2)) for every y € H*(Qr)NY.
Also it is immediate to check that F' is of class C*° and

g—i(y,u) -z = (z; — vAz + B'(y)z,z(0)),

where

(B'(y)z,w) =c(y,z,w) +c(z,y,w) YweY.

oF
Applying Theorem 3.2, with g = e =y, we deduce that 8—(y7 u) is an isomorphism
y

from H*(Q7) N C([0,T],Y) onto L?(0,T,L%*(Q)) x Y. Now if y, is the solution of
(2.1), then F(yy4,u) = (0,0). Therefore, we can apply the implicit function theorem
to deduce that G : L?(0,T;L?3(Q2)) — H*Y(Qr) N C([0,T],Y) is C*. Moreover,
from the identity F(yu,u) = F(G(u),u) = (0,0) for every u, we get for all Vv €
L2(0,T; L2(2))

oF

S G Wy + S () = (0.0

and

aj " 2 >F ' !

8y (yLU u)G (Ll)V + 8y2 (yu7 u)(G (u)v, G (U)V)
O*F O*F

25— (yu, w)(G'(W)v,v) + Bl

Jdyou (yu» u)v2 = (Oa 0)'

Then setting zy = G’'(u) - v and zyy = G”(u)v?, we obtain (3.1) and (3.2) from the
above two identities. O

As a consequence of Theorem 3.1 we get the differentiability of the cost functional J.

THEOREM 3.3. The cost functional J : L?(0,T; L?(Q)) — R is of class C> and for
every u,v € L*(0,T; L?(2)) we have

T
(3.6) J'(u)v = /0 /Q(cpu + Au)vdzdt

and
(3.7)

T T
J (u)v? :/0 /Q(|zv|2—2(zv~V)zv<pu)dxdt+*y/Q|zv(T)|2d:1:+)\/0 /Q|v|2dxdt,

where z, = G'(u)v is the solution of (3.1) and ¢, € H>*(Q7) N C([0,T),Y) is the
unique element satisfying for every w € Y

_(Qou,tv W) + CL(QOu,W) + C(W’ Yu, Sou) + C(YUv W, Sou) = (Yu —Yd; W)’
@9 { e

Proof. First of all, let us observe that the equation (3.8) is the adjoint of (3.1). Since
(3.1) has a unique solution in H**(Q7) N C([0,7],Y) for any v € L?(0,T;L2(%)),
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then arguing by transposition we can prove the existence and uniqueness of the so-
lution ¢,, of (3.8), as well as the regularity ¢, € H>!(Qr) N C([0,7],Y). Now, the
differentiability property of J is a consequence of Theorem 3.1 and the chain rule.
Moreover, we have

J(u)v = /OT/Q(yu—yd)zvdxdt—i—v/ﬂ(yu(T) —yQ)ZV(T)dx+)\/OT/Qu-dedt

and

T
" ()v? = / / [20]2 + (ya — ya)zy] drdt

T
T /Q (29 (T)P + (ya(T) — ya)zow (T)] dz + A / /Q VP dedt,

where z, and zy, are defined by (3.1) and (3.2). Then, using (3.8) and making an
integration by parts we get (3.6) and (3.7) from the above relations. O

We are now able to prove the optimality conditions. We start with the first-order
necessary conditions.

THEOREM 3.4. Let us assume that u is a local solution of problem (P), then there
exist y and @ belonging to H>(Qr) N C([0,T),Y) such that

(¥t,w) +a(y,w)+c(y,y,w)=(f+a,w) VweY,
(39) { $(0) = yo.

T
(3.11) / /(@ +Au)(u—u)dzdt >0 Yu € Uyg.
0 Q

Moreover, the regularity property u € HY(Qr) N C([0,T],HY(Q)) N L?(0, T; WHP(Q))
holds for all 1 < p < 400.

Proof. Since Uy, is convex, any local solution a satisfies the condition J'(@)(u—u) > 0
for every u € U,q. Then, it is enough to use the expression of the derivative given by
(3.6) and take § = yg and = g to deduce (3.9)-(3.11). The regularity of a follows
from (3.11) as usual, we simply observe that (3.11) implies that

1
(3.12) ;(t,x) = Projja, 5,1 (—)\apj(t,x)> for a.a. (t,x) € Qr, j=1,2,

which leads to the desired regularity of u;, j =1,2. 0

To write the second-order conditions we need to define the cone of critical directions.
To this end, let us introduce the function

(3.13) d=o+ A

Now we set

(3.14) Ca = {v € L*(0,T; L*(Q)) : v satisfies (3.15) — (3.17)},
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(3.15) vi(t,x) > 0if —oo < a; =a;(t, x),
(316) ’Uj(t,ZIJ) <0if ﬂj(t,l‘) = ﬁj < 400, j=12
(3.17) v(t,x) =0 if d;(t,z) # 0.

Let us notice that

(3.18) J/(ﬁ)":/o /Qd(t»x)'V(tﬁE)dxdt,

d(t,z) - v(t,x) =0 for a.a. (t,2) € Q7 and Vv € Cq.

We also deduce as usual from (3.11)

a;(t,z) = a; :»Jj(t x) >0, -
- d;(t >0=u;(t,z) = a;,
(319) ﬁj(t“'p) = ﬁj = d]( , ) <0, and g ( ) ) Uj( CL') Q;
o 7 dJ(t7 )<O:>uj(7$):5j7
a; <uj(t,r) <p; =d;(t,z)=0,

a.e. in Q7 and 7 =1,2.

THEOREM 3.5. Let @i be a local solution of problem (P), then J"()v? > 0 for all
Vv E Cﬁ.

Proof. We sketch the proof in the case where —oo < a; < 3; < oo for j =1 and 2.
The modifications for the other cases are obvious. The reader is referred to [4] a more
detailed proof in the case of steady-state Navier-Stokes equations. Take v € Cg, and
for e <min{(8; — ¢j)/2: 1 < j < 2} define

0 it 0y < a(t,7) < ag + &,
Uj’e(t,l’) = 0 if /Bj —e < I_Lj(t,l') < ﬁja
Proj[_l 1](Uj(t,$)) otherwise.

Then, it is easy to check that v. € Cs for every ¢ > 0 and v. — v strongly in
L?(0,T;L?(Q)). Moreover, @t + pv. € Uyq for every 0 < p < 2. Making a second
order Taylor expansion of J at t and taking into account that u is a local minimum,
for p < &% small enough there exists 0 < 6, < p such that

2
0< J(@+pv.) — J(@@) = pJ' (@)v. + %J“(ﬁ +0,v.)v2
Since v, € Cg, (3.18) implies that J'(u)v. = 0. Therefore, the above inequality leads
to J”(a+ 6,v:)vZ > 0. Now we must take the limit as p — 0 to get J”(@)vZ > 0.

Next, it is enough to take the limit as ¢ — 0. To do this, let us recall the expression
of J”( ) provided by (3.7)

J”(_) 2

T
/ [l =20y, - o ot [ o @ doer [ ] v Pdod
Q 0 Q
T
_>/ /|zv|2—2zv.V)zv~§a]dzdt+7/ |zv(T)\2dx+/\/ /|v|2d:z:dt
Q 0 Q
J//

(@)v? ase— 0.
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]

Finally, we formulate the sufficient conditions for optimality.

THEOREM 3.6. Let us assume that a € U,q satisfies

(3.20) J'(@)(u—1)>0 Yu € Uy,
(3.21) J'()v? >0 Vv ey {0},

then there exist € > 0 and § > 0 such that
_ ) _ _
(3.22) J(a) + 5||u — a2 1200y < J(0)  Vu € Upa N Be(0),

where Be (1) is the L?(0,T;L2(Q))-ball of center @ and radius ¢.

Proof. The proof follows by contradiction. Indeed, let us suppose that the theorem is
false, then there exists a sequence {u}%2, C U,q such that

i 1 1
(3.23) [0 —wellzomwz) < 3 and J(@) + orll8 =kl 2 (0)) > I ().

Now, we define

_ 1 _
(324) Pk = ||11 — uk||L2(0,T;L2(Q)) and Vi = pfk(uk - 11).
Then, taking a subsequence if necessary, we can assume that vy — v weakly in
L?(0,T;L%(Q)). The proof is divide into three steps.

Step I - v € Ciz. We have to prove that v satisfies (3.15)-(3.17). First, we observe
that the set of elements of L?(0,7T;L%(Q)) satisfying (3.15) and (3.16) is closed and
convex. From the definition of vy, it is obvious that each vy, satisfies (3.15) and (3.16),
therefore its weak limit also does it. Let us prove (3.17). From (3.23) and using the
mean value theorem we get for some 0 < 6, < 1
2
J(@) + 5712 > J(ug) = J(@+ ppvi) = J() + prJ" (A + Oppivie) Vi,

hence

(3.25) J' (0 + Opprvy) < % — 0.

Let us prove that J'(@ + Oxprvy) — J'()v. To this end, we set up, = @ + Opppvy.
From (3.23) and (3.24) we know that uy, — u in L?(0,T;L%(Q)) strongly. There-
fore, its associated state yp, and adjoint state ¢, converge strongly to y and ¢ in
H2Y(Qr) N C([0,T),Y), then with (3.6) we have

T T
J'(@+ Opprvy) = / / (g, + Aug, vy dadt — / / (@ + Aa)vdadt = J'(a)v.
o Jo o Jo

Then, (3.25) implies that J'(@)v < 0. But, (3.15), (3.16) and (3.19) (recall that (3.20)

holds and this implies (3.19)) lead to the identities d; (¢, z)v; (¢, ) > 0 for almost every
(t,x) € Qp, then

2 T o, T o T
Z/ / |djv;| dzdt = / / d-vdzdt = / /(g‘o + Au)vdzdt = J'(a)v <0,
oJo Je 0o Ja 0o Ja
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which proves that v satisfies (3.17).

Step II - v = 0. We will prove that J”(ii)v? < 0, then according to (3.21), this is
only possible if v = 0. Using again (3.23) and (3.24) and making a Taylor expansion,
we get for some 0 < 0, < 1

o

J(@) + ppJ' (@ >vk+”w”<u+ekpm>vk<J< )+ G

From this inequality and (3.20) we get J”(1)v? < 0 as follows

1
(3.26) J" (04 Opprvi)vi < g J'()v? < hkmme (@4 Opprvi)vi < 0.
Let us prove the above pass to the limit. Again, we set up, = u+0,pr Vi, yo, = G(ug,)

and ¢, the associated adjoint state. We also denote zg, = G'(ug, )vy. Now, from
(3.7) we have

J" (ug, )V, = / / (126, |> — 2(20,, - V)20, g, )dzdt

(3.27) —|—'y/ |zek(T)|2dx+/\/ /|vk|2da:dt.
Q 0 Q

It is easy to pass to the limit in the first to integrals by using that zg, — z, weakly
in H*'(Qr) and @y — @ strongly in H*'(Qr). In the last integral we use the lower
semicontinuity with respect to the weak topology of L2(0,T;L?(1)).

Step III - Final contradiction. Since v = 0, we get that zp, — 0 weakly in H*(Qr).
Then (3.26), (3.27) and the identity ||[v||z2(0,7;12(0)) = 1 allow us to conclude

0> likm inf J" (ug, ) v,

= likminf{/ / (|zo, |* — 2(zq,, - )zekcpek)dmdt—i—v/ |zg, (T |2d33} +A=A,

which is a contradiction. O

REMARK 3.7. The gap between the necessary optimality conditions provided by The-
orems 3.4 and 3.5 and the sufficient ones given in Theorem 3.6 is minimal, the same
than we have in finite dimensional optimization problems. This problem does not
suffer from the typical two-norm discrepancy arising usually in infinite dimensional
optimization problems. This is due to the C?-differentiability of J with respect to the
L?(0,T; L%(Q))-norm, thanks to a certain compactness with respect to u in the first
two integrals defining J and the fact that the last one is the square of the norm of the
control. On the other hand it is well known that the condition J"(@)v? > 0 for every
non zero v belonging to the cone of critical directions is not a sufficient optimality
condition, in general, in infinite dimensional optimization problems. An inequality
of type J"(a)v? > 5||VH2L2(0,T;L2(Q)) is required in the infinite dimensional case. In
finite dimension, both conditions are equivalent, but this is not the usual case for in-
finite dimension. However, in our problem we can prove that both conditions are also
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equivalent. Indeed, let us observe that (3.22) implies that u is a local solution of the
problem

. d _
®.) { min Js () = J(w) = = @20 7020
u € U,q N B:(1)

Therefore, we can apply Theorem 3.5 and obtain that J{()v? > 0 for every v € Cy.
It is enough to notice that J{(u)v? = J"(u)v? — 5Hv||2L2(O T12(0)) 10 conclude that
(3.20)-(3.21) imply

(3.28) J'(@v? > §|v|* Vv € Ca.

4. Numerical approximation of the control problem. In this section we
consider the complete discretization of the control problem (P). To this end, we
consider a family of triangulations {7}, },>o of 2, defined in the standard way, e.g. in
[2, Chapter 3.3]. With each element T € 7}, we associate two parameters hy and or,
where hr denotes the diameter of the set T and pr is the diameter of the largest ball
contained in 7T'. Define the size of the mesh by h = maxrez, hr. We also assume that
the following regularity assumptions on the triangulation are satisfied.

(i) — There exist two positive constants g7 and d7 such that

"t or and T- <5p VT €T and Wh > 0.
or hr

(ii) — Define Qj, = Urer, T, and let ), and T'j, denote its interior and its boundary,
respectively. We assume that the vertices of 7, placed on the boundary I'}, are points
of T.

Since € is convex, from the last assumption we have that 2, is also convex. Moreover,
we know that

(4.1) 1\ Q] < Ch?;

see, for instance, [23, estimate (5.2.19)].

On the mesh 7, we consider two finite dimensional spaces Z;, C H(Q) and Q) C
L3(9) formed by piecewise polynomials in Qj and vanishing in Q\ €),. We make the
following assumptions on these spaces.

(A1) If z € H'T(Q) N HE(Q), then

(42) ||Z — Zh”Hs(Qh) < Chl+178||z||H1+L(Q), for0<I!<1and s=0,1.

inf
Zn€Zp
(A2) If ¢ € HY(Q) N LE(Q2), then

4.3 inf . <Ch o
) aneQn g = anllz2(@) < Chllgllar )

(A3) The subspaces Zj and @, satisfy the inf-sup condition: J¢ > 0 such that

b
(4.4) inf sup (21, 1) >,

W €Qn zy,ezy, |Zn e ) lanll 2 (0n)
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where b : H!(Q) x L?(Q2) — R is defined by
b(z,q) = / q(z)divz(z) dz.
Q

These assumptions are satisfied by the usual finite elements considered in the dis-
cretization of Navier-Stokes equations: ” Taylor-Hood”, P1-Bubble finite element, and
some others; see [12, Chapter 2].

We also consider a subspace Y}, of Z; defined by
Yn={yn € Zn:b(yn,qn) =0 Vgn € Qn}
and we set
Uy = {u;, € L*() : up ), = ur € R*}.
We proceed now with the discretization in time. Let us consider a grid of points

0=ty <t <...<ty =T. Wedenote 7,, = t, —tn—1. We make the following
assumption

(4.5) Jog > 0 such that 7 = Jnax 7, < 00Tn, V1 <n < N; and V7 > 0.

Given a triangulation 7}, of Q and a grid of points {t,, }7, of [0, T], we set o = (7, h).
Finally, we consider the following spaces

Vo ={yo € L2<O,T;Yh) Yol e €Yy for 1<n< N},

ch = {qcr € L2(07T7 Qh) : QU|(tn_11t")
Uy = {u, € L*(0,T;Up) s gy, ey €U for 1<n <N}

€Qn for 1 <n< N},

We have that the functions of ), Q, and U, are piecewise constant in time. We will
look for the discrete controls in the space U,. An element of this space can be written
in the form

N.

(4.6) U, =Y Y UurXeXr, with u,r € R?
n=1T€eT,

where x,, and xr are the characteristic functions of (¢,—1,t,) and T, respectively.
Therefore, the dimension of U, is 2N Ny, where Ny, is the number of triangles in 7},.
In U, we consider the convex subset

Z/{J,ad = uo’ ﬂuad = {ua € uo' s Up,T S [ah/@l] X [062752]}.

On the other hand, the elements of ), can be written in the form

N,
(47) Yo = ZYn,thn with Yn,h € Yh;

n=1

where x,, is as above. For every discrete state y, we will fix y,(¢,) = ¥n.n, so that
Yo is continuous on the left. In particular, we have y,(T) = yo(tn.) = YN, h-
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To define the discrete control problem we have to consider the numerical discretization
of the state equation (1.1) or equivalently (2.1). We achieve this goal by using a
discontinuous time-stepping Galerkin method, with piecewise constants in time and
conforming finite element spaces in space. For any u € L?(0,T;L?(Q)) the discrete
state equation is given by

Forn=1,...,N,;, and Vwy € Yy,

Ynh — ¥Yn—1,n
(48) <H7 Wh) + @(Yn,hy Wh) + C(YH,ha Yn,hs Wh) = (fn + u,, Wh)7

Tn
Yo,n = Yoh,
where
1 tn 1 tn
(4.9) (£, wp) = T—/ (£(t), wp)dt, (un,wp)= T—/ (u(t), wy)dt
n Jt,_1 n Jtn 1
and

(410) Yon € Yh with ||y0 - yOhHLQ(Qh) < Ch and ||y0h||H1(Qh) < C Yh > 0.

The above scheme is essentially an implicit Euler in time / conforming in space scheme,
and can be easily extended to higher order polynomial in time discretizations; see e.g.
[27] and references within. For stability and error estimates under suitable regularity
assumptions for high order discontinuous time-stepping schemes we refer the reader
to [7]. Here, we focus on the lowest case of polynomial approximation in time, due to
the low regularity imposed by the nature of our optimal control problem

We will prove later that for any u € L2(0,T;L?(Q2)), (4.8) has a unique solution
vo(u) € Vy. A key feature of the proposed scheme is that the regularity properties of
the discrete solution mimics the continuous problem. Then, we can define the discrete
control problem as follows

) { min J, (u,)

u, € Z/{a',ad
where
1 T )
Jo(ug) = 3 lyo(u,) — ya|“dadt
o Ja,
A T
+l/ Vo (T) *yQ,LIQd:c+f/ / lu, |2dzdt,
2 Jan 2Jo Ja,
and

(4.11) ya, € Y, with ||YQ —Ya.llr2(Qn) < Ch and ||th||H1(Qh) <C Vh>0.
The study of the control problem is divided in several subsections. First, we analyze
the discrete state equation (4.8); then we study the discrete adjoint state equation;
the third step is the proof of the convergence of (P,); and finally we prove the error
estimates for the discretization.
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4.1. Analysis of the discrete state equation. By a standard argument, using
the identity c(z,w,w) = 0 Vz € L*(Q) and Vw € H!(Q) (Lemma 2.1) and the
Brower’s fixed-point theorem, we can easily prove that (4.8) has at least one solution.
In this section, we will prove that the solution is unique under some restrictions on
o = (1,h). For the moment, let us denote y =y, = G(u) and y, € ), a solution of
(4.8) We are going to prove some error estimates for y — y,. To this end, we need to
introduce some projection operators.

DEFINITION 4.1. We define the projection operator Py, : L2(2) — Y, by
(Pry,wn) = (y,Wn) Vwp € Yp.

We also define P, : C([0,T],L*(Q)) — V5 by (PyY)n.n = Pry(ts) for every 1 <n <
N,.

LEMMA 4.2. There exists a constant C' > 0 independent of o such that for every
y € H*Y(Q7)nC([0,T);Y)

(412) |y = Poyllz2omie2n)) < C{7lIY l20,m2@) + P21y L2, rm20)) } -

Proof. From Assumptions (A1)—(A3) and using (4.2) with s =0 and [ = 1 (see also
[12, Chapter II]), the definition of P,, and the stability of P, we get

N, 1/2
ly = Poyllz2.riz2(n)) = {Z / Iy (t) = Pay ()] dt}
n=1

tn—1
N~ tn 1/2 N tn
< {Z/ ly(t) — Ph}’(t)||2dt} + {Z/ | Pry(t) Ph}’(tn)||2dt}
n=1"tn-1 n=1"7tn-1
N ., 1/2 N i, 1/2
< Ch? {Z/ 1y (6) 1322 () dt} + {Z/ ly(t) — y(tn)ll2dt}
n=1"7tn-1 n=1"tn-1

N, - ‘. 1/2
< CR?|lyll20,mm2(0)) + {Z/ (tn — t)/ Iy’ ()17 dsdt}
n=1"tn-1

tn—1

1/2

< C{R*|lyllr2o,mm2@) + 7Y lL200,mL2(0)) } -
0
DEFINITION 4.3. The operator I, : Y — Y, is defined by
a(llpy,wp) = a(y,wrn) Vwy € Y.

For any elementy € C([0,T];Y), we define y, € C([0,T],Y) by yu(t) = n(y(t)).

The next lemma is an immediate consequence of Assumptions (A1)—(A3); see again
[12, Chapter II].

LEMMA 4.4. There exists a constant C > 0 independent of o such that

(4.13) |y —wyllae,) < CP*°*llylme@ Yy € B*(Q)NY and s=0,1.
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As a consequence of the previous two lemmas we have the following result.

LEMMA 4.5. There exists a constant C' > 0 independent of o such that for every
y € H*(Qr)n C([0,T];Y)

.
(4.14)  |ly = Poyllz2o,mm (00)) < C {E”y/HLz(O,T;L?(Q)) + h||Y||L2(O,T;H2(Q))} .

Proof. From Lemma 4.4 we get

ly — PUY||L2(O,T;H1(Qh,)) <ly- Yh”L?(O,T;Hl(Qh)) +lyn — PUYHL?(O,T;Hl(Qh))
< Chllyllzz0.rm2@) + [1yh — PoyllLz0.rm1 (Qu))-

Let us estimate the last term. Using the definition of P,, an inverse inequality, (4.12)
and (4.13) we obtain

Ny ot 1/2
1¥n = Poyllrzo,mm n) = {Z/t lyn(t) = Pay (tn)llzn ) dt}
n=1 n—1

1/2
C tn
< R {Z/t lyn(t) = Py (tn)lliz2 (o) dt}
n—1
C
< %{Hy yullzzo.rizn)) + Iy = Poyllzzorez ) |
.
O{E ¥ l2(0,m522(0)) + h||YHL2(0TH2(Q))}

]

Before proving the error estimates for y — y,, we need to establish the corresponding
estimates for the Stokes problem. Let us formulate this result as follows.

LEMMA 4.6. Lety € H*Y(Q7)NC([0,T],Y) be the solution of (2.1) and let §, € Vo
satisfy

Forn=1,...,N., and VYwp € Y,

(4'15) (w7wh> + a(yn,hvwh) = (fnawh)v
Yo,n = Yoh,
where
(F, wi) = / {aly (). wn) + (v/(t), wa) } dt

v (<t st )

Then, (4.15) has a unique solution ¥, € Y,: moreover, the following properties hold
1-{¥,}o is bounded in L>°(0,T; H(Q,)).
2 - There exists a constant C' > 0 independent of o such that

(Jax [ly(tn) = yo (tu)ll + 11y = Yollzzormm @)

(416) < {21y laoray + blIy |z + Alyolm o |-
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Proof. Since y depends linearly on the data (f,yox) and the number of unknowns
{yn,h}fy;l is equal to the number of equations, it is enough to prove that y = 0 is

the unique solution corresponding to (£, yon) = (0,0). This follows in the usual way
by multiplying the n-th equation of (4.15) by ¥, and ordering the terms in the way

1,. 1. 1,. R . N
§||Yn,h||2 - iHYn—l,hnz + iuyn,h - Yn—l,h||2 + Tna(Yn,hayn,h) = 0.

Now, making the sum of these identities, we get

1 T
Sl al®+ [ algaga)de =0,
0

then y, = 0.

Now, we prove that {J, }, is bounded in L>°(0,T; H'(£2},)). To this end, we introduce
the discrete Laplacian Ay, » € Y}, defined by

(4.17) (Ahyn’mwh) = a(yn,h,wh) Ywy, € Y.

Now we take wj, = Ap¥,,n in (4.15) and we use (4.17) to get

n

. Ynh —Yn-1h . 5 .
a <Yn,h7 nTn) + 1AL ]2 = By AnFnn),
which can be written

1 . R 1 . R 1 . R R R
§a(}’n,ha)’n,h) - §Q(Yn—1,h7}’n—1,h) + Ea()’n,h —Yn—1,h:Yn,h — yn—1,h)

(4.18) 47| AnFmnl® = T () Anmn)-
Since y () € H2(Q)NH(Q) for almost every t and Ay, » € Hy(24), we can make an
integration by parts and deduce from the definition of f, and from Young’s inequality

tn

tn
Tn (fna Ahyn,h) = - / (Aya Ahyn,h) dt + / (y/(t)a Ahyn,h) dt

tn—1 tn—1

tn tn
< / 19 ez | An ]l dt + / 1Y ()l | Mgl d

trn—1 tn—1

tn tn
T ~
< [ Wl e [ I @ dt+ B 1Al

tn—1 tn—1
Substituting the above inequality in (4.18), it follows

1 1

§G(Yn,haymh) - 5@(}’n—1,h,yn—1,h) + §a(yn,h —¥Yn-1,h¥Yn,h — yn—1,h)

tn t’VL
Tn N
ATl < [ Iyt [y O

tn— t”*

Making the addition from n = 1 until n = k for any 1 < k < N, we get that

T T
[V knllE (2n) < HYOhH%p(Qh)‘*‘Z/O 1y 1120 dt+2/0 ly' (0520 dt, 1<k < N,
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which proves the boundedness of {y,}, in L>(0,T; H'(Q)).

Finally, we prove (4.16). Let us set € =y —y,, d=y—P,yandé, = P,y —3,, with
P, given in Definition 4.1. Thus, we have é = d+ é,. Taking (P,y)o,n = Pry(0), the
equation (4.15) can be written

t’Vl
(4.19)  (é(tn) —€(tn—1),Wn) +/ a(é(t),wp)dt =0 VYwpeYp 1<n<N;
tn—1

where we have taken into account the second equality defining (fn,wh). Setting
é =d + &, in the above identity we obtain

tn
(én,h — €n—1,h, Wi) + / a(€n,p, wp)dt

tn—1

= —(d(tn) — d(tn—1), wn) — / ' a(d(t), wy) dt.

tn—1

From the definition of P, we get

(a(tn) - a(tnfl)»wh) = (y(tn) = Pry(tn), wpn) — (y(tn-1) — Pry(tn—1), wp) = 0.

Therefore,

tn
(én,h — €n—1,n, Wn) + / a(é, n, wp)dt

tn—l

:_/" a(d(t), wp) dt.

tn—1

Now, taking wp, = €, , we obtain

1., 1. 1. . R A
§Hen,h||2 - §||enfl,h||2 + §Hen,h —&n1nl® +VIIVennlliog, 1 inreian)
<vl|\Vd|lz2(t,_y ez @) IVen | L2ty tnim2(@0))
VA V.,
< *HVdHiz(tn,l,tn;Lz(Qh)) + 5||Ven,hH%mn,l,tn;LZ(Qh)),

hence

1. . 1, . . v A
§Hen,h||2 +5lenn — &1 + 5IVenn |22 (b2 (@)

1, . v n
< §||en—1,h||2 + 5HVd||2L2(tn,1,tn;L2(Qh))'
Once again, making the addition from n =1 to k, for 1 < k < N; and using that
d =y — P,y we obtain

k
€rnll® + D l1enn — ér—1nl* + VIVernlF2 0.2

n=1

< [lyo — youl* + vy — Pcry”zL?(O,T;Hl(Qh))a

which leads to (4.16) with the help of (4.10), (4.14) and the fact that y — y, =
(y—Py)+e. O
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REMARK 4.7. From (4.16) we can deduce an error estimate in L>(0,T;L?(2,)).
Indeed, let us assume that t,_1 <t <t, for some 1 << N, then

ly(®) =y < lly(®) —yE)ll + Iy (tn) = ¥o (En)ll

The second term of the right hand side of the inequality has been estimated in (4.16).
Let us study the first term. For any w € L%(Q)

(t) - y(ta), w)| = / "(y'(s), w) ds| < / "1y ()] dsllw]

<VTIY 20,02 ) 1wl

which implies
Iy () = y(t)ll < V7l L2012 (0))-
Finally, this estimate and (4.16) infer

ly — yUHLOC(U,T;LZ(Qh))

-
<C { (E + \E) 'l 20,512 () + Pl L2 (0,712 () + hHYOHHl(Q)} .

The discrete solution of the linear Stokes problem, will subsequently play the role of
a global in time projection, which facilitates the derivation of error estimates under
the restricted regularity assumptions of the control problem (see also [7]). Finally, we
obtain the result concerning the discrete state equation (4.8).

THEOREM 4.8. Given u € L%(0,T;L2(Q)), let y € H>1(Qr) N C([0,T];Y) be the
solution of (2.1) and lety, € Vs be any solution of (4.8), then there exists a constant
C > 0 independent of u, y and o such that

(Jax [ly(tn) = yo (tn)ll + 11y = ¥ollzzormm @)

-
(4.20) <C {EHY/HL?(O,T;L%Q)) + hlly |l L20,7m2(0)) + hHYOHHl(Q)} .

Moreover, if there exists a constant Co > 0 such that 7 < Coh? for every o = (1,h),
then {y,}o is bounded in L>(0,T;HY(Qy,)) and (4.8) has a unique solution.

Proof. Let us definee =y —y, = (y = ¥o) + (¥o — Yo) = € + €,, where ¥, is the
solution of (4.15). First we observe that (2.1) and (4.8) imply

(e(tn) — e(tn_1), ws) + / " ale(t), wp) dt

tn—1

- / " (e Yoo W) — ey (8), ¥ (), W)} .

Using the decomposition e = é + e,, invoking (4.19) and setting wy, = ey, p, it follows

tn
(€n,h — €n—1,h,€n,n) +/ a(en,n,enp)dt

tn—l
tn
(421) = {c(yn,hvyn,haen,h) - c(y(t)vy(t)aen,h)}dt-

tnfl
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Let us estimate the righthand side. First we observe that
C(Yn,h> Yn,h, en,h) - c(y(t), y(t)v en,h)
= c(Ynh — Vb Ynhr€nh) — (Y (t) = Ynns Y(t),€nn) — ¢(Fnn, Y() = Yoo €nn)-
Recalling that e, 5 = ¥n.h — Yn.h, €(t) = y(t) — e, for every t € (¢,-1,t,), and
é(t) =y(t) — ¥n.n, we have
C(Yn,hv Yn,h, en,h) - C(Y(t)v Y(t)a en,h)
- _C(en,fn Yn,h, en,h) - C(é(t)a y(t)a en,h) - C(yn,ha e(t)7 en,h)~

From the identity c(wy, e p,enn) = 0 for any wy, € L*(Q) and using that enn =
Ynh — Ynn and e(t) = &(t) + e, p, for all ¢t € (t,-1,1,), we get

C(en,hv Yn,h, en,h) = C(en,Fm yn,h; en,h) and C(yn,}u e(t)a en,h) = C(yn,ha é(t), en,h)-
Therefore we get

)

C(Yn,hy Yn,n, en,h) - C(Y(t)a y(t), en,h)
_C(emha yn,ha en,h) - C(é(t)a Y(t)a en,h C(S’n,ha é(t), en,h)-
The above identity and (4.21) lead to
1
2

1 1 i
||en,h||2 - §Hen—1,h |2 + §Hen,h - en—l,h”2 + V/ ||ven,h”2 dt

tn—1

tn
(4.22)< / {lc(enns Yn.nsenn)| + [c(€(t), y(t), enn)| + [c(Fnn: €(1), €nn)|} di.
tn—1

It remains to estimate the last three terms. For the first we use that {§, }, is bounded
in L°°(0,T; H'(Q4)) (see Lemma 4.6) and (2.3), then

tn

tn
/ cenn Famream)ldt < C [ Nlennll|Vennl i

tn—1 tn—1

Cr v [
< el 4 [ IVennl?at

tn—1

For the second term we use that y € L>(0,7;H(Q2))

ty

tn v
/ c(@(t). () enn)dt < C [ [Ve()][Venn dt

tn—1 tn—1

C tn tn
< 7/ [Ve(t)||? dt + 3/ [Venal|? dt.
v tn—1 4 1

th

Finally, using again the boundedness of {y,}, in L>(0,T; H(£2},)), we get the same
estimate as the last one for the third term. Putting all these estimates in (4.22) we
obtain

tn
14
(1= Cma)llennll + llenn — en1nl* + 5/ IVenn||” dt

tn—1

< llen—1nl* + CHé||2L2(t,,L,17t,,L;H1(Q))-
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Then, using the discrete Gronwall inequality and the fact that eg ;, = 0, we get

tn
14
lewnl? +~ / IVenn
0

9 |2dt < C”éH%2(O,T;H1(Q)) V1 <n< NT.

Then, this inequality along with (4.16) and the identity y —y, = €+ e, prove (4.20).

The proof of the boundedness of {y, }, in L>(0,T; H'(£2},)) is an easy consequence of
the previous results. Indeed, first we recall that {y, }, is bounded in L (0, T; H'(Q4,))
(Lemma 4.6). Using the inequality

1¥ollzoe o8 0) < Yo = VollLeo,rm1 @) + 1Tollze 0,758 (2,))

it is obvious that it is enough to prove the boundedness of the first term. From an
inverse inequality (see, for instance, [2, Section 4.5]), the estimates (4.16) and (4.20)
and the inequality 7 < Coh? we get

. C .
1ye =¥ollz=rm@u) < 3 1¥e = YollL20,rL2(2n)

C N
S5 {lIlyoe = yllr20,mse2@n)) + Iy — Yo llz20,miL2 0y } < C Vo

To conclude the proof, we have to show the uniqueness of a solution of (4.8). Let us
assume that yl,y2 € ), are two solutions of (4.8). Then we set y, = y2 —yl and
we will prove that y, = 0. Subtracting the equations (4.8) for y2 and y! and setting
Wh = Yn,n We get

Tn

Yn,h — ¥Yn—1,h
("", ymh) + a(Ynh, Ynh) = Yo Yo Ynh) — (Yo s Yo s Ynih)-

Since ¢(y;. ;s Yn.h Yn.n) =0, then c(y2 1, ¥5 s Ynn) = (Yo s ¥ ps Ynon), therefore

(YmhsYmnsYnh) — Yo Yor:Ynk) = —c(Ynhs Yo h> Ynih)-

Using this in the above identity and the boundedness of {yl}, in L>(0,7 : H*(Q4,)),
we deduce

|2 |2+V7'n‘|vyn,h||2

1
+ §HYn,h —¥Yn-1,h

1 1
§\|Yn,h|\2 - 5”3’7171,}1

_Tnc(yn,haygz,hayn,h) < TnHvy}L,h |HYn,h||||VYn,hH
UTy,

2

IN

IVYnnll® + vV Y0 Tallynnl,

hence

‘2 + VTnHvyn,h”2 < Hynfl,h”Q-

(1- CTn)Hyn,hH2 + Hyn,h —Yn-1,n

Using once again the discrete Grénwall inequality and the fact that yop, = 0, we
deduce that y, = 0. O

REMARK 4.9. Arquing as in Remark 4.7, we deduce from (4.20)

ly — yaHLoc(o,T;m(Qh))

-
<C { (ﬁ + \ﬁ) 'l 20,512 () + Pl L2 (0,702 (02)) + h“YOHHl(Q)} .
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REMARK 4.10. Looking at the proof of the uniqueness of a discrete solution, one real-
izes that if there exists a family {y,}o of solutions of equations (4.8) that is bounded
in L>°(0,T; HY(Q4)), then (4.8) has a unique solution even if the hypothesis T < Coh?
is not assumed. Indeed, only the boundedness of {yl}, in L>°(0,T; H(Q,)) was re-
quired, this assumption was not necessary for {y2}.

Hereinafter, we will assume

(4.23) 3Cy > 0 such that 7 < Coh? Vo = (1,h).

We establish a corollary of Theorem 4.8 that will be useful later.
COROLLARY 4.11. Let u,v € L?(0,T;L2(Q)) such that

max{[[ul|zz(0,7;L2(0)), [VIlL20, 7512000} < M.

Lety, € H>1(Qr)NC([0,T);Y) be the solution of (2.1) andy,(v) € Vs the solution
of the discrete equation (4.8) corresponding to the control v. Then, there exists a
constant Cpy > 0 such that

1yu = Yo (V)= L@ + 1Va = Yo (V) 200,780 (20)
(4.24) < On {h+ u= vz oz }

Moreover, if u, € U, for every o and u, — u weakly in L?(0,T;L2(2)), then

lyu — ya(ua)HLz(O,T;Hl(Qh)) — 0,
(4.25) [Yu = Yo (uo)llLro e, — 0 V1 <p < oo,
lyu(T) — YJ(UU)(T)||L2(0,T;L2(Qh)) — 0.

Proof. From (4.20) and (4.23), we get

1Yu = Yo V)l 20,1511 20)) < I1Yu = Yvllzzo,ma @0)) + 1YV = Yo (V) 20,7581 (02,)
< |G () = GVl 20,511 (0)) + Ch,

where C' depends on ||yql/a1 () and |lyv|la21 (). The last term can be estimated by
(V]I L2(0,r;L2(2))- On the other hand, using that G : L?(0,T;L*(Q)) — H>'(Qr) N
C([0,T];Y) is of class C*, we can apply the mean value theorem to get (4.24), with
Cyr depending on M. Using Remark 4.9, we can repeat the same argument to get
the estimate in the L°°(0, T; L?(Q4)).

To prove (4.25) we set Yu—Yo(Us) = (Yu—Yu, )+ (Yu, —Yo(us)). From the well known
properties of equation (2.1) and the boundedness of {f + u,}, in L%(0,T;L2(12)),
we have that [|yu, ||z () < C. Furthermore, any subsequence of {yy, }, weakly
convergent in H%1 (), converges to y,. This is easily proved by passing to the limit
n (2.1). Then, we have that y,, — y, weakly in H>1(Q7). From the compactness
of the embeddings H>!(Qr) C L2(0, T; H(Q2)) and H>1(Q7) C LP(0,T; L2(Q2)) (1 <
p < +00) and the compactness of the trace H>1(Q7) < L?(9€27) we obtain

[yu = ¥Yu, 22080 @) + 1¥u = Yu,llzrorez@n) + 1Va(T) = yu, (D)lL2 @) — 0
On the other hand, from (4.20) and (4.23) we get

[Yu, (T) = Yo (e ) (D) + [[Yu, = Yo (o)lL20.m:81 21)) = 0,
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and with Remark 4.9

||Yug - ya(ua)||L°°(0,T;L2(Qh)) — 0,

which combined with the established convergences imply (4.25). O

We finish this section by studying the differentiability of the relation control - discrete
state.

THEOREM 4.12. The mapping G, : L*(0,T;L23(Q))) — V,, defined by G,(u) =
yo(u) solution of (4.8), is of class C*®. Moreover, z,(v) = GL(u)v is the unique
solution of the problem

Forn=1,...,N;, and Vwp € Yy,

Zn,h — Zn—1,h
(4.26) <n7_nl> Wh) + a(2zn,n, Wn) + ¢(Znh, Yn,he W)
n

(Y Zons Wh) = 2= [1 (v(£), wn) dt,
Zo.h = O,

where we have sety, =y,(u).

Proof. Let us consider the mapping
Fy: Yo x L*(0,T3L*(Q) — V;, Fo(yo,w) = g,

where g, is defined by

2

T

<g0'a WO’> = {(Yn,h —Yn—1,h, Wn,h) + Tn [a(yn,ha Wn,h) + C(Yn,iu Yn,h, W’rL,h)]}
1

N, ¢,
> [ 0+ w0 W de v, €3

n=1 tn—1

where we set yo, = yon. Obviously, F;, is of class C*> and g, = 25: (Yo, u)z, is
defined by

N
<g7 W0> = {(Zn,h —Zpn_1,h, Wn,h) + Tna(zn,fu Wn,h)}
n=1
N-
+ Z {Tn [C(yn,hv Zn,h, Wn,h) + C(Zn,ha Yn,hs Wn,h)]} ) with Zo.h = 0.
n=1

On the other hand, F,(G,(u),u) = F,(y,(u),u) = 0 for every u € L%(0,T; L?(2)).
The proof is a consequence of the implicit function theorem, we only need to prove
that

OF,

T%(ya(u)’u) Vo — Vs

is an isomorphism for every u. In fact, we will prove that ‘35 = (y,, ) is an isomorphism

for every (yo,u) € Yy x L?(0,T; L?(Q)). Since ?)5; (Y5, 1) is a linear mapping between
two finite dimension spaces of the same dimension, it is enough to prove that it is
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(yg, u)z, = 0 for some z, € ),, We will prove that

z, = 0. Applymg 2 (y,, )za 6 Y. to z, and using that c(yn.n,Zn, hy Zn,n) = 0, we

Bya
get
N,
> A@an = 20100 Z0n) + Tul0(Znn 2o n) + (Znps Yo Znp)]} = 0.
n=1
Hence,
N.
< (1 1 1
2 {Ilzn,h|2 = 3llan1alP + 3l = ol + v [Vl
=
N.-
1 N,
< Cl¥ollz= @) Y Tallznnl® +
n=1

Again, an application of the discrete Gronwall inequality and the fact that zg, = 0
imply that z, = 0. O

4.2. Analysis of the discrete adjoint state equation. Along this section,
as well as in the rest of the paper, the condition (4.23) is assumed. As a consequence
of Theorem 4.12 and applying the chain rule, we get that J, : L?(0,T; L%(Q2)) — R
is of class C'°° and we have a first expression of its derivative as follows

Jl (u)v = / / - Ya4)zo dxdt
Qp
T
+7/ (¥o(T) = ya)zo(T) dz + )\/ / uv dzdt,
Qp 0 Qp

where y, = yo(u) = G,(u) and z, = G/ (u)v is the solution of (4.26). As usual in
control theory, we have to introduce the adjoint state to simplify the expression of
this derivative. To this end we consider the discrete adjoint state equation: we look
for ¢, € YV, such that

forn=N,,...,1, and Vwj, € Y,
<‘Pn,h - Son+1,h

Tn

Wh) + a(‘Pn Jho Wh) + C(Wha Yn,hs Son,h)

+C(yn,h,Wh,‘Pn,h) = i tn 1(yn n—ya(t), ws)dt,

en, 1.0 = VYN, b — ywh)

(4.27)

Observe that in the above system, first we compute ¢, from @y 1, =Y(yN, 0 —
vq, ) and then we descend in n until n = 1. Unlike the discrete states y,, we will set
for the discrete adjoint states ¢, (t,—1) = ¢, for every 1 <n < N;.

System (4.27) corresponds to the discretization of the backward equation (3.8). Using
that {y,}, is bounded in L°°(0,T; H!(Q4)) (Theorem (4.8)), then we can proceed
in the same way as we did in the proof of Theorem 4.12 to obtain the existence and
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uniqueness of a solution of (4.27). Below we check that this is actually the discrete
adjoint state equation. To this end we use (4.26) and (4.27) to show that

T
/ / (YU - yd)zo dxdt
0 Qp
N N,

= [ G yalt)h za) de = (s~ P izn)
n=1 tn—1 n=1
N-
+ Z Tn [a(‘Pn,}w Zn,h) + C(Zn,h’ Yn,h, cPn,h) + C(Y”,h’ Zn,h;s (’Pn,h)]
n=1
N.

= Z(Zn,h — Zn—1,h, <Pn,h) - (‘PN,+1,ha ZN,.h) + (‘P1,ha Zo,1n)
n=1
N

+ Z Tn [a(zmhv ‘Pn,h) + C(Zn,h7 Yn,h, (Pn,h) + C(Yn,ha Zn,hs (Pn,h)]

n=1
T
= / / v, dxdt — '7/ (¥o(T) —ya,)z.(T) dz,
0 Qpn Qp

where we have used that ¢ ., = Y(y~,.n —Ya,) = V(¥ (T) - ya,) and zo, = 0.
From the obtained identity and the expression of J/ (u)v given above we conclude

T
(4.28) Jl (u)v :/0 /Q (¢, + Au)v dadt.

The next theorem states the error estimates in the approximation of the adjoint state
equation.

THEOREM 4.13. Given u € L?(0,T;L%(Q)), let y = yu be the associated state,
solution of (2.1), ¢ the associated adjoint state, solution of (3.8), y, = yo(u) the
associated discrete state, solution of (4.8), and @, the associated discrete adjoint
state, solution of (4.27). Then, {®p,}s is bounded in L>=(0,T;H'(Q,)) and there
exists a constant C' > 0 independent of o and u such that

e — @, 0,miL2 ) + Il — @ollz20,m81 (0,))
(4.29) < Ch{|ullL20,r:200)) + Iyollm @ + llyallmi @)} -

Proof. Let us consider the projection operator R, : C([0,T];L?(2)) — Y, by
(ReW)n.h = Pyw(t,—1) for 1 <n < N, with P}, given in Definition 4.1. As for the
discrete adjoint states, we fix (Ryw)(tp—1) = (RyW)n,n. Analogously to (4.12) and
(4.14), we have the estimates for every w € H>1(Qr) N C([0,7],Y)

(4.30) |W — RoW||2(0,7L2(0,)) < C {T||W/HL2(0,T;L2(Q)) + h2HWHL2(O,T;H2(Q))} J
T
(4.31) [[w — Row|| 20,711 (02,)) < C {E”W/HL?(O,T;L?(Q)) + h”W”L?(O,T;H"’(Q))} :
We set € = ¢ — ¢, = (¢ — Rop) + (Rop — ¢,) = M + €,. According to our
n) =@

notation above fixed, we have n(t,) = ¢(tn) — (Re)(t (tn) = (Ro@)nt1,n =
p(tn) — Prep(ty), for 0 <n < N, —1. Also we have €,(t,) = €p41,,, 0 <n < N, — 1.
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Setting (R, W), +1,n = Pow(T) and recalling that ¢y ., = (YN, ,n — Yo, ), then
the previous identities are also well defined for n = N;. Then, (3.8) and (4.27) lead
to the identities, n = N.,..., 1,

(e(tn_l)fe(tn),wh)Jr/n a(e(t), wp) dt

tn—1

+ / " ey (8, wh. 9(8)) + c(wh, y (1), @(£))]

tn—1

tn tn
- / (s Whs @) + (Vs You s P )] d = / (Y(8) = Yoo W ).
tn—1 th—1

Now, writing € = 1 + €, and taking into account that
(N(tn), wr) = (@(tn) — Prp(tn), wr) =0 Vwy, € Yy, and for 0 <n < N,

we obtain for wj, = €,

tn
(€n,h — €nti,hy €nh) +/ a(€nh, €np)dt

tn—1

- / " () = Yo nn) dt — / " am(t), enp) dt

tn—1 tn—1

t?b
+ / [C(yn,h; €n,h, @n,h) + C(En,hv Yn,h, Qon,h)} di

tn—1

- / " ey (8), €np 0(1)) + clenny (1), (1)) dt,

tn—1

hence

1 1 1 tn
slennl® = Sllensanll + 5llenn — envinl® +v / |V ennlldt

th—1

in
et [ VO] Ven ] de

tn—1

< / "y ®) = yo @)l

tn—1

+ / " S € P — (y(E), €mp (B))]

n—1

(432) + / el Y ) — clenn y (), (1)) dE.

tn—1

Let us estimate the right hand side of (4.32).

tn n
[ 5@ =y Olllenslde+v [ Vno Ve

tn—1 tn—1

t

1 [t 9 Tn 9
<3 Iy (t) = yo )17 dt + llennl
tn—l

2 [tn 9 v (tn 9
+- Vo) dt + < (IVennl” dt.
v tn71 8 1

ty—
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Now we proceed with the second term

/ " s € P — c(y(8), €n p(£))]

tn—1

/ " (50 () — ¥(8), et @() — (ot €nnr €(t))] dt

tn—1

/ " (o) — ¥(8), enn 9() — (Yo (), €nnm(®)] dt

tn—1

tn
< lpllzoe 0,11 (2 / 1y (£) = yo (D)l @) I Vennll dt
n—1

tn
HIyaIILw(o,T;Hl(Qh))/ (@) llar ) [IVennll dt
1

n—

tn v tn
<C [ Iy - yaOlfne,dt+ g [ Vel
tn—1 1

n—

tn v [tn
40 [ In 0l e+ 5 [ Vet
tn—1

n—1

For the last term of (4.32), we first observe that

c(€n,hy Yn,hy Pnn) = c(€nn, Y (1), (1))
= —[C(Gn’h, y(t) — Yo (t)7 ‘P(t)) + C(en,iu Yo (t)7 n(t)) + C(en,h7 Yo (t)v en,h)]-

The first two terms can be estimated in a similar way to the previous one

/n [c(€n.n, Y (1) = Yo () (1)) + c(€nn, Yo (t), n(t))] dE

tn—1

tn v tn

<c [ Iy - yaOline,dt+ g [ Vel
tn—1
t

n—1

8

th—1 tn—1

n V tn
i [ mOle, d g [ Ve
Finally,

tn
< Vol 1= 0z 1) / lewnll[Vennlldt

tn—1

tn
/ C(En,hv}’U(t)v en,h) dt

tn—1

2.

v
< CTn||€n,h||2 + g“venﬁ

Collecting all the estimates, we infer from (4.32)

v [
P [ Vet

(1= Cr)ll€nnl® + ll€nr — €nt1n 1

e

tn—1 tn—1

tn ln
len+1nl® +C {/ I @, dt+/ lly(t) — ya(t)IIth} :
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To conclude the proof it is enough to use the discrete Grénwall inequality along
with (4.11), (4.20), (4.23), (4.31) and the fact that the H*!(Qr) norm of ¢ can be
estimated by the L?(0,7;L?(Q2)) norm of y —y,4 and the H'(2) norm of yq, and the
L?(0,T;L?(Q)) norm of y is estimated by the L?(0,7; L?(Q)) norm of u. O

As a consequence of the previous theorem we have the following result analogous to
Corollary 4.11.

COROLLARY 4.14. Let u,v € L?(0,T;L*(Q)) such that

max{|[ul|z2(0,r;L2(0)), [ VIL2 0,712 } < M.

Let ¢, € H21(Qr)NC([0,T);Y) be the solution of (3.8) and ¢, (v) € YV, the solution
of the discrete equation (4.27) corresponding to the control v. Then, there exists a
constant Cyr > 0 such that

lew = o (VL oz + 1Pu = Po (V203 @0))
(4.33) < Cu {h+ |lu = v r20m2(2)) }

Proof. First we observe that (4.29) implies

leu — o (V)llLz0.mm1 (20)) < [l — @vllLzo.rm (@)
ey —eo(VllLzomm @) < llew = eyllzzomni@,)) + Ch,

where C' depends on [|u||z2(0,7;12(0))- We proceed analogously to get the estimate
for ||y — (V)L (0,7:12(0,))- Now, we estimate ¢, — ¢, in L?(0,T; H*(Q2)) and
L>(0,T;L3()), respectively. Let us set ¢ = ¢, —¥,,, then subtracting the equations
satisfied by ¢, and ¢,,, we get

—(pp W) +ale, W) = (Yu — yv, W)
+C(W7 Yvs Sov) + C(yV7 w, ‘pv) - C(Wa Yu; Sou) - C(yua w, Sou)

Taking w = ¢ and using the identities

C(‘P’ Yv, (Pv) - C((p, Yu, (Pu) = C((P, Yv = Yu, (Pv) - C(QO, Yu, ‘P)
C(yV7 L2 (pv) - C(yl-h ) <Aau) = C(yV —Yu ¥ <Aav)a

we deduce by integration in the interval (¢,7) and the equality @(T) = ¢, (T) —
QOV(T) = V(yu(T) —Yv (T))

IR ~ 7 lyulT) 3D +v [ [0l as

< [ Il - lle)las

£ [ I{Ie@I IR 115 ~ Tyl (o} ds
+0 [ Ie@IIveEIvyal s

T
+C/ 1y (5) = yu(®) e @ [IVe(s) ey () lar @ ds.
t
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Since yu, @, € L=(0,T; H*(Q)), with norms estimated by a constant depending on
M, we infer from the above inequality

1 1 r
eI =7 3lva(D) ~ oD +v [ Ve ds
t
1T ) 1T )
<5 [ Ivals) —ye)Pds+ 5 [ le(s)Pds
t t
T 2 2 v (T 2
4 [ {le)P + Iye(s) - val e} ds+ 5 [ 190()] ds.

t t

On the other hand, we have

HYU - vaHZ*l(QT) = ”G(u) - G(V)HHz'l(QT)

SN 1G"(u+ p(v —w))[[[[a—vlrz20r120) < Cllu=vlL20,712(0))
SPS

where C' depends on M. The last two inequalities lead to
T
eI+ [ IVels)? ds
t
T
<C { 1ya(T) = o (D) + llya = ylZ2 0,780 ) +/t le(s)]1? dS}
T
C{Iyu — ¥l on +/t Iw(S)IIQdS}

T
< C{lu_"%?(O,T;Lz(Q)) +/t ||<P(8)||2d8} vt € [0,T].

IN

Now the Gronwall inequality implies
@ < Clla—vl[z20,1L200)) Vt€[0,T],

which also implies with the aid of the previous estimates

T
v [ 1901 ds < Cllu =i rasan,
which concludes the proof. O

4.3. Convergence of the discrete control problem. In this section we an-
alyze the convergence of the solutions of control problems (P,) towards solutions of
the continuous problem (P). Since these problems are not convex, we will also ad-
dress the issue of the approximation of local solutions of problem (P). It is clear that
every problem (P,) has at least one solution because it consists of the minimization
of a continuous and coercive function on a nonempty closed subset of a finite dimen-
sional space. The next theorem proves the convergence of these discrete solutions to
solutions of problem (P).

THEOREM 4.15. For every o = (1,h) let U, be a global solution of problem (P,),
then the sequence {0, }, is bounded in L*(0,T;L%(Q))) and there exist subsequences,
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denoted in the same way, converging to a point @ weakly in L?(0,T;L%(Q)). Any of
these limit points is a solution of problem (P). Moreover, we have

(434) hr% Hﬁ — ﬁo’|‘L2(O,T;L2(Qh)) =0 and hr% Jg(ﬁg) = J(ﬁ)

REMARK 4.16. Strictly speaking, it is not correct to claim that sequence {0, }, is
bounded in L*(0,T; L?(2)) because 0, is only defined in (0,T) x Qp, with Q C Q, for
o = (1,h). We will prove that ||us| 120, 7;L2(Qn)) < C for some constant independent
of 0. Now, if we take any element v € L?(0,T;L?(Q)) and we extend every u, to
(0,T)x Q by setting y(t,x) = v(t,x) for every (t,z) € (0,T) x (Q2\Q4), then we have
that these extensions constitute a sequence of bounded functions in L*(0,T;L2(2)) and
every weak limit point is a solution of (P), it does not matter the choice of v. This is
a consequence of the property (4.1). The theorem should be understood in this sense.

Proof. Let @ be a solution of problem (P) and let us take u, € U, defined by

N~ t
1 n
(4.35) u, = Z Z W, rXnXT, With w,p = —/ /ﬁ(t,x)dxdt.
Tn|T| tn_1 JT

n=1T€T;

Then, u, is the L?(0,T; L%(2,)) projection of 1 on V,. From our assumptions (A1)-
(A3), we have that ||G — u,|[r2(0,7;L2(0,)) — 0 when 0 — 0. Using Corollary 4.11,
we deduce easily that J,(u,) — J(@). On the other hand, it is immediate that
U, € Uy qq for every o, then the optimality of G, and the definition of J, lead to

A
§||ﬁg||2 < Jy(,) < Jy(uy) < C Vo

Therefore, we deduce the existence of subsequences weakly convergent. Let i be one
of these limit points. Obviously the property u € U,q holds. Moreover, using again
Corollary 4.11 and the convexity of the cost functional in the third term involving the
control, we have

inf (P) <J(u) < limigf J»(0y) < limsup J,(0,) < limsup J,(u,) = J(u) = inf (P)

o—0 o—0

which implies that @ is a solution of (P) as well as the convergence J,(a,) — J(u).
From this convergence along with the convergence properties of ya, — ya given in
Corollary 4.11, we get [[0s|/z2(0,7;2(0,)) — I[0llz2(0,75L2(0))- Invoking once again
(4.1), we obtain the strong convergence of {1, }, to  stated in (4.34). O

The next theorem is important from a practical point of view because it states that
every strict local minimum of problem (P) can be approximated by local minima of
problems (P,).

THEOREM 4.17. Let @ be a strict local minimum of (P), then there exists a sequence
{8, }s of local minima of problems (Py) such that (4.34) holds.

Proof. Let @ be a strict local minimum of (P), then there exists £ > 0 such that u is

the unique solution of

(P:) min J(u),
u€l,qNBc (1)
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where B.(@) is a ball in L?(0,T;L?(f2)). Let us extend all the elements of U, to
(0,T) x Q by taking u,(t,z) = u(t,z) for any (¢,2) € (0,7) x (2\ Qp). Let us
consider the discrete problems

(Peo) min _ Jy(uy).

Us, eua,adea (ﬁ)

For every o sufficiently small, the problem (P, ,) has at least one solution. Indeed,
the only delicate point is to check that Uy qq N B.(1) is not empty. To this end, we
define u, € Uy qa as in (4.35), with @ replaced by a. Then, |[G—us|[z2(0,7;12(0)) — 0,
therefore u, € Uy, 44N B: (1) for any o sufficiently small. Let @i, be a solution of (P.).
Then we can argue as in the proof of Theorem 4.15 to deduce that any subsequence of
{0, }, converges strongly in L?(0,T;L?(Q)) to a solution of (P.). Since this problem
has a unique solution, we have [|Q — Uy z2(0,7;L2(0)) — O for the whole sequence as
o — 0. This implies that the constraint 6, € B.(u) is not active for ¢ small, and
hence @, is a local solution of (P,) and (4.34) is fulfilled. O

4.4. Error estimates. We still assume that (4.23) holds. In this section @ will
denote a local solution of problem (P) and for every o, 0, denotes a local solution of
(Po) such that [|0 — U || £2(0,7512(Q,)) — 0; see Theorems 4.15 and 4.17. Hereinafter,
all the elements u € U, are extended to (0,7) x © by setting u(t,z) = u(t,z) for
(t,z) € (0,T) x (2\ Q). We will also denote by y and ¢ the state and adjoint
state associated to u, and y, and ¢, will denote the discrete state and adjoint state
associated to u,. The goal of this section is to prove the following theorem.

THEOREM 4.18. Suppose that (3.21) holds. Then, there exists a constant C > 0
independent of o such that

(4.36) It — 8|22 0,mm2(00)) < Ch,
(4.37) 1V = ¥ollzeo,rL2@u)) + 1Y — Vollz20,rm1(0,)) < Ch,
(4.38) 12 = @oll=o. 72000 + 18 = @5l 200,712 (20)) < Ch

The estimates (4.37) and (4.38) are an immediate consequence of (4.36), (4.24) and
(4.33). We only have to prove (4.36). To this end, we proceed by contradiction and
we assume that it is false. This implies that

. T,
lim sup EHu — U || 120,712 (02)) = +09,
o—0
therefore, there exists a sequence of ¢ such that

S ST
(4.39) lim 2 [0 = 8ol 220, miL2(020)) = +00-

We will obtain a contradiction for this sequence. We need some lemmas. The first one
is concerned with the projection of u on U, given by the formulas (4.35) and denoted
in the sequel by u,. Let us recall that according to Theorem 3.4, the regularity
u € HY(Q7) holds for any local minimum.

LEMMA 4.19. There exists a constant C > 0 independent of o such that

(4.40) 10— o llmr (@) + 20— ol 2202 (0)) < CPP[0lla @y,
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where Qrp, = (0,T) X Q.

Proof. The estimate in the L?(0,T;L?*(Q)) norm is well know. Let us check the
estimate in the H*(Q74)* norm. Let v € H(Q7y,) be any element and take v, as the
projection according to the expression (4.35). From the definition of the projection
we have

/()T/th(uug)dtdx/()T/Qh(vvg)(ullg)dtdx

< |lv = Vo202 @) 10 — o llL2(0.7:L2(2,)) < CR* 0]l (00 1V 1 (@)

which proves the lemma. O

Since @, is a local minimum of (P,) , J, is a C°° mapping and u, € Uy 44, then
J! () (u, —@,) > 0. This inequality can be rewritten in the form

J/(ﬁO)(ﬁ - ﬁa) + [Jr,r(ﬁrf) - J/(ﬁﬂ)](ﬁ - ﬁﬂ)
+[J5(0s) = ()] (u, — @) + J'(0)(uy — @) > 0.

On the other hand, since @, € Uy,q, then J'(1)(@i, — @) > 0. Adding this inequality
to the last one, we obtain

(4.41) +[J5(05) = J' (@) (ur — 1) + J'(0)(us — ).

This inequality is crucial in the proof. First, we get an estimate from below for the
left hand side, then we estimate from above the three terms of the right hand side.

LEMMA 4.20. Suppose that that (4.36) is false and let § > 0 be given by Remark 3.7.
Then, there exists oy such that

1 . _ _ _ o .
(4.42) 5 min{d, MH[ae — 72070200,y < ['(80) = T (@)](0 — @) if o] <ol

Proof. In this proof, we follow the steps of [5, Lemma 7.2]. Let us take a sequence
{t,}, satisfying (4.39). By applying the mean value theorem we get for some 0, =
u+ 6,(u, —u)

(4.43) [J(0y) — J'(@)](0, — 1) = J"(i,)(0, — 1)
Let us take

po =0y — Q20 r2(0,)) and Vo = p—(ua — ).
Taking a subsequence if necessary, we can assume that v, — v in L?((0, T; L*(Q4)).
Let us prove that v belongs to the critical cone Cg defined in (3.14). First of all
remark that every v, satisfies the sign conditions (3.15)-(3.16), hence v also does.
Let us prove that v;(t,z) = 0 if d;(¢,x) # 0, d being defined by (3.13). Let us denote
by

J;(ﬁo) = da = Q_Oa + /\ﬁa;
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see ( 8). Note that [[a — Gy r2¢0,7L2(0,)) — 0 and (4.33) imply the convergence
Ild — dollz2(0,7:L2(02,)) — 0. Now, we have

T T -
/ / dvdzdt = lim/ / d, v, dzdt
0 o—0 Q
lim — / / —u)dzdt —|—/ / U, — Uy ) dedt
o—0 Po Qn Q

From (4.39), (4.40) and the inequality J! (0,)(u, — @s) > 0 we conclude that

/ / dvdzdt < lim —/ / —u)dzdt
o—0 po’ Qh

< lim =
o—0 ||u0 — uHLz((O TL?(Qh))

Since v satisfies the sign conditions (3.15)-(3.16), then d,;(¢,z)v;(t,z) > 0; hence
the above inequality implies that (3.17) holds as well, then v € Cg. Now, from the
definition of v,, (3.7) and (3.28) we get

lim J” (4, ) (0, —@)?

o—0

=1m{//|zv - >zvgsou>dxdt+v/|zv |2dx+A}

:/ /(|z‘,|2 —2(zy - V)zv(o)dxdt+’y/ |z (T)|> dz + A
0o Ja Q
=J"(@)v? + A (1 - HV||2L2((0,T;L2(Q))) > A+ (6 - >\)HV||2L2((0,T;L2(Q))~
Taking into account that ||v][z2(o,r;L2()) < 1, these inequalities lead to
lim J"(iy)vZ > min{8, A} > 0,
which proves the existence of o, with |o| > 0, such that
1
J' (4, )v2 > imin{&/\} V]o| < |oo]-

From this inequality, the definition of v, and (4.43) we deduce (4.42). O
With (4.41) and (4.42) we obtain

S {5 A I, — 00 raea,)) < 2 (00) — 7 (8,)](8 1)
(4.44) +[J (0,) — J'(@)](u, — 0,) + J' (1) (u, — ).

Let us estimate the three terms of the right hand sided. From (3.6) and (4.28) along
with the fact that 0 = @, in (0,7) x (2\ Q) we have

175 (0s) = J'(05)](0 — 05| < llpa, — Pollzz(0,rL2 (00 10— BollL20,7i12(00))-
Taking u = v = 0, in (4.33), the previous inequality leads to

(4.45) 75 (00) = J'(85)](0 — )| < Chlla — ol L20,7iL2(2,)-



The Velocity Tracking Problem 33

For the second term of (4.44) we use again (4.33) with u = u and v = 4,, as well as
(4.40)

75 (05) = J'(@)] (s — 05|

<Alles, — @llr20.r12(00)) + 106 — ll 2200, 112000 } 186 — Ul 220,712 (000))

(446) S C {h + ||ﬁ - ﬁG’||L2(0,T;L2(Qh))} h

Last, we estimate the third term using again (4.40)

(4.47)

|7 (@) (u — @)] < (1@ + Al (o) [0 = 8llw @) < CR2.

Finally (4.36) follows from (4.44)-(4.47) with the help of Young’s inequality, which
contradicts (4.39)

(17]
(18]

19]

REFERENCES

F. Abergel and R. Temam. On some control problems in fluid mechanics. Theoret. Comput.

S.

E

~ ~ =~ =~

K.

D

P.

Fluid Dynamics, 1:303-325, 1990.
C. Brenner and L.R. Scott. The Mathematical Theory of Finite Element Methods. Springer-
Verlag, New York, Berlin, Heidelberg, 1994.

. Casas. An optimal control problem governed by the evolution Navier-Stokes equations. In

S.S. Sritharan, editor, Optimal Control of Viscous Flows, Philadelphia, 1998. Frontiers in
Applied Mathematics, STAM.

. Casas, M. Mateos, and J.-P. Raymond. Error estimates for the numerical approximation

of a distributed control problem for the steady-state navier-stokes equations. SIAM J. on
Control € Optim., 46(3):952-982, 2007.

. Casas and J.-P. Raymond. Error estimates for the numerical approximation of Dirich-

let boundary control for semilinear elliptic equations. SIAM J. on Control € Optim.,
45(5):1586-1611, 2006.

. Chrysafinos. Convergence of discontinuous Galerkin approximations of an optimal control
problem associated to semilinear parabolic pde’s. ESAIM M? AN, 44(1):189-206, 2010.

. Chrysafinos anf N.J. Walkington. Discontinuous Galerkin approximations of the Stokes and
Navier-Stokes equations. Math. Comput., 79(272):2135-2167, 2010.

. Eriksson and C. Johnson. Adaptive finite element methods for parabolic problems. I. A
linear model problem. SIAM J. Numer. Anal., 28(1):43-77, 1991.

. Eriksson and C. Johnson. Adaptive finite element methods for parabolic problems. II.

Optimal error estimates in loo(12) and loo(loo). SIAM J. Numer. Anal., 32(3):706-740,

1995.

Eriksson and C. Johnson. Adaptive finite element methods for parabolic problems IV:

Nonlinear problems. SIAM J. Numer. Anal., 32(6):1729-1749, 1995.

. Estep and S. Larsson. The discontinuous Galerkin method for semilinear parabolic equations.
RAIRO Modél. Math. Anal. Numér., 27:35-54, 1993.

Girault and P .A.Raviart. Finite Element Methods for Navier-Stokes Equations. Theory and
Algorithms. Springer-Verlag, Berlin, Heidelberg, New York, Tokio, 1986.

M.D. Gunzburger. Perspectives in flow control and optimization. STAM, Advances in Design

and Control, Philadelphia, 2003.

M.D. Gunzburger. Flow Control. Springer-Verlag, New York, 1995.
M.D. Gunzburger and S. Manservisi. The velocity tracking problem for navier-stokes flows with

bounded distributed control. STAM J. Control Optim., 37(6):1913-1945, 1999.

M.D. Gunzburger and S. Manservisi. Analysis and approximation of the velocity tracking

problem for Navier-Stokes flows with distributed control. SIAM J. Numer. Anal., 37:1481—
1512, 2000.

M. Hinze and K. Kunisch. Second order methods for optimal control of time-dependent fluid

O

J.

flow. SIAM J. Control Optim., 40(3):925-946, 2001.

.A. Ladyzhenskaya. The Mathematical Theory of Viscous Incompressible Flow. Gordon and
Breach, New York, second edition edition, 1969. English translation.

L. Lions. Quelques Méthodes de Résolution des Problémes aux Limites non Linéaires. Dunod,
Paris, 1969.



E. CASAS AND K. CHRYSAFINOS

J.L. Lions and E. Magenes. Problémes aux Limites non Homogéenes. Dunod, Paris, 1968.

D. Meidner and B. Vexler. A priori error estimates for the space-time finite element discretiza-
tion of parabolic optimal control problems. Part I: Problems without control constraints.
SIAM J. Control and Optim., 47(3):1150-1177, 2008.

D. Meidner and B. Vexler. A priori error estimates for the space-time finite element discretiza-
tion of parabolic optimal control problems. Part II: Problems with control constraints.
SIAM J. Control and Optim., 47(3):1301-1329, 2008.

P.A. Raviart and J.M. Thomas. Introduction a L’analyse Numérique des Equations aux
Dérivées Partielles. Masson, Paris, 1983.

A. Rosch. Error estimates for parabolic optimal control problems with control constraints. Z.
Anal. Anwendungen, 23:353-376, 2004.

S.S. Sritharan. Optimal control of viscous flow. STAM, Philadelphia, 1998.

R. Temam. Nawvier-Stokes Equations. North-Holland, Amsterdam, 1979.

V. Thomée. Galerkin finite element methods for parabolic problems. Spinger-Verlag, Berlin,
1997.

F. Troltzsch. Optimal Control of Partial Differential Equations, volume 112 of Graduate Studies
in Mathematics. American Mathematical Society, Philadelphia, 2010.

F. Troltzsch and D. Wachsmuth. Second-order suficcient optimality conditions for the optimal
control of Navier-Stokes equations. ESAIM: COCYV, 12:93-119, 2006.



