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Abstract.

Error estimates for Galerkin discretizations of parabolic integro-differential equations
are presented under minimal regularity assumptions. The analysis is applicable in case
that the full Galerkin matrix A associated to the integral operator is replaced by
a compressed “sparse” matrix Ã using wavelet basis techniques. In particular, a semi-
discrete (in space) scheme and a fully-discrete scheme which is discontinuous in time
but conforming in space are analyzed.
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1 Introduction.

The purpose of this work is the analysis of numerical schemes for parabolic
integro-differential equations based on wavelet-Galerkin methods. Approxi-
mations of the following problem are considered: Given data f, u0 find u such
that {

ut = A(u) + f in Ω× (0, T )

u(0, x) = u0 in Ω
(1.1)

where Ω is a bounded domain in Rd, d = 2, 3, with a Lipschitz boundary Γ, and f ,
u0 denote the forcing term and the initial data respectively. The operator A(u)
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consists of an integral operator, i.e.,

A(u)(x) =

∫
Ω

k(x, x− y)u(y)dy, x ∈ Ω

but the analysis presented here is also applicable in case that A(u) = ADu(x)
where ADu ≡ div(D(x)∇u) is the standard diffusion operator.
The analysis of various classical finite element Galerkin schemes related to
parabolic intregro-differential operators is quite extensive (see e.g. [4, 13, 21, 23])
where several discretization schemes are studied. For the construction and ap-
proximation properties of finite elements, as well as for finite element analysis of
parabolic problems one may consult the classical works of [2, 20] respectively.

It is worth noting that since the integro-differential operator involved in these
examples is typically elliptic but nonlocal, discretization based on finite element
or wavelet-based Galerkin schemes lead to systems that do not have a banded
structure. Therefore, the matrixA induced by the operatorA(.) by such schemes,
lead to dense stiff matrices with O(N2) nonzero elements (whereN is the number
of degrees of freedom for the standard Galerkin discretization of u).

In [17], an alternative approach based on wavelet Galerkin schemes is analyzed
in case of a broad category of parabolic integro-differential equations, including
equations such as the classical diffusion equations and the Kolmogorov forward
equations for Lèvy process. The authors analyze θ-schemes and prove error esti-
mates. The proposed discrete wavelet-Galerkin scheme is based on compression.
The idea is to reduce the number for nonzero elements to O(N logN ) by com-
pressing the wavelet-based stiffness matrix A to a new matrix Ã by setting
elements of the original matrix equal to zero.

The main scope of this work is to utilize wavelet basis compression techniques
similar to the ones proposed in [16, 17], in case of parabolic integro-differential
equations, when data f, u0 satisfy minimal regularity assumptions. Parabolic
integro-differential equations typically exhibit low regularity, which significantly
complicates the analysis of numerical schemes.

In this work, we prove semi-discrete in space error estimates of optimal order.
In addition, we analyze a fully-discrete scheme that allows possible disconti-
nuities in time in order to better handle the low regularity of solutions. To
summarize, the following issues are being addressed:

• The basic estimate is derived under minimal regularity assumptions, i.e., we
assume no more regularity than necessary for the existence and uniqueness
of solutions.
• Our estimates are also valid when compressed stiffness matrices Ã (obtained
by setting equal to zero elements of the original matrix A induced by the
integral operator) are being used. This procedure reduces the complexity of
the scheme.
• The fully-discrete scheme is discontinuous in time, which better accomo-
dates the low regularity of solutions. The error estimates associated to the
fully-discrete scheme are derived at partition points as well as at arbitrary
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time points and are applicable for higher order approximations, provided
that natural regularity assumptions hold.
• Different subspaces can be used in each time step to allow greater flexibility.

We also emphasize that our estimates are also applicable in case of finite element
basis, when effects of numerical approximate integration of the stiffness matrix
are also taken into account.
For other wavelet based methods for the solution of general operator equations,
and their relation to adaptive and multiscale strategies, we refer the reader to
the works of [3, 7, 9] (see also references within). In particular, several results
regarding the complexity analysis of adaptive schemes constructed by utiliz-
ing wavelet-Galerkin techniques are given in [3] for abstract operator equations.
For some relevant results in case of integro-differential equations one may con-
sult [16], while adaptive wavelet algorithms for elliptic control problems were
studied in [8].
The paper is organized as follows: In Section 2, we present the weak formulation
of (1.1) and we state the basic results with respect to existence and uniqueness. In
Section 3, we treat the semi-discrete (in space) case and we prove error estimates
using a perturbed weak bilinear form. In Section 4, we analyze a fully-discrete
scheme which is conforming in space but discontinuous in time. Finally, Section 5
is devoted to the discussion of complexity issues due to the wavelet compression
of the stiffness matrix A while Section 6 contains some concluding remarks.

2 Preliminaries.

We shall use standard notation for Sobolev spaces L2(Ω),H1(Ω), H10 (Ω) =
{v ∈ H1(Ω) : v|Γ = 0}, and we denote by H−1 the dual space of H10 (Ω). For the
definition of Sobolev spaces of fractional order see [1]. For s ≥ 0, we denote by

H̄
s
(Ω) =

{
u|Ω : u ∈ H

s(Rd), u|Rd/Ω = 0
}
.

Note that if s+ 12 is not an integer, then H̄
s
(Ω) ≡ Hs0(Ω) (see e.g. [1]). We will

use the standard evolution triple (see e.g. [22]) V ⊂ L2(Ω) ≡ H ⊂ V ∗, where V ∗

denotes the dual of a Hilbert space V , with V = H̄
(ρ/2)
(Ω), and 0 ≤ ρ ≤ 2

denotes the order of the operator A(.).

Example 1. For the pure diffusion problem, ρ = 2, and the operator A
takes the form A = div(D(x)∇). Then V = H10 (Ω), V

∗ = H−1(Ω) and a(u, v) =∫
Ω∇v · (D(x)∇u)dx. Standard assumptions are imposed on D in order to guar-
antee continuity and coercivity for the bilinear form a(. , .).

Example 2. The classical pseudo-differential operators of order 0 ≤ ρ < 2,

defined on an open, bounded and Lipschitz domain Ω of Rd. Here, V = H̄
(ρ/2)
,

A : V → V ∗, while A has a representation in terms of a kernel k(x, x − y) ∈
D′(Ω × Ω), in distributional sense, due to the Schwartz kernel theorem. The
bilinear form is then defined as a(u, v) = 〈Au, v〉V ∗,V = 〈k(x, x−y), v(x)×v(y)〉.
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We also employ the standard notation for inner products, norms, and duality
pairings. To simplify the notation the duality pairing 〈. , .〉V ∗,V is occasionally
denoted by 〈. , .〉. If V is a Hilbert space, we denote by Lp(0, T ;V ),H1(0, T ;V )
the time-space function spaces such that

‖v‖pLp(0,T,V ) ≡

∫ T
0

‖v(t)‖pV <∞ ∀v ∈ Lp(0, T ;V ), 1 ≤ p <∞

and

‖v‖2H1(0,T ;V ) ≡

∫ T
0

(
‖v(t)‖2V + ‖vt(t)‖

2
V

)
<∞ ∀v ∈ H1(0, T ;V ),

together with the standard modification for L∞(0, T ;V ). We associate to the
operator A a bilinear form a(. , .) : V × V → R, via

a(u, v) := 〈Au, v〉 ∀u, v ∈ V,

and we assume that standard coercivity and continuity assumptions hold. In
particular, there exist positive constants α, β depending only on the domain,
such that

a(u, v) ≤ α‖u‖V ‖v‖V , ∀u, v ∈ V,(2.1)

a(u, u) ≥ β‖u‖2V , ∀ v ∈ V.(2.2)

In most cases associated to pseudo-differential operators, the weaker G̊arding’s
inequality is valid instead of (2.2), i.e., we assume that there exists β1, β2 > 0
such that

a(u, u) + β1‖u‖
2
L2(Ω) ≥ β2‖u‖

2
V , ∀u ∈ V.(2.3)

Recall that a standard substitution w = exp(−β1t)u into the original equation,
leads to an equation w′ + (A+ β1I)w = f̃ , which satisfies (2.2).
A weak solution for given data f, u0 satisfying minimal regularity assumptions,
is defined as follows: Given

f ∈ L2(0, T ;V ∗), u0 ∈ H

we seek

u ∈ L2(0, T ;V ) ∩H1(0, T ;V ∗)

such that for all v ∈ L2(0, T ;V ) ∩H1(0, T ;V ∗),

(u(T ), v(T ))− (u0, v(0)) +

∫ T
0

(−〈u, vt〉+ a(u(t), v)) =

∫ T
0

〈f, v〉(2.4)

where the continuous embedding L2(0, T ;V ) ∩ H1(0, T ;V ∗) ⊂ C(0, T ;L2(Ω))
(see e.g. [10, 15, 22]) justifies the above definition. For existence and uniqueness of
a weak solution under minimal regularity assumptions one may consult [14, 22],
or [10, Chapter 7] for ρ = 2. We close this preliminary section by noting that we
may define an equivalent norm on V , the standard energy norm, by

‖v‖a ≡ (a(u, u))
1/2 ≈ ‖v‖V .



APPROXIMATIONS OF PARABOLIC INTEGRO-DIFFERENTIAL EQUATIONS

3 Discretization in space.

3.1 The semi-discrete (in space) formulation.

We discretize (2.4) based on a Galerkin scheme. For that purpose, we assume
that a family of approximation spaces V h ⊂ V is given, satisfying the “standard
approximation properties” (see e.g. [2, 20]). V h consists of piecewise polynomi-
als of degree p ≥ 0, constructed on a quasi-uniform triangulation. In order to
properly state some approximation properties for functions in V h having zero
boundary values we also define the spaces

Hs(Ω) =

{
H̄
ρ/2

if s = ρ/2,

H̄
ρ/2
∩Hs(Ω) if s ≥ ρ/2.

Then, we assume that V h has the following approximation properties:
∀v ∈ Ht(Ω), t ≥ (ρ/2),

inf
vh∈V h

‖v − vh‖H̄s(Ω) ≤ Ch
t−s‖v‖Ht(Ω), 0 ≤ s ≤ ρ/2, ρ/2 ≤ t ≤ p+ 1.(3.1)

In addition, standard inverse inequalities are required:

‖vh‖H̄s(Ω) ≤ Ch
−s‖vh‖L2(Ω), 0 ≤ s ≤ ρ/2.(3.2)

Then, the semi-discrete approximation of (2.4) is defined as follows: We seek
uh ∈ H1(0, T ;V h) such that

(uh(T ), vh(T ))−
(
uh0 , v

h
)
+

∫ T
0

(
−
〈
uh, vht

〉
+ a(uh, vh)

)
=

∫ T
0

〈f, vh〉(3.3)

for all vh ∈ H1(0, T ;V h), where the initial approximation to the initial data uh0 is
chosen as the standard L2 projection of the initial data into V

h, i.e., uh0 = P
hu0.

3.2 A class of perturbed problems.

In this section we relax the assumption that the bilinear form a(. , .) :
V h × V h → R can be evaluated exactly. Throughout the rest of the paper,
we assume that only a perturbed bilinear form can be computed, i.e., we intro-
duce a bilinear form ã(. , .) : V h × V h → R. Note that the subsequent analysis
covers the case where the original stiffness matrix A is compressed, resulting
a perturbed matrix Ã, as well as the standard case of errors due to numerical
integration, or domain approximation by isoparametric elements. Our particular
interest is to derive error estimates suitable for wavelet compression techniques
and we pay extra attention on the regularity assumptions on the given data.
Using the perturbed form ã(. , .) we define the perturbed semi-discrete (in
space) approximations as follows: We seek ũ ∈ H1(0, T ;V h) such that

(ũh(T ), vh(T ))−
(
uh0 , v

h
)
+

∫ T
0

(
−
〈
ũh, vht

〉
+ ã(ũh, vh)

)
=

∫ T
0

〈f, vh〉(3.4)
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for all vh ∈ H1(0, T ;V h). The following consistency assumptions are made on
the perturbed bilinear form ã(. , .).

Assumption 3.1. There exists δ < 1 independent of h such that

|a(uh, vh)− ã(uh, vh)| ≤ δ‖uh‖a‖v
h‖a ∀uh, vh ∈ V h.(3.5)

There exists ν > 0 depending on the choice of bilinear form ã(. , .), and a pro-
jector Ih : V → V h such that for every vh ∈ V h and u ∈ Hp+1(Ω)

|a(Ihu, vh)− ã(Ihu, vh)| ≤ Chp+1−ρ/2| logh|ν‖u‖Hp+1(Ω)‖vh‖H̄ρ/2(Ω)(3.6)

where C > 0 depends only on the domain.

Then, it is easy to see that the following coercivity and continuity properties
of ã(. , .) also hold.

Lemma 3.2. Suppose that Assumption 3.1 is valid. Then, there exist positive
constants α̃, β̃ such that

|ã(uh, vh)| ≤ α̃‖uh‖a‖v
h‖a ∀uh, vh ∈ V h

and

|ã(uh, uh)| ≥ β̃‖uh‖2a.

Proof. See [17, Proposition 3.2]

As we will state in the last section (for proofs see e.g. [17] and references within)
the perturbed bilinear forms ã(. , .) obtained by wavelet basis compression tech-
niques satisfy the consistency assumptions, as well as the basic approximation
theory assumptions (3.1). In our proofs we will also employ L2 projections sim-
ilar [5]. Recall that the standard L2 projection Ph : L2(Ω) → V h is defined by
(v − Phv, vh) = 0, ∀ vh ∈ V h.

3.3 Main estimate.

We are now ready to prove the main estimate. This estimate can be viewed as
a generalization of [5, Theorem 3.2].

Theorem 3.3. Suppose that V h is a finite dimensional subspace of V sat-
isfying the standard approximation properties (3.1). In addition, suppose that
the perturbed bilinear form ã(. , .) satisfies Assumption 3.1. Given u0 ∈ L2(Ω),
f ∈ L2(0, T ;V ∗), let u, ũ be the solutions of (2.4)–(3.4). Then the following
estimate holds:

‖u(T )− ũh(T )‖2L2(Ω) + ‖u− ũ
h‖2L2(0,T ;V )

(3.7)

≤ C
(∥∥u0 − ũh0∥∥2L2(Ω) + ‖u− Phu‖2L∞(0,T ;L2(Ω)) + ‖u− Phu‖2L2(0,T ;V )
+

∫ T
0

|a(Ihu, Phu− ũh)− ã(Ihu, Phu− ũh)|
)
.
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In addition, assuming u ∈ L2(0, T ;Hp+1(Ω)) ∩H1(0, T ;Hp−1(Ω)) then,

‖u− ũh‖L∞(0,T ;L2(Ω)) + ‖u− ũ
h‖L2(0,T ;V ) ≤ Ch

p+1−ρ/2(| log h|ν + 1)

where ν > 0 is the constant of Assumption 3.1 and depends on the compressed
bilinear form ã(, ., ). The constant C depends on α, β, α̃, β̃, δ and on the domain.

Proof. Subtracting (3.4) from (2.4), and denoting by e = u− ũh, we obtain:

(e(T ), vh(T ))− (e(0), vh(0)) +

∫ T
0

(
−
〈
e, vht
〉
+ a(u, vh)− ã(ũh, vh)

)
= 0(3.8)

for all vh ∈ H1(0, T ;V h). We decompose the error into two parts: e =
(u− Phu) + (Phu− ũh) ≡ ep + eh, and calculate:

(
eh(T ), v

h(T )
)
−
(
eh(0), v

h(0)
)
+

∫ T
0

(
−
〈
eh, v

h
t

〉
+ a(eh, v

h)
)(3.9)

= (e(T ), vh(T ))− (e(0), vh(0)) +

∫ T
0

(
−
〈
e, vht
〉
+ a(e, vh)

)
−
(
ep(T ), v

h(T )
)
+
(
ep(0), v

h(0)
)
+

∫ T
0

(〈
ep, v

h
t

〉
− a
(
ep, v

h
))

= (e(T ), vh(T ))− (e(0), vh(0)) +

∫ T
0

(
−
〈
e, vht
〉
+ a(e, vh)

)
−

∫ T
0

a
(
ep, v

h
)

due to projection properties. Note that a(e, vh) = a(u, vh)− ã(ũh, vh)+ ã(ũh, vh)
− a(ũh, vh), so Equation (3.9) together with the orthogonality condition (3.8)
imply,

(
eh(T ), v

h(T )
)
−
(
eh(0), v

h(0)
)
+

∫ T
0

(
−
〈
eh, v

h
t

〉
+ a
(
eh, v

h
))

(3.10)

=

∫ T
0

(ã(ũh, vh)− a(ũh, vh))−

∫ T
0

a
(
ep, v

h
)
.

Adding and subtracting appropriate terms, we may rewrite

ã(ũh, vh)− a(ũh, vh) = ã(ũh − Ihu, vh)− a(ũh − Ihu, vh) + Con1

where Con1 = ã(I
hu, vh)− a(Ihu, vh) denotes the consistency term of Assump-

tion (3.1). Note also that adding and subtracting Phu and using the definition
of eh we arrive to

ã(ũh − Ihu, vh)− a(ũh − Ihu, vh) = −ã
(
eh, v

h
)
+ ã(Phu− Ihu, vh)

+ a
(
eh, v

h
)
− a(Phu− Ihu, vh).
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Combining the last two relations and Equation (3.10) we obtain,

(
eh(T ), v

h(T )
)
−
(
eh(0), v

h(0)
)
+

∫ T
0

(
−
〈
eh, v

h
t

〉
+ ã
(
eh, v

h
))

(3.11)

=

∫ T
0

(
ã(Phu− Ihu, vh)− a(Phu− Ihu, vh)− a

(
ep, v

h
)
+Con1

)
.

Setting vh = eh into (3.11) and using the continuity and coercivity properties of
bilinear forms, we may bound the first three terms on the right hand side by

∣∣ã(Phu− Ihu, eh)− a(Phu− Ihu, eh)∣∣ ≤ β̃
4
‖eh‖

2
a + C(α, α̃, β̃)‖P

hu− Ihu‖2a

and

|a(ep, eh)| ≤
β̃

4
‖eh‖

2
a + C(α, β̃)‖ep‖

2
a

which clearly lead to

1

2

(
‖eh(T )‖

2
L2(Ω) − ‖eh(0)‖

2
L2(Ω)

)
+
β̃

2

∫ T
0

‖eh‖
2
a

≤ C
(∫ T
0

(
‖ep‖

2
a + ‖P

hu− Ihu‖2a
)

+

∫ T
0

|a(Ihu, Phu− ũh)− ã(Ihu, Phu− ũh)|
)
.

The first part of the theorem follows using standard techniques. For the the
second part we also use the approximation properties of the projections, the
equivalence of ‖.‖a, ‖.‖V norms and the consistency Assumption 3.1, which allows
to hide eh to the left hand side.

Remark 3.4. The structure of the estimate of Theorem 3.3 is as follows:
The first term is the standard initial data approximation error, while the second
and third terms contain the error due to standard approximation properties.
Finally the last term contains the “consistency error”. Note that we were able
to uncouple the estimates on u from estimates on ut, and our estimate does not
contain any time-derivative term on the right hand side.

Remark 3.5. Suppose that ρ = 2 and that the bilinear forms are induced
by the standard diffusion operator. If we assume that u ∈ L2(0, T ;Hp+1(Ω)) ∩
H1(0, T ;Hp−1(Ω)) then an embedding theorem, implies that u ∈ C(0, T ;Hp(Ω)),
which guarantees that u0 ∈ Hp(Ω) and f ∈ L2(0, T ;Hp−1(Ω)). However, if we
suppose that f ∈ L2(0, T ;Hp−1(Ω)), u0 ∈ Hp(Ω) there is no guarantee that the
solution u ∈ L2(0, T ;Hp+1(Ω)) ∩H1(0, T ;Hp−1(Ω)). Appropriate compatibility
conditions (see e.g. [10, Section 7]) as well as additional regularity on f and its
time-derivatives are needed to guarantee the existence of a solution that satisfies
the desired regularity properties. Similar observations also hold for the more
general case of integro-differential equations.
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4 The discontinuous (in time) scheme.

4.1 The fully-discrete formulation.

The main theme of this section concerns the discretization of (1.1) in space
and time. We have chosen a discontinuous (in time), conforming in space scheme
which allows us flexibility in the choice of the discrete subspaces and accomodates
the low regularity of the weak solutions. Similar to the semi-discrete case, the
weak formulation of (1.1) under minimal regularity assumptions is to find u ∈
L2(0, T ;V ) ∩H1(0, T ;V ∗) such that

(u(T ), v(T )) +

∫ T
0

(−〈u, vt〉+ a(u, v)) = (u(0), v(0)) +

∫ T
0

〈f, v〉.(4.1)

The approximate solution is introduced on a partition 0 = t0 < t1 < · · ·
< tN = T , and on each partition we construct a closed subspace V nh ⊂ V .
We denote by τn = tn − tn−1, n = 1, . . . , N and by τ = maxn=1,...,N τn. The
space of approximate solutions is denoted by

Uh =
{
uh ∈ L2(0, T ;V ) : uh|(tn−1,tn] ∈ Pk

(
tn−1, tn, V nh

)}
where Pk(tn−1, tn, V nh ) denotes the polynomials of degree k or less with values
on V nh . Therefore, using the notation of Section 3 for the perturbed bilinear
form, the discontinuous Galerkin method constructs an approximate solution
ũh|(tn−1,tn] ∈ Pk(t

n−1, tn, V nh ) such that

(ũn, vn) +

∫ tn
tn−1

(
−
〈
ũh, vht

〉
+ ã(ũh, vh)

)
(4.2)

= (ũn−1, vn−1+ ) +

∫ tn
tn−1
〈f, vh〉 ∀vh ∈ Pk

(
tn−1, tn;V nh

)
.

In the above weak formulation we denote by vn+ = lims→0+ v(t
n + s),

n = 0, . . . , N − 1 the trace from above, by vn ≡ vn− = lims→0+ v(t
n − s), n =

1, . . . , N the trace from below, and by [vn] = vn+ − v
n, n = 0, . . . , N − 1 the cor-

responding jump term. Note that the embedding L2(0, T ;V ) ∩ H1(0, T ;V ∗) ⊂
C(0, T ;L2(Ω)) justifies the existence of point-wise values. Therefore, subtracting
(4.2) from (4.1) we obtain the following “orthogonality condition”, i.e., e = u−ũh

satisfies:

(en, vn) +

∫ tn
tn−1

(
−
〈
eh, v

h
t

〉
+ a(u, vh)− ã(ũh, vh)

)
(4.3)

= (en−1, vn−1+ ) ∀vh ∈ Pk
(
tn−1, tn;Unh

)
.

Following the work of [12], we split the error into two terms, i.e., e = u− ũh =
(u− P̄hu) + (P̄hu− ũh) = ep + eh, where P̄h is defined as follows:
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Definition 4.1.

(1) The projection P̄nloc : C(t
n−1, tn;L2(Ω)) → Pk(tn−1, tn;V nh ) satisfies

(P̄nlocu)
n = Pnu(tn), and

∫ tn
tn−1

(
u− P̄nlocu, vh

)
= 0, ∀ vh ∈ Pk−1

(
tn−1, tn;V nh

)
.

Here we have used the convention (P̄nlocu)
n ≡ (P̄nlocu)(t

n) and
Pn : L2(Ω)→ V nh is the projection operator onto V

n
h ⊂ L

2(Ω).
(2) The projection P̄h : C(0, T ;L2(Ω))→ Uh satisfies

P̄hu ∈ Uh and (P̄
hu)|(tn−1,tn] = P̄

n
loc(u|(tn−1,tn]).

We also define the local “consistency projection” into each V nh , i.e., I
n
h : V → V

n
h

satisfying the consistency properties of Assumption (3.1). In addition we denote
by Īh|(tn−1,tn] ≡ I

n
h .

The projection P̄h satisfies standard approximation properties (see e.g. [12]).
The projection Īh also satisfies the standard approximation properties (3.1).
Now, we are ready to state and prove the main result. The proof uses techniques
from [6, Section 2], appropriately modified to handle the perturbed bilinear
form.

Theorem 4.2. Let u, ũh be the solutions of (4.1)–(4.2) respectively. Suppose
that the spaces V nh consist of piecewise polynomials of degree p ≥ 0, satisfying
approximation properties (3.1) and the perturbed bilinear form satisfy the con-
sistency Assumption 3.1. Let eh = P̄

hu − ũh, where P̄h is the projection of
Definition 4.1. Then the following estimate holds:

∥∥eNh ∥∥2L2(Ω) +
N−1∑
n=0

∥∥enh − enh+∥∥2L2(Ω) +
∫ T
0

‖eh‖
2
V

≤ C
(∥∥e0h∥∥2L2(Ω) +

N∑
n=1

‖(I − Pn−1)u(tn−1)‖2L2(Ω)

+

∫ T
0

(
‖u− P̄hu‖2V + ‖u− Ī

hu‖2V +
∣∣ã(Īhu, eh)− a(Īhu, eh)∣∣)).

In addition, let u ∈ L2(0, T ;Hp+1(Ω)), ut ∈ L2(0, T ;Hk(Ω)) where k ≥ 0. Then
for a time step size τ ≈ h the following estimate holds:

‖eN‖L2(Ω) + ‖e‖L2(0,T ;V ) ≤ C(h
p+1−(ρ/2)| logh|ν +max{hp+(1/2), hp+1−(ρ/2)}

+ τk+1−(ρ/2)),

where ν > 0 is a constant depending on the compressed bilinear form ã(. , .)
and C is a constant depending on α, β, α̃, β̃, δ and on the domain.



APPROXIMATIONS OF PARABOLIC INTEGRO-DIFFERENTIAL EQUATIONS

Proof. Recall, that we split the error in two terms, i.e., e = u− ũh = ep+eh.
Then adding and subtracting appropriate terms, (4.3) implies:

(
enh, v

n
)
+

∫ tn
tn−1

(
−
〈
eh, v

h
t

〉
+ a
(
eh, v

h
))
−
(
en−1h , vn−1+

)
(4.4)

= (en, vn) +

∫ tn
tn−1

(
−
〈
e, vht
〉
+ a(e, vh)

)
− (en−1, vn−1+ )

−
((
enp , v

n
)
+

∫ tn
tn−1

(
−
〈
ep, v

h
t

〉
+ a
(
ep, v

h
))
−
(
en−1p , vn−1+

))

= (en, vn) +

∫ tn
tn−1

(
−
〈
e, vht
〉
+ a(e, vh)

)
− (en−1, vn−1+ )

−
(
en−1p , vn−1+

)
−

∫ tn
tn−1
a
(
ep, v

h
)

where at the last equality we have used the definition of P̄h which implies that
the first two ep terms of the right hand side vanish. Note that the orthogonality
condition (4.3) together with the elementary observation,

a(e, vh) = a(u, vh)− ã(ũh, vh) + ã(ũh, vh)− a(ũh, vh)

imply that (4.4) is equivalent to:

(
enh, v

n
)
+

∫ tn
tn−1

(
−
〈
eh, v

h
t

〉
+ a
(
eh, v

h
))
−
(
en−1h , vn−1+

)
(4.5)

= −
(
en−1p , vn−1+

)
+

∫ tn
tn−1
(ã(ũh, vh)− a(ũh, vh))dt−

∫ tn
tn−1
a
(
ep, v

h
)
.

Similar to the proof of Theorem 3.3, adding and subtracting appropriate terms,
we denote by Con1 = ã(Ī

hu, vh)− a(Īhu, vh) and rewrite

ã(ũh, vh)− a(ũh, vh) = ã(ũh − Īhu, vh)− a(ũh − Īhu, vh) + Con1

= −ã
(
eh, v

h
)
+ ã(P̄hu− Īhu, vh)

+ a
(
eh, v

h
)
− a(P̄hu− Īhu, vh) + Con1.

Combining the last inequality and (4.5) and setting vh = eh, we obtain

∥∥enh∥∥2L2(Ω) − ∥∥en−1h

∥∥2
L2(Ω)

+
∥∥en−1h − en−1h+

∥∥2
L2(Ω)

+ β̃

∫ tn
tn−1
‖eh‖

2
a

≤ C(α, α̃, β̃)
(∣∣((I − Pn−1)u(tn−1), en−1h+

)∣∣+ ∫ tn
tn−1
‖P̄hu− Īhu‖a‖eh‖a

+

∫ tn
tn−1
(‖ep‖a‖eh‖a +Con1)

)
.
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It remains to bound the first term of the right hand side. For that purpose note
that using the definition of projection Pn−1,

∣∣((I− Pn−1)u(tn−1), en−1h+

)∣∣ = ∣∣((I− Pn−1)u(tn−1), en−1h+ − e
n−1
h

)∣∣
≤ ‖(I− Pn−1)u(tn−1)‖2L2(Ω)+

1

4

∥∥en−1h+ − e
n−1
+

∥∥
L2(Ω)

since en−1h ∈ V n−1h . The first estimate now follows by standard techniques after
noting the equivalence of ‖.‖V , ‖.‖a norms. For the second estimate note that
the regularity of solution u ∈ L2(0, T ;Hp+1(Ω)) and the consistency assump-
tion (3.6) implies that |Con1| ≤ hp+1−(ρ/2)| logh|ν‖u‖Hp+1(Ω)‖eh‖V , so we may
hide all ‖eh‖V to the right. Note that using the stability of the L2(Ω) projection,
and the approximation property (3.1) for s = 0, t = p + 1, we may bound the
error due to the projection at the jumps as:

N−1∑
n=0

∥∥(I − Pn−1loc

)
u(tn−1)

∥∥2
L2(Ω)

≤ CNh2p+2
∥∥Dp+1x u

∥∥2
L∞(0,T ;L2(Ω))

≤ C(T/τ)h2p+2
∥∥Dp+1x u

∥∥2
L∞(0,T ;L2(Ω))

which clearly implies that for τ ≈ h the above term is of order O(h2p+1). Stand-
ard approximation properties imply that

‖ep‖L2(0,T ;L2(Ω)) ≤ C
(
hp+1

∥∥Dp+1x u
∥∥
L2(0,T ;L2(Ω))

+ τk+1
∥∥Dk+1t u

∥∥
L2(0,T ;L2(Ω))

)
and using an inverse estimate (3.2) for s = ρ/2,

‖ep‖L2(0,T ;V )

≤ C

(
hp+1−(ρ/2)

∥∥Dp+1x u
∥∥
L2(0,T ;L2(Ω))

+
τk+1

h(ρ/2)

∥∥Dk+1t u
∥∥
L2(0,T ;L2(Ω))

)
.

Using triangle inequality, we finally arrive at

‖eN‖2L2(Ω) + ‖e‖
2
L2(0,T ;V ) ≤ C

(
‖e0‖2L2(Ω) +

∥∥eNp ∥∥2L2(Ω) + ‖ep‖2L2(0,T ;H1(Ω))
+
∥∥eNh ∥∥2L2(Ω) + ‖eh‖2L2(0,T ;H1(Ω)))

≤ C
(
h2(p+1)−ρ(| log h|2ν) + max{h2p+1, h2(p+1)−ρ}

+ τ2k+2−ρ
)
.

Remark 4.3. Note that for 1 ≤ ρ ≤ 2 the estimate of Theorem 4.2 leads to
an error of order O(hp+1−(ρ/2)| logh|ν + hp+(1/2) + τk+1−(ρ/2)) for the natural
energy norm, while for 0 ≤ ρ < 1 an estimate of order O(hp+1−(ρ/2)(| logh|ν+1)
+ τk+1−(ρ/2)) is valid.
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Remark 4.4. For the diffusion operator AD, ρ = 2, using the projection
properties of Pn, Pn−1 and using an inverse estimate, we obtain∣∣((I − Pn−1)u(tn−1), en−1h+

)∣∣
=
∣∣(Pn(I − Pn−1)u(tn−1), en−1h+

)∣∣
≤ ‖Pn(I − Pn−1)u(tn−1)‖H−1(Ω)

∥∥en−1h+

∥∥
H1(Ω)

≤ (Ck/τ)‖P
n(I − Pn−1)u(tn−1)‖H−1(Ω)

∫ tn
tn−1
‖eh‖

2
H10 (Ω)

≤ (Ck/τ)‖P
n(I − Pn−1)u(tn−1)‖2H−1(Ω) +

β̃

4

∫ tn
tn−1
‖eh‖

2
H1(Ω).

Note that last term can moved to right, while the first bound leads to an im-
proved estimate for τ ≈ h of the form,

N−1∑
n=0

(Ck/τ)‖P
n(I − Pn−1)u(tn−1)‖2H−1(Ω) ≤

(
Ckτ

2
)
h2p+4

∥∥Dp+1x u
∥∥
L∞(0,T ;L2(Ω))

≤ C(Ck, u)h
2p+2.

Similar estimates are also valid for the integro-differential equations, provided
that the enhanced approximation properties for the dual norms ‖.‖V ∗ are valid.
For finite element discretizations such estimates on negative norms are indeed
true for sufficiently regular triangulations.

Remark 4.5. Note that using the triangle inequality the first estimate reveals
that the error estimate consists of three distinct components:

‖eN‖2L2(Ω) + ‖e‖L2(0,T ;V ) ≤ C(‖approx. error‖+ ‖cons. error‖+ ‖subsp. error‖).

In particular, we emphasize that the term
∑N
n=0 |(I−P

n−1)u(tn−1)|2L2(Ω) is due
to the use of different subspaces in each time step. In a computational scheme,
measures whether or not a new subspace, and hence remeshing, is needed.

Remark 4.6. As stated in [12], [20, Theorem 12.3] (see also references within),
a super-convergent estimate for k ≥ 2, at nodal points can be derived for the
semi-discrete in time approximations, using duality techniques. However, severe
regularity assumptions have to be imposed. For a posteriori analysis, and its
relation to adaptive schemes for parabolic PDE’s one may consult [11].

Remark 4.7. In [18] the hp-discontinuous Galerkin scheme based on wavelet
basis is analyzed for parabolic equations in higher dimensions. A key ingredient
of the main proof is the use of sparse tensor product spaces to reduce the number
of degrees of freedom. The main result requires higher regularity on the initial
data, or a solution operator that admits the parabolic smoothing effect.

4.2 Error estimates at arbitrary times.

In addition to estimates on the natural energy norm, we derive error estimates
at arbitrary times. Our technique is based on techniques of [6, Section 2.3, 2.4]
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appropriately modified in order to handle the auxiliary perturbed bilinear form.
An important element of the technique of [6] is the construction of approxima-
tions of discrete characteristic functions. Below, we quote the main definitions
and results.
Note that to compute the error at arbitrary times we would have liked to set
vh = χ[tn−1,t)uh into the orthogonality condition. However, this is not a func-
tion in Uh therefore we need to construct approximations of such functions. The
approximations are constructed on the interval (0, τ), and it is invariant under
translations.
We consider polynomials s ∈ Pk(0, τ), and we denote the discrete approxima-
tion of χ[0,t)s of s the polynomial ŝ ∈ {ŝ ∈ Pk(0, τ), ŝ(0) = s(0)} which satisfies∫ τ

0

ŝq =

∫ t
0

sq ∀ q ∈ Pk−1(0, τ).

The above construction is motivated by the elementary observation that for
q = s′ we obtain

∫ τ
0
s′ŝ =

∫ t
0
ss′ = 1

2 (s
2(t)− s2(0)).

The construction can be extended to approximations of χ[0,t)v for
v ∈ Pk(0, τ ;V ) where V is a linear space. The discrete approximation of χ[0,t)v

in Pk(0, τ ;V ) is defined by v̂ =
∑k
i=0 ŝi(t)vi and if V is a semi-inner product

space then,

v̂(0) = v(0), and

∫ τ
0

(v̂, w)V =

∫ t
0

(v, w)V ∀w ∈ Pk−1(0, τ ;V ).

Finally, we quote the main result from [6].

Proposition 4.8. Let V be a semi-inner product space, then the mapping∑k
i=0 si(t)vi →

∑k
i=0 ŝi(t)vi on Pk(0, τ ;V ) is continuous in ‖.‖L2(0,τ ;V ). In par-

ticular,

‖v̂‖L2(0,τ ;V ) ≤ Ck‖v‖L2(0,τ ;V ), ‖v̂ − χ[0,t)v‖L2(0,τ ;V ) ≤ Ck‖v‖L2(0,τ ;V )

where Ck is a constant depending on k.

Proof. See [6, Lemma 2.4].

Theorem 4.9. Let u, ũh be the solutions of (4.1)–(4.2) respectively. Suppose
that the projection P̄h is defined as in Definition 4.1 and let e = ep + eh where
eh = P̄

hu− ũh, ep = u− P̄hu respectively. Then the following estimate holds:

sup
tn−1≤t≤tn

‖eh‖
2
L2(Ω) +

N−1∑
n=0

∥∥enh − enh+∥∥2L2(Ω) +
∫ T
0

‖eh‖
2
V

≤ C
(∥∥e0h∥∥2L2(Ω) +

N∑
n=1

‖(I − Pn−1)u(tn−1)‖2L2(Ω)

+

∫ T
0

(
‖u− P̄hu‖2V + ‖u− Ī

hu‖2V + |ã(Ī
hu, ê)− a(Īhu, ê)|

))
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where ê is the discrete approximation of χ[tn−1,tn)eh. In addition, let u ∈
L2(0, T ;Hp+1(Ω)) ut ∈ L2(0, T ;Hk(Ω)) with k ≥ 0, then for a time step size
τ ≈ h the following estimate holds:

‖e‖L∞(0,T ;L2(Ω))

≤ C(hp+1−(ρ/2)| logh|ν +max{hp+(1/2), hp+1−(ρ/2)}+ τk+1−(ρ/2)),

where ν > 0 is a constant depending on the compression operator and C is
a constant depending on α, β, α̃, β̃, δ, Ck and on the domain.

Proof. (Sketch) Note that V defines a semi-inner product space with norm
‖.‖a = a(. , .). Fix t ∈ [tn−1, tn) and substitute vh = ê into Equation (4.5), where
ê is the discrete approximation of χ[tn−1,t)eh, with eh = P̄

hu − ũh. Therefore,
using similar considerations as in Theorem (4.2),

1

2
‖e(t)‖2L2(Ω) −

1

2

∥∥en−1h

∥∥2
L2(Ω)

+
1

2

∥∥en−1h − en−1h+

∥∥2
L2(Ω)

≤ C
(∣∣((I − Pn−1)u(tn−1), en−1h+

)∣∣+ ∫ tn
tn−1
ã(eh, ê) +

∫ tn
tn−1
‖P̄hu− Īhu‖a‖ê‖a

+

∫ tn
tn−1

(
‖ep‖a‖ê‖a +Con2

))

≤ C(Ck)
(∣∣((I − Pn−1)u(tn−1), en−1h+

)∣∣+ ∫ tn
tn−1
‖eh‖

2
a

+

∫ tn
tn−1
‖P̄hu− Īhu‖2a + ‖eh‖

2
a +

∫ tn
tn−1

(
‖ep‖

2
a +Con2

))
where we have used Cauchy–Schwarz inequality, Proposition (4.8). Here, Con2 =
ã(Īhu, ê) − a(Īhu, ê) and C(ck) depends on α, β, α̃, β̃, Ck,Ω. The rest of proof
easily follows from Theorem (4.2).

5 Compression via wavelet basis functions.

The applicability of the main results of Theorems 3.3–4.2 are examined. In
particular, we are interested in applying the results of Sections 3 and 4 for per-
turbed bilinear forms ã(. , .) obtained by wavelet compression techniques. First,
we describe the basic definitions regarding basis constructed by wavelets and
quote the approximation properties of the corresponding projections. Then, we
quote results from [16, 17], which demonstrate that the compressed matrix Ã,
resulting from the perturbed bilinear forms ã(. , .) has the desired number of
O(N logN ) nonzero elements.

5.1 Triangulations and subspaces.

Throughout this section we assume that Ω is a polygonal domain. Let T0 be
the initial coarse triangulation of the domain and we define the triangulation Tj
as a suitable subdivision of Tj−1 (for example, subdivide the triangles of Tj−1
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in four congruent subtriangles). The triangulation denoted by Th, is obtained
by this subdivision procedure and it is assumed that corresponds to TJ with
h = C2−J for some C > 0. If 1 ≤ ρ ≤ 2 we denote by V h the space of continuous
piecewise polynomials of degree p ≥ 1 on the triangulation with zero boundary
values, while for 0 < ρ < 1, we denote by V h the spaces of piecewise polynomials
of degree p ≥ 0.
To summarize, in a similar way we may define spaces V j corresponding to the
triangulation Tj so that

V 0 ⊂ V 1 ⊂ V 2 ⊂ · · · ⊂ V J = V h.

Here,N j ≡ dimV j andM j := N j−N j−1, and henceN := dimV h = NJ = C2J .

5.2 Wavelet basis functions.

We will use a wavelet basis that allows to represent the bilinear form a(. , .) as
a matrix with “many negligable” elements. The application of this basis yields
the “compressed” (approximate) bilinear form ã(. , .). The construction of this
basis is based on biorthogonal wavelets. Here, we describe the main principles.
We refer the reader to [7, 9] for an excellent exposition. Let ψjl , l = 1, . . . ,M

j

and j = 0, . . . denote a hierchical basis functions satisfying the following three
properties:

1. Locality (L) The functions ψjl are local, with a decreasing width of support
(denoted by supp here) for growing discretization level j i.e.,

diam
(
suppψjl

)
≈ 2−j

2. Cancellation property (CP) The wavelets ψjl with (suppψ
j
l )∩ ∂Ω = O

have vanishing moments up to order p, i.e., (ψjl , q) = 0 ∀q ∈ Pp.
3. Riesz basis property (R) Every function v ∈ V h can be represented as

v =
J∑
j=0

Mj∑
l=1

vjl ψ
j
l

with vjl = (v, ψ̃
j
l ) where ψ̃

j
l denotes the “dual wavelets” (see e.g. [7, 9]).

Note also that for v ∈ V the infinite series, v =
∑∞
j=0

∑Mj

l=1 v
j
l ψ
j
l with v

j
l ≡ (v, ψ̃

j
l )

converges in H̄
s
, for all 0 ≤ s ≤ (ρ/2) and the following norm equivalence is valid

ce‖v‖
2
Hs(Ω) ≤

∞∑
j=0

Mj∑
l=1

|vjl |
222js ≤ Ce‖v‖

2
Hs(Ω).(5.1)

For (ρ/2) < s ≤ p + 1 the following one-sided bound holds for the truncated
series:

J∑
j=0

Mj∑
l=1

∣∣vlj∣∣222js ≤ CEJν‖v‖2Hs(Ω), with ν = 0 if s < p+ 1 and(5.2)
ν = 1 if s = p+ 1,

where CE is independent of J .
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For examples of wavelet basis as well as the “wavelet analogue” of the standard
approximation properties (3.1), we refer the reader to [7, 9]. Here, we state the
main property: for all v ∈ Ht(Ω), t ≥ (ρ/2),

inf
vh∈V h

‖v − vh‖Hs(Ω) ≤ C2
−J(t−s)‖v‖Ht(Ω), 0 ≤ s ≤ (ρ/2), (ρ/2) ≤ t ≤ p+ 1.

(5.3)

5.3 Verification of assumptions.

In order to utilize the estimates of the previous section, one need to satisfy the
assumption 3.1. First note that the truncated wavelet expansion plays the role of
the basic “interpolation projector”. Therefore, we may define, Ih := V → V h by

Ihv :=
J∑
j=0

Mj∑
l=1

vjl ψ
j
l .

Note that Ihv satisfies approximation properties (5.3) (see e.g. [7, 9]). In addi-
tion to the truncated projector Ih we define the standard L2(Ω) projection, by
requiring (Phv − v, vh) = 0 ∀ vh ∈ V h. Note that the approximation proper-
ties of Ph can be easily deduced from Ih. One may use standard techniques to
derive similar approximation properties in the time-space spaces (see e.g. [5]).
The projections of Definition 4.1 can be constructed similar to [12, 20]. It re-
mains to show the “consistency” property, of the compressed bilinear form ã(. , .).
This is proven in [17]. For completeness, we quote the main results. First, note
that the bilinear form a(. , .) : V h × V h corresponds to a matrix A with entries
A(j,l),(j′,l′) = a(ψ

j
l , ψ

j′

l′ ). The natural way to define the compressed matrix Ã,
corresponding to ã(. , .) is to neglect “small” elements of A. In particular, fol-
lowing the work [16, 17], specialized to our notation, we define by

(Ã)(j,l),(j′,l′) =

⎧⎪⎨
⎪⎩
A(j,l),(j′,l′) if dist(suppψ

j
l , suppψ

j′

l′ ) ≤ δj,j′

or supp(ψjl ) ∩ ∂Ω �= 0

0, otherwise

(5.4)

where the truncation parameter is defined, for some c, â > 0, as

δj,j′ = cmax{2
J+â(2J−j−j′), 2−j, 2−j

′

}.

The truncation parameter is related to ν (which appears in Theorems 3.3–4.2.
Below, we state the main result which relates â and ν, specialized to our needs.

Proposition 5.1. If c is chosen sufficiently large then for all J > 0 Condition
(3.5) holds. In addition, if â ≥ 2p+2

2p+2+ρ then Condition (3.6) holds with ν = 3/2

if â = p+1
p+2 and with ν = 1/2 otherwise. Furthermore, the compressed matrix Ã

has O(N logN ) nonzero elements if â < 1 and O(N(logN )2) if â = 1.

Proof. See [16, 17].
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Remark 5.2. In case of 0 < ρ ≤ 2 we may choose â such that ν = 1/2
and consequently Ã has O(N logN ) nonzero elements. If ρ = 0 a similar con-
siderations lead to O(N(logN )2) nonzero elements for the compressed stiffness
matrix. See relevant discussion in [17].

6 Conclusions.

Combining the estimate of Theorem (3.3) with (5.1), and approximation prop-
erties (5.3), we obtain the following estimate: Suppose that ρ > 0 and that p, ρ
are such that â ≥ 2p+2

2p+2+ρ . If, u ∈ L
2(0, T.Hp+1(Ω)) ∩H1(0, T ;Hp−1(Ω)) then,

‖u− ũJ‖L∞(0,T ;L2(Ω)) + ‖u− ũ
J‖L2(0,T ;V ) ≤ C2

−J(p+1−ρ/2)(| log 2−J |1/2 + 1),

where ũ denotes the discrete (in space) solution of (3.4). The constant C depends
on α, β, α̃, β̃, δ, ce, Ce, CE and on the domain. In addition the compressed stiffness
matrix contains O(N logN ) nonzero elements. A similar result also holds in the
fully-discrete case. In particular under similar assumptions, and for 0 ≤ ρ < 1,
τ ≈ h ≈ 2−J using the discontinuous (in time) wavelet Galerkin scheme, we
obtain an estimate of the form:

‖ũJ,N − u(tN )‖L2(Ω) + ‖u− ũ
J‖L2(0,T ;V ) ≤ C(2

−J(p+1−ρ/2)(| log 2−J |1/2 + 1))

with a compressed matrix Ã that contains O(N logN ) nonzero elements. Here ũ
denotes the solution of (4.2). In addition, for 1 ≤ ρ < 2 and τ ≈ h we obtain:

‖ũJ,N − u(tN )‖L2(Ω)) + ‖u− ũ
J‖L2(0,T ;V )

≤ C(2−J(p+1−ρ/2)| log 2−J |1/2 + 2−J(p+(1/2)) + 2−J(p+1−ρ/2)).

Similar estimates also hold at arbitrary times for both cases.
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