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Abstract. In the present work, the shape reconstruction problem of acoustically

penetrable bodies from far-field data corresponding to time-harmonic plane wave

incidence is investigated within the framework of the factorization method. Although

the latter technique has received considerable attention in inverse scattering problems

dealing with impenetrable scatterers, it has not been elaborated for inverse

transmission problems with the only exception being a work by the first two authors

and co-workers. Aimed at bridging this gap in the field of acoustic scattering, the

paper at hand focuses on establishing rigorously the necessary theoretical framework

for the application of the factorization method to the inverse acoustic transmission

problem. The main outcome of the undertaken investigation is the derivation of

an explicit formula for the scatterer’s characteristic function, which depends solely

on the far-field data feeding the inverse scattering scheme. Extended numerical

examples in three dimensions are also presented, where a variety of different surfaces

are successfully reconstructed by the factorization method, thus complementing the

method’s validation from the computational point of view.

Submitted to: Inverse Problems

1. Introduction

The factorization method is an inverse scattering technique which is placed among a

wider class of non-iterative methods dealing with the shape identification problem of

inverse scattering theory and usually referred to as sampling methods. The recorded

literature on these methods is of great extent and we refer the interested reader to the

survey articles [17, 52, 53] and the monographs [10, 16, 34]. We henceforth focus on

‖ Author to whom any correspondence should be addressed.
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the factorization method, which aims at constructing a binary criterion for deciding

whether a given point —from a grid of ‘sampling’ points in a region known in advance

to contain the unknown scatterer— is inside or outside the scattering obstacle by using

solely the far-field data. Thus one is able to compute an approximation to the scatterer’s

characteristic function with the only a priori information on the scatterer being a coarse

estimation about its location. Stated otherwise, no a priori information concerning

either the geometric/topological (e.g., number of connectivity components) or physical

(i.e., the exact type of boundary condition(s)) properties of the scattering obstacle is

necessary for the method to work. Moreover, the straightforwardness of its numerical

implementation and the remarkably low computational time needed for delivering a

reconstruction (even for three-dimensional applications) render the factorization method

even more attractive among the large body of inverse scattering schemes. On the other

hand, the fact that it requires a large amount of data, i.e., a knowledge of the far-field

pattern for all directions of incidence and observation might be included in the short

list of its drawbacks.

Since its first presentation by Andreas Kirsch in the original paper [28] for the

shape reconstruction of an acoustically soft or hard scatterer (see, also, [14]), the

factorization method has been successfully applied to other problems for the scalar

Helmholtz equation including scattering by inhomogeneous media [29, 30, 31, 37],

obstacles with impedance or mixed boundary conditions (see [21, 22] and the references

therein), periodic surfaces with Dirichlet or Robin boundary conditions [4, 3] and

arcs [38]. In addition, the method has been elaborated for various static problems

[23, 46, 47, 48] while a discussion on its extension to inverse problems for general elliptic

equations can be found in [19, 33]. For developments of the theory of the method for

the system of Maxwell’s equations we refer to [20, 32], while for solutions of elastic

scattering problems via the factorization method to references [2] and [1], where the

inverse scattering problem by rigid bodies or cavities is examined in a two- and three-

dimensional setting, respectively, and to the study [13] for a complete investigation

of the inverse elastic transmission problem. Finally, applications of the factorization

method to problems in impedance and optical tomography can be found, among others,

in [8, 9, 24] and [6, 25], respectively.

It has to be noted that the recorded literature on the factorization method

is generally characterized by a lack of theoretical results concerning with its

derivation/application to inverse scattering problems dealing with penetrable scatterers,

a situation which naturally occurs in a variety of physical situations in the field of

wave scattering. More precisely, to the best of our knowledge at least, the only study

dealing with the solution of the inverse transmission problem via the factorization

method is one of the first two authors in reference [13] for the case of an isotropic

and homogeneous elastic inclusion in three dimensions. Motivated by this, the present

study is devoted to the developement of a complete framework, both theoretical and

numerical, which is necessary for the application of the factorization method to the

problem of reconstructing the support of a homogeneous penetrable body from the
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knowledge of the far-field pattern of the scattered fields for acoustic plane incident

waves.

This paper is organized as follows. In section 2, we formulate the direct and inverse

scattering problems and introduce the concept of the far-field operator, on which the

formulation of the investigated inverse technique relies heavily. Section 3 contains the

main results of this paper. Most effort there has been spent on deriving a factorization

of the far-field operator, which is the cornerstone for the applicability of the specific

inversion scheme, and investigating thorougly the properties of the involved operators.

By means of the proposed factorization, we are then able to employ an abstract

functional theoretic result (see [34] or [17, Theorem 5.4]) concerning the (F ∗F )1/4-variant

of the factorization method, which finally leads to an explicit characterization of the

scattering obstacle. Finally, an extended discussion of the numerical implementation

of the method in three dimensions accompanied by various reconstruction examples

corroborating its high performance as an inverse solver have been included in section 4.

2. Formulation of the direct and inverse scattering problem

Let D ⊂ R
3 be a bounded domain with boundary ∂D of class C2,α, henceforth called

the scatterer, and denote by ν̂ the unit normal vector to the boundary ∂D directed

into the exterior of D. The exterior R3\D of the scatterer (with D = D ∪ ∂D),

which is assumed to be connected, is an infinite homogeneous isotropic non-absorbing

acoustic medium characterized by mass density ρe, mean compressibility κe and sound

speed ce = 1/
√
κeρe, whereas the medium occupying the interior of the scatterer D is

characterized by the corresponding physical parameters ρi, κi and ci = 1/
√
κiρi. The

scatterer is excited by a time-harmonic acoustic plane wave uinc of unit amplitude, which

propagates in the direction d̂ ∈ Ω, where Ω := {x ∈ R3 : |x| = 1} is the unit sphere in

R3 (here, | · | denotes the standard Euclidean norm in R3, while the hat on the top of

a vector indicates unit length). After suppressing the harmonic time dependence e−iωt

with ω ∈ R+ standing for the angular frequency and i =
√
−1, the incident wave is

represented by the simple closed-form expression

uinc(x; d̂) = eikex·d̂, x ∈ R
3, (1)

where ke = ω/ce is the wave number of the acoustic waves in the host medium.

The interference of the incident wave (1) with the penetrable scatterer leads to the

creation of two secondary fields; namely, the scattered field usct(x; d̂), which is defined

for x ∈ R3\D and propagates outwards and the transmitted field uint(x; d̂), which is

defined in the interior of the scattering obstacle (x ∈ D). The total acoustic field in the

exterior of the scatterer is formed by the superposition of the incident and the scattered

field, i.e., uext(x; d̂) = uinc(x; d̂)+usct(x; d̂), x ∈ R3\D, and the fields ua, a = {int, ext}
satisfy, in their domains of definition, the reduced wave equation or Helmholtz equation,

that is,

∆uint(x; d̂) + k2i u
int(x; d̂) = 0, x ∈ D, (2a)
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∆uext(x; d̂) + k2eu
ext(x; d̂) = 0, x ∈ R

3\D, (2b)

where ∆ ≡ ∇·∇ is the well-known Laplace operator and ki = ω/ci is the wave number

of the acoustic medium filling the interior of D.

The continuity of the acoustic pressure and of the normal component of the particle

velocity across the interface ∂D (see [7, Section 3.1] for the complete derivation) leads

to the transmission boundary conditions

uint(x; d̂) = uext(x; d̂), x ∈ ∂D, (3a)

∂uint(x; d̂)

∂ν̂(x)
= τ

∂uext(x; d̂)

∂ν̂(x)
, x ∈ ∂D, (3b)

where τ := ρi/ρe ∈ R+ is the mass density ratio of the two media. In addition, the partial

differential equations (2) and the boundary conditions (2) must be supplemented by the

Sommerfeld’s radiation condition (see equation (8) below) referring to the scattered field

usct in order to form a well-posed boundary value problem (BVP) (see, e.g., [15]).

In mathematical terms, the secondary fields uint(x) and usct(x) (their dependence

on the propagation vector d̂ is omitted for simplicity) satisfy the so-called classical

acoustic transmission scattering problem: find a pair of functions (uint, usct) with

uint ∈ C2(D) ∩ C1(D) and usct ∈ C2(R3\D) ∩ C1(R3\D) such that

∆uint(x) + k2i u
int(x) = 0, x ∈ D, (4)

∆usct(x) + k2eu
sct(x) = 0, x ∈ R

3\D, (5)

uint(x)− usct(x) = f(x), x ∈ ∂D, (6)

τ−1∂u
int

∂ν̂
(x)− ∂usct

∂ν̂
(x) = h(x), x ∈ ∂D, (7)

lim
r→∞

r

(
∂usct(x)

∂r
− ikeu

sct(x)

)
= 0, r = |x| , (8)

with specific data f(x) := uinc(x) and h(x) := (∂uinc/∂ν̂)(x) for x ∈ ∂D. Equation

(8), which holds uniformly over all directions x̂ = x/r, stands for the Sommerfeld’s

radiation condition. It is pointed out that a solution to (5) satisfying (8) will be called a

radiating solution of the Helmholtz equation in R3\D. Finally, it is known that problem

(4)–(8) constitutes a well-posed BVP [15, 45, 18]. Moreover, the specific BVP disposes

also a weak formulation in which (4) and (5) are satisfied in the sense of distributions

by the fields uint ∈ H1(D) and usct ∈ H1
loc(R

3\D) (Hk denotes the usual Sobolev space)

and (6), (7) are satisfied in the sense of the trace operator with arbitrary boundary data

(f, h) ∈ H1/2(∂D) × H−1/2(∂D). This problem will be referred to as the transmission

problem (TP).

Let us recall that any radiating solution v ∈ C2(R3\D)∩C1(R3\D) to the Helmholtz

equation can be represented by the Green’s representation formula

v(x) =

∫

∂D

[
v(y)

∂Φa(x,y)

∂ν̂(y)
− ∂v

∂ν̂
(y) Φa(x,y)

]
ds(y), x ∈ R

3\D, (9)
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where Φa(x,y), a = {e, i} is the fundamental solution of the Helmholtz equation with

wavenumber ka, that is,

Φa(x,y) =
eika|x−y|

4π |x− y| , x,y ∈ R
3, x 6= y. (10)

Clearly, the asymptotic behaviour of the fundamental solution (with the parameters of

the exterior space, i.e., a = e) is of the form

Φe(x,y) =
eike|x|

|x| Φ∞
e (x̂,y) +O(|x|−2), |x| → ∞, (11)

uniformly with respect to the observation directions x̂ = x/ |x| ∈ Ω with

Φ∞
e (x̂,y) :=

1

4π
exp{−ikex̂ · y}, (12)

denoting the far-field pattern of Φe(x,y). A direct consequence of (9) and (12) is that

the scattered field usct exhibits an asymptotic behaviour of the form

usct(x; d̂) =
eike|x|

|x| u
∞(x̂; d̂) +O(|x|−2), |x| → ∞, (13)

uniformly in all directions x̂ ∈ Ω with the far-field pattern u∞ : Ω × Ω → C being an

analytic function of both its arguments and determined by

u∞(x̂; d̂) =
1

4π

∫

∂D

[
usct(y; d̂)

∂e−ikex̂·y

∂ν̂(y)
− ∂usct(y; d̂)

∂ν̂(y)
e−ikex̂·y

]
ds(y), x̂ ∈ Ω. (14)

The inverse acoustic transmission scattering problem we will be concerned with

in the rest of this work can now be set forth as a task of reconstructing the shape

of the scatterer D from the knowledge of the far-field patterns u∞(x̂; d̂) caused by the

scattering of acoustic plane waves of fixed frequency from an isotropic and homogeneous

penetrable scatterer for all directions of observation x̂ ∈ Ω and all directions of incidence

d̂ ∈ Ω. For a uniqueness result concerning this inverse problem we refer the reader to

[36].

Aiming at analyzing the above stated inverse scattering problem within the

framework of the factorization method, one finds it extremely useful to consider the

most general (regular) incidence consisting of a linear combination of plane waves with

appropriate weights. This notion leads to the introduction of acoustic Herglotz wave

functions [16]. More precisely, a Herglotz wave function vg with kernel (or density)

g ∈ L2(Ω) is defined by

vg(x) :=

∫

Ω

eikex·d̂g(d̂) ds(d̂), x ∈ R
3. (15)

One may now take advantage of the well-known superposition principle [16], according to

which, the far-field pattern, say v∞(x̂), x̂ ∈ Ω, of the scattered field vsct(x), x ∈ R3\D,

generated by the incidence of a superposition of incident plane waves of the form (15) on

the scatterer is the superposition of the far-field patterns corresponding to the scattered

fields caused by the incidence of the individual plane waves. Consequently, one has that

v∞(x̂) =

∫

Ω

u∞(x̂; d̂)g(d̂) ds(d̂), x̂ ∈ Ω,
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which leads in a natural way to the introduction of the far-field operator F : L2(Ω) →
L2(Ω) corresponding to the scattering problem (4)–(8) through the relation (Fg)(x̂) :=

v∞(x̂), x̂ ∈ Ω, i.e., F is the linear integral operator

(Fg)(x̂) =

∫

Ω

u∞(x̂; d̂)g(d̂) ds(d̂), x̂ ∈ Ω, (16)

whose integral kernel is formed by the forward data of the inverse problem.

3. Factorization of the far-field operator for the acoustic transmission

problem

We first of all note that the objective of the factorization method is to provide an

explicit characterization of the shape of the unknown scattering obstacle D by the ‘data

operator’ F . Originally proposed by Kirsch in [28] for the acoustic scattering problem by

a soft or hard scatterer, the (F ∗F )1/4-variant of the specific inverse scattering technique

(see [34] for a detailed description of other variants of the method) tries to overcome the

difficulty of explicitly constructing elements of the range R(F ) of F by first establishing

an explicit relation between the shape of D and the range of an operator which is closely

related to F , namely the linear operator G : H1/2(∂D) ×H−1/2(∂D) → L2(Ω), defined

by G(f, h) := u∞, where u∞ ∈ L2(Ω) is the far-field pattern of the scattered solution of

TP with boundary data (f, h) ∈ H1/2(∂D)×H−1/2(∂D). A second step, which actually

constitutes the cornerstone for the applicability of the method, consists of an attempt

to provide a precise characterization of R(G) by the data operator F by proving that

R(G) = R
(
(F ∗F )1/4

)
. The proof of the last assertion is the most demanding part of the

method and is accomplished by establishing an appropriate operator factorization of F

with the involved operators enjoying specific properties as it will be clarified shortly.

Before proceeding any further, let us comment as briefly as possible on the main

properties of the far-field operator F , some of which are, in fact, a fundamental

prerequisite for the applicability of the (F ∗F )1/4-method (see theorem 3.3 below). In

particular, F is certainly compact on L2(Ω) (due to the analyticity of its kernel) and

enjoys a normality property, i.e.,

F ∗F = FF ∗, (17)

with F ∗ : L2(Ω) → L2(Ω) denoting its adjoint with respect to the (conjugate linear in

the first argument) inner product on L2(Ω) (see definition (23) below). Moreover, the

scattering operator S : L2(Ω) → L2(Ω), which is connected to F through the relation

S := I + i ke
2π
F , is unitary, that is,

S∗S = SS∗ = I, (18)

with I standing for the identity operator. Properties (17) and (18) can easily be proved

to hold true for the far-field operator corresponding to the transmission problem (4)–(8)

by following the arguments presented in [27, Chapter 5]. Another key property of F

is its injectivity. A well known result (see, e.g., [16, 27]) states that F is one-to-one
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if, and only if, there does not exist a Herglotz wave function v with non-trivial density

g ∈ L2(Ω) such that the function pair (w, v), with w, v ∈ C2(D) ∩ C1(D), solves the

following classical interior transmission problem

∆w(x) + k2i w(x) = 0, x ∈ D, (19)

∆v(x) + k2ev(x) = 0, x ∈ D, (20)

w(x)− v(x) = f(x), x ∈ ∂D, (21)

τ−1∂w

∂ν̂
(x)− ∂v

∂ν̂
(x) = h(x), x ∈ ∂D, (22)

with homogeneous boundary conditions, i.e., boundary data f = h = 0. Values of

the angular frequency ω for which a non-trivial solution to the homogeneous interior

transmission problem exists consist the eigenvalues of this unconventional BVP, which

are usually referred to as interior transmission eigenvalues¶. The scientific interest in

the investigation of the interior transmission problem (ITP) with emphasis to its spectral

properties (existence and countability of eigenvalues) has significantly increased over the

last few years thus leading to important advancements in this area and rendering the

study of ITP one of today’s research subjects in inverse scattering theory (see, e.g.,

[12] and references therein). In the present work, similarly to any primary study of the

factorization method for an inverse scattering problem involving a penetrable scatterer,

we will not evoke any arguments exploring the issue of existence of the ITP spectrum,

but solely exploit its discreteness. Obviously, the injectivity of F is guaranteed under

the assumption that the plane wave excitation frequency ω does not coincide with an

interior transmission eigenvalue. For completeness we also recall that if the nullspace

N (F ) of F is trivial then its range is dense in L2(Ω) due to the well-known relation

F ∗g = RrFRrg for all g ∈ L2(Ω) via the reflection operator (Rrg)(x̂) := g(−x̂) for

x̂ ∈ Ω with the overbar indicating complex conjugation.

We now turn our attention to the investigation of the properties of the ‘data-to-

pattern’ operatorG : H1/2(∂D)×H−1/2(∂D) → L2(Ω), defined previously, by first noting

that it is bounded due to the continuous dependence of the radiating solution u to the

Helmholtz equation on the boundary data, i.e., the well-posedness of TP. Generally

speaking, its range R(G) is ‘much larger’ than R(F ). In a first step, the next theorem

proves, among others, that it is dense in L2(Ω). For later reference, let us introduce at

this point some terminology. We define the product space X := H1/2(∂D)×H−1/2(∂D)

and abbreviate Y := L2(Ω). The Hilbert space Y is equipped with the inner product

(g1, g2)Y :=

∫

Ω

g1(x̂)g2(x̂) ds(x̂) for all g1, g2 ∈ Y. (23)

By denoting with X∗ the dual space of X , we consider the usual duality pairing in

¶ We refer to ke since ki can obviously be written as ki = ke
√
n with the index of refraction n := c2e/c

2
i

being a positive constant.
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〈·, ·〉X∗×X and the induced sesquilinear form
(
(h2, f2), (f1, h1)

)
X∗×X

:= 〈(h2, f2), (f1, h1)〉X∗×X

:=

∫

∂D

h2(x)f1(x) ds(x) +

∫

∂D

f2(x)h1(x) ds(x), (24)

for (f1, h1) ∈ X and (h2, f2) ∈ X∗. Finally, we will make use of the notations

〈h, f〉c := 〈h, f〉 for h ∈ H−1/2(∂D), f ∈ H1/2(∂D), with 〈·, ·〉 denoting the usual

duality pairing between H−1/2(∂D) and H1/2(∂D), and ∂ν̂ := ∂/∂ν̂ for the normal

derivative operator.

Theorem 3.1. The range R(G) of the operator G : X → Y is dense in Y . Moreover,

for the range R(G∗) of the adjoint operator G∗ : Y → X∗ the following characterization

holds

4πG∗g = (−τ−1∂ν̂w0|∂D, w0|∂D), (25)

where g ∈ Y and w0 is the complex conjugate of the function which represents the interior

field of the unique function pair solving the transmission problem with the Herglotz data

(vg|∂D, ∂ν̂vg|∂D) as boundary data.

Proof. The proof is exactly analogous to the proof of [11, Theorem 4.1], where the

corresponding result is established for the case of an anisotropic inhomogeneous scatterer

in three dimensions, and is therefore omitted for brevity.

It is worthwhile noticing that, in contrast to the impenetrable scatterer case (i.e.,

acoustically soft or hard scatterer), the operator G corresponding to the transmission

problem fails to be injective. This claim can be confirmed by employing the space

relation (see, e.g., [49])

N (G) = α[R(G∗)]

:=
{
(fN , hN) ∈ X :

(
(h′, f ′), (fN , hN)

)
X∗×X

= 0 for all (h′, f ′) ∈ R(G∗)
}
, (26)

which in combination with the characterization (25) ofG∗ and the definition (24), implies

that if (fN , hN) ∈ N (G) then∫

∂D

{[
− τ−1∂ν̂w0

]
fN + w0 hN

}
ds = 0, (27)

for every w0 which is the interior field of the solution to the transmission scattering

problem with Herglotz boundary data (vg|∂D, ∂ν̂vg|∂D) for some g ∈ Y . The question

arising is whether non-trivial pairs (fN , hN) satisfying (27) exist. This question is

answered affirmatively, since by considering any solution w ∈ H1(D) of the Helmholtz

equation (4) inD, the pair (fN , hN ) := (w|∂D, τ−1∂ν̂w|∂D) belongs toX and satisfies (27)

as one may confirm by applying Green’s second integral theorem to the functions w and

w0 in D. Consequently, the operator G annihilates every element of X which constitutes

pair of interior traces (trace and, up to a multiplicative factor, normal derivative) on the

boundary ∂D of solutions to the interior Helmholtz equation in D. This property will

be utilized in the proof of the following theorem, in which the ability of constructing

explicit elements of R(G) is impressed.
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Theorem 3.2. For any z ∈ R3, Φ∞
e (·, z) ∈ R(G) if, and only if, z ∈ D.

Proof. For z ∈ D, define v(x) := Φe(x, z), x ∈ R3\D, which is a radiating solution

of Helmholtz equation outside D with far-field pattern v∞(x̂) = Φ∞
e (x̂, z), x̂ ∈ Ω.

Denoting by γ the trace operator and employing the superscripts (+) and (−) to

denote the limit obtained by approaching ∂D from R
3\D and D, respectively, we

have that γ+v ∈ H1/2(∂D) and ∂+ν̂ v ∈ H−1/2(∂D) since v ∈ H1
loc(R

3\D) and, clearly,

∆v is square-integrable in a neighborhood of ∂D. We now consider an arbitrary

function w ∈ H1(D) solving Helmholtz equation (with wavenumber ki) in D. Clearly,

γ−w ∈ H1/2(∂D) and ∂−ν̂ w ∈ H−1/2(∂D) and we can then define f := γ−w − γ+v ∈
H1/2(∂D) and h := τ−1∂−ν̂ w − ∂+ν̂ v ∈ H−1/2(∂D). Thus, by construction, the pair

(w, v) ∈ H1(D) × H1
loc(R

3\D) satisfies the differential equations of TP as well as the

boundary conditions with data (f, h) ∈ X . Hence, by definition of G, there holds that

G(f, h) = v∞, whence Φ∞
e (·, z) ∈ R(G) follows. (One may note that the arbitrariness in

the choice of the interior field is nonessential since the pair of its traces will be annihilated

by G in any case, i.e., one can also write G(Φe(·, z)|∂D, ∂ν̂Φe(·, z)|∂D) = −Φ∞
e (·, z).)

Let now z /∈ D and assume on the contrary that there exist some (f, h) ∈ X

such that G(f, h) = Φ∞
e (·, z). Let then (w, v) denote the solution pair of TP with

boundary data (f, h). Then v∞ = G(f, h) follows by the definition of G. Since Φ∞
e (·, z)

is the far-field pattern of the radiating field Φe(·, z), Rellich’s lemma assures us that

v(x) = Φe(x, z) for every x lying in the exterior of any sphere containing both D and

z. If z /∈ D, we have a contradiction due to the fact that the radiating part v of the

solution pair (w, v) is an analytic function in R3\D while Φe(x, z) has a singularity at

x = z. If z ∈ ∂D, from the boundary conditions of TP we see that the restrictions

of Φe(·, z) on ∂D are Φe(·, z)|∂D ∈ H1/2(∂D) and ∂ν̂Φe(·, z)|∂D ∈ H−1/2(∂D). But

this certainly contradicts the fact that (the radiating solution of Helmholtz equation)

Φe(x, z) for x → z ∈ ∂D exhibits the singular behaviour

Φe(x, z) = O
(

1

|x− z|

)
, ∇Φe(x, z) = O

(
1

|x− z|2
)
, |x− z| → 0, (28)

which, in particular, implies that Φe(·, z) /∈ H1
loc(R

3\D).

We proceed further by remarking that in the present study the derivation of the

crucial equality R(G) = R
(
(F ∗F )1/4

)
will be based on the application of the following

abstract result from functional analysis, which is proved in the monograph [34] by Kirsch

and Grinberg (see also [17]), to the far-field operator F .

Theorem 3.3. Let U be a Hilbert space, Z a reflexive Banach space and let the compact

operator F : U → U have a factorization of the form

F = DT D∗, (29)

with bounded linear operators D : Z → U and T : Z∗ → Z. Assume that:

(a) Im 〈φ, T φ〉Z∗×Z 6= 0 for all φ ∈ R(D∗) with φ 6= 0;
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(b) T is of the form T = T0 + L for some compact operator L and some self-adjoint

operator T0, which is strictly coercive on R(D∗), i.e., there exists c > 0 such that
∣∣〈φ, T0φ〉Z∗×Z

∣∣ > c‖φ‖2Z∗ for all φ ∈ R(D∗); (30)

(c) F is injective and IU + iγF is unitary for some γ > 0.

Then the ranges of D and (F ∗F )1/4 coincide. If, in addition, the operator D is one-

to-one then (F ∗F )−1/4D and D−1(F ∗F )1/4 are continuous isomorphisms from Z onto U

and from U onto Z, respectively.

By identifying, here and in the following, U with Y = L2(Ω) and recalling our

discussion on the properties of F , assumption (c) is clearly satisfied. We would like to

note in advance that the forthcoming analysis, which aims at deriving a factorization of

F of the form (29) with the participating operators meeting assumptions (a) and (b),

mobilizes some of the arguments presented by the authors in reference [13], wherein the

inverse transmission scattering problem in elasticity is investigated within the framework

of the factorization method. Both for the sake of brevity and to avoid ‘repetitions’, we

have preferred to refer the reader to this study for the proof details of some results,

whenever these proofs are recoverable by a simple reduction from the elastic to the

acoustic case, with the hope that this strategy is not at the expense of the present

work’s clarity.

As one might expect, the starting point for establishing a factorization of F of the

form (29) is its representation as F = GH in terms of G and an auxiliary operator

H : Y → X mapping the density g ∈ Y of the Herglotz wave function vg to the pair

consisting of the trace and the normal derivative of vg on the boundary and thus defined

by

(Hg)(x) :=
(
vg(x), ∂ν̂(x)vg(x)

)
, x ∈ ∂D,

=

(∫

Ω

eikex·d̂g(d̂) ds(d̂),

∫

Ω

∂eikex·d̂

∂ν̂(x)
g(d̂) ds(d̂)

)
, x ∈ ∂D, (31)

and referred to as the Herglotz operator. As a next step, one tries to characterize the

Herglotz operator H via the operator G itself. To this end, we construct the adjoint

operator H∗ : X∗ → Y as follows: an element g∗ ∈ Y is equal to the image of an element

(h, f) ∈ X∗ under the action of the operator H∗ if, and only if,
(
(h, f), Hg

)
X∗×X

= (g∗, g)Y for all g ∈ Y. (32)

With the aid of the definitions (23), (24), and (31) and after interchanging the order of

integration in the left-hand side of (32), one easily finds that

(
H∗(h, f)

)
(x̂) =

∫

∂D

e−ikex̂·yh(y) ds(y) +

∫

∂D

∂e−ikex̂·y

∂ν̂(y)
f(y) ds(y), x̂ ∈ Ω. (33)

By virtue of the asymptotic behaviour of the fundamental solution Φe (see (11), (12)),

one then concludes thatH∗(h, f) is, up to a factor 4π, the far-field pattern v∞(x̂), x̂ ∈ Ω

of the combined field

v(x) := SLeh(x) + DLef(x), x ∈ R
3\D, (34)
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in terms of the acoustic single- and double-layer potentials defined by

SLaψ(x) =

∫

∂D

Φa(x,y)ψ(y) ds(y), x /∈ ∂D, (35)

and

DLaφ(x) =

∫

∂D

∂Φa(x,y)

∂ν̂(y)
φ(y) ds(y), x /∈ ∂D, (36)

respectively, with a = {e, i}, depending on the physical parameters involved and

densities ψ ∈ H−1/2(∂D) and φ ∈ H1/2(∂D). Thus, we have shown that
(
H∗(h, f)

)
(x̂) =

4πv∞(x̂), x̂ ∈ Ω. On the other hand, the radiating field v(x), x ∈ R3\D can be seen as

the radiating part (i.e., the scattered field) of the solution to TP corresponding to some

surface data. Its trace and normal derivative on the scatterer’s surface are determined

via jump relations of the involved layer potentials. In particular, we obtain that

γ+v(x) = γ+(SLeh)(x) + γ+(DLef)(x)

= (Seh)(x) +
1

2

[
f(x) + (Kef)(x)

]
, x ∈ ∂D,

(37)

∂+
ν̂(x)v(x) = ∂+

ν̂(x)(SLeh)(x) + ∂+
ν̂(x)(DLef)(x)

=
1

2

[
− h(x) + (K ′

eh)(x)
]
− (Ref)(x), x ∈ ∂D,

(38)

where the boundary integral operators Sa, Ka, K
′
a, Ra, a = {e, i}, are defined as follows+

[49]

(Saψ)(x) =

∫

∂D

Φa(x,y)ψ(y) ds(y), x ∈ ∂D, (39)

(Kaψ)(x) = 2

∫

∂D

∂Φa(x,y)

∂ν̂(y)
ψ(y) ds(y), x ∈ ∂D, (40)

(K ′
aψ)(x) = 2

∫

∂D

∂Φa(x,y)

∂ν̂(x)
ψ(y) ds(y), x ∈ ∂D, (41)

(Raφ)(x) = − ∂

∂ν̂(x)

∫

∂D

∂Φa(x,y)

∂ν̂(y)
φ(y) ds(y), x ∈ ∂D, (42)

for densities ψ ∈ H−1/2(∂D) and φ ∈ H1/2(∂D). For an intensive study of the mapping

properties of these operators in Sobolev spaces we refer again to [49]. In our context we

simply recall that the operators Sa, Ka, K
′
a are bounded from H−1/2(∂D) into H1/2(∂D)

and the operator Ra is bounded from H1/2(∂D) into H−1/2(∂D) (see, e.g., [26]). We

denote by SLaψ and DLaφ the layer potentials with kernels based on the complex-

conjugate of the fundamental solution, i.e., Φa is replaced by Φa in definitions (35) and

(36). This gives rise to the adjoints (with respect to the sesquilinear form 〈·, ·〉c defined
previously) of the above surface integral operators; namely∗

(S∗
aψ)(x) =

∫

∂D

Φa(x,y)ψ(y) ds(y), x ∈ ∂D, (43)

+ Note that the operator K ′
a is the transpose of Ka.

∗ It is noted that (K ′
a)

∗ = (K ′
a)

′
= Ka and K∗

a = Ka
′ = Ka

′
.
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(Kaψ)(x) = 2

∫

∂D

∂Φa(x,y)

∂ν̂(y)
ψ(y) ds(y), x ∈ ∂D, (44)

(K∗
aψ)(x) = 2

∫

∂D

∂Φa(x,y)

∂ν̂(x)
ψ(y) ds(y), x ∈ ∂D, (45)

(R∗
aφ)(x) = − ∂

∂ν̂(x)

∫

∂D

∂Φa(x,y)

∂ν̂(y)
φ(y) ds(y), x ∈ ∂D, (46)

which share similar functional theoretic properties.

We may now return to relations (37) and (38) representing the trace and the normal

derivative of the scattered field v(x), x ∈ R3\D and its connection to the operator H∗

through (34) and note that the boundary data of the corresponding TP whose unique

solution pair has a radiating part which coincides with v in R
3\D will, of course, be

the pair (−γ+v(x)+γ−vi(x),−∂+
ν̂(x)v(x)+ τ

−1∂−
ν̂(x)v

i(x)), x ∈ ∂D with vi denoting the

accompanying transmitted field. Consequently, (34) now reads

4πG(−γ+v + γ−vi,−∂+ν̂ v + τ−1∂−ν̂ v
i) = H∗(h, f). (47)

Given that (γ−vi, τ−1∂−ν̂ v
i) ∈ N (G), as it has already been shown, we clearly have that

H∗(h, f) = −4πG(γ+v, ∂+ν̂ v), (48)

and by taking into account (37) and (38) we deduce that H∗ = −4πGB, where B is the

matrix integral operator

B :=

[
Se

1
2
(I +Ke)

1
2
(−I +K ′

e) −Re

]
. (49)

As a result, H = −4πB∗G∗ which, when combined with the fundamental representation

F = GH , leads to the following decomposition of the far-field operator

F = −4πGB∗G∗. (50)

However, the operator G fails to be injective and the adjoint of B is far from meeting

the assumptions concerning the operator T appeared in (29).

Our plan of overcoming these difficulties includes, as a first step, a deeper

investigation of the operator G. We define the Steklov-Poincaré operator Λi, which maps

continuously H1/2(∂D) onto H−1/2(∂D) in case that k2i is neither a Dirichlet eigenvalue

nor a Neumann eigenvalue of −∆ in D. This is actually the Dirichlet-to-Neumann map

assigning to the Dirichlet data of an interior Helmholtz equation solution its normal

derivative on the boundary ∂D and possesses a continuous inverse operator. With the

aid of Λi, our hitherto knowledge on the nullspace of G can be incorporated in the

relation
{
(f, τ−1Λif) : f ∈ H1/2(∂D)

}
⊂ N (G). By arguing as in reference [13], one can

also establish the reverse inclusion and thus obtain the result of the next lemma.

Lemma 3.4. Assume that k2i is neither a Dirichlet nor a Neumann eigenvalue of −∆

in D. Then the nullspace N (G) of the operator G is given by the set

N (G) =
{
(f, τ−1Λif) : f ∈ H1/2(∂D)

}
. (51)
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One may now take advantage of this result to decompose the operator G

appropriately in order to retain only its injective part. More precisely, we write

G = G

[
I 0

0 I

]
=

1

2
G

[
I τΛ−1

i

τ−1Λi I

]
+

1

2
G

[
I −τΛ−1

i

−τ−1Λi I

]

=
1

2
G

(
I

τ−1Λi

)(
I τΛ−1

i

)
+

1

2
G

(
I

−τ−1Λi

)(
I −τΛ−1

i

)

:= G1

(
I −τΛ−1

i

)
, (52)

where G1 : H
1/2(∂D) → Y is the operator defined by

G1 :=
1

2
G

(
I

−τ−1Λi

)
, (53)

and we have used the annihilating property of G when acts on the range of the operator

(I, τ−1Λi) : H
1/2(∂D) → X . The operator G1 inherits the good properties of G, that is,

it has dense range in Y , since G does (by theorem 3.1) and R(G) = R(G1) (by (52) and

(53)), and simultaneously avoids the non-injectivity of G as one can easily confirm by an

elementary argument using the result of lemma 3.4. Substituting the expressions of the

operators B and G from equations (49) and (52), respectively, into the decomposition

(50), we obtain

F = −4πG1

(
I −τΛ−1

i

)[ S∗
e

1
2
(−I +Ke)

1
2
(I +K∗

e ) −R∗
e

](
I

−τΛ−1
i

)
G∗

1, (54)

or, equivalently,

F = −4πG1B
∗
1G

∗
1, (55)

where B∗
1 is the adjoint of the operator B1, with the latter defined by

B1 = Se −
τ

2
Λ−1

i K ′
e −

τ

2
KeΛ

−1
i − τ 2Λ−1

i ReΛ
−1
i . (56)

It is noted that the derivation process of (55) has made use of the fact that Λi is self-

adjoint, i.e., Λi = Λ∗
i in the sense that 〈Λif, g〉c = 〈f,Λig〉c for all f, g ∈ H1/2(∂D)

as one can immediately verify by an application of Green’s second integral theorem.

Alternatively, one can also establish the following factorization of F , which is the crucial

one for our purposes, namely

F = −4πG2A
∗G∗

2, (57)

where the operator G2 : H
−1/2(∂D) → Y is defined by

G2 := G1Λ
−1
i , (58)

and the operator A : H1/2(∂D) → H−1/2(∂D) is given by

A := ΛiSeΛi −
τ

2
K ′

eΛi −
τ

2
ΛiKe − τ 2Re. (59)

In light of the functional analytic theorem 3.3, we identify Z := H−1/2(∂D) (and hence

Z∗ = H1/2(∂D)), D := G2 and T := −4πA∗. Clearly, the operator G2 enjoys the
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‘desired’ properties of G1 since Λi is an isomorphism, i.e., N (G2) = {0} and R(G2) = Y

because R(G2) = R(G1). What remains is to verify that the bounded operator

T = −4πA∗ meets the requirements (a) and (b) of theorem 3.3. In particular, the

former assumption can be seen as an immediate consequence of the next lemma.

Lemma 3.5. Assume that ω is not an interior transmission eigenvalue. Then the

relation Im〈Aφ, φ〉c = 0 for some φ ∈ H1/2(∂D) implies that φ = 0.

Proof. The assertion of the lemma can be proved by arguing as in the proof of [13,

Lemma 3.7], where the analogous result is established for the corresponding operator

emerging during the study of the inverse elastic transmission scattering problem within

the framework of the factorization method.

Focusing now on requirement (b), we first note that A = A1 + L1, where the

operator L1 := −τ/2
(
K ′

eΛi + ΛiKe

)
is compact from H1/2(∂D) into H−1/2(∂D) since

Ke : H
1/2(∂D) → H1/2(∂D) and K ′

e : H
−1/2(∂D) → H−1/2(∂D) are compact, and

A1 := ΛiSeΛi − τ 2Re. We subsequently define the continuous operators

Ŝi :=
1

2

(
Si + S∗

i

)
: H−1/2(∂D) → H1/2(∂D), (60a)

and

R̂i :=
1

2

(
Ri +R∗

i

)
: H1/2(∂D) → H−1/2(∂D), (60b)

and rewrite A1 as follows

A1 = ΛiŜiΛi − τ 2R̂i︸ ︷︷ ︸
:=A2

+Λi(Se − Ŝi)Λi − τ 2(Re − R̂i)︸ ︷︷ ︸
:=L2

. (61)

The operator Se − Ŝi has a smooth and the operator Re − R̂i has a weakly singular

kernel, respectively, as one may deduce by performing a direct computation. Thus,

Se − Ŝi : H
−1/2(∂D) → H1/2(∂D) and Re − R̂i : H

1/2(∂D) → H−1/2(∂D) are compact

which implies the compactness of L2 from H1/2(∂D) into H−1/2(∂D). As far as the

operator A2 is concerned, one may use the properties

Ŝi =
1

2
Λ−1

i

[
I +

1

2

(
K ′

i +K∗
i

)]
and R̂i =

1

2

[
I − 1

2

(
K ′

i +K∗
i

)]
Λi,

to obtain that

A2 := ΛiŜiΛi − τ 2R̂i = Λi
1

2
Λ−1

i

[
I +

1

2

(
K ′

i +K∗
i

)]
Λi − τ 2R̂i

=
1

2

[
I +

1

2

(
K ′

i +K∗
i

)]
Λi − τ 2R̂i

=
1

2

[
I − 1

2

(
K ′

i +K∗
i

)]
Λi +

1

2

(
K ′

i +K∗
i

)
Λi − τ 2R̂i

= R̂i +
1

2

(
K ′

i +K∗
i

)
Λi − τ 2R̂i = (1− τ 2)R̂i +

1

2

(
K ′

i +K∗
i

)
Λi

︸ ︷︷ ︸
:=L3

, (62)
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with the operator L3 : H
1/2(∂D) → H−1/2(∂D) being compact due to the compactness

of K ′
i and K

∗
i from H−1/2(∂D) into itself. By collecting all the terms we deduce that

A = A0 + L0 with A0 := (1− τ 2)R̂i and L0 :=
3∑

j=1

Lj compact. (63)

In a final step, let R(ka=i) be the boundary operator (42) corresponding to the

wavenumber ka = i. We abbreviate R̃ := R(ka=i) and recall that: (i) this operator

is self-adjoint and strictly coercive as an operator from H1/2(∂D) onto H−1/2(∂D), i.e.,

there exists c0 > 0 such that 〈R̃φ, φ〉c > c0‖φ‖2H1/2(∂D)
for all φ ∈ H1/2(∂D), and (ii)

the difference Ri − R̃ : H1/2(∂D) → H−1/2(∂D) is compact (cf., e.g., [28]). Thus, by

virtue of the definition (60b), the operator A can be rewritten as A = (1− τ 2)R̃+Lc for

a compact operator Lc : H
1/2(∂D) → H−1/2(∂D). Consequently, we have shown that

T = T0 + L with T0 := −4π(1 − τ 2)R̃ and L := −4πL∗
c , whence the strict coercivity

(30) of T0 follows by that of R̃, which in turn yields the applicability of theorem 3.3.

Remark 3.6. Clearly, the operator T0 is a continuous bijection from H1/2(∂D) onto

H−1/2(∂D) since R̃ has this property. Thus, the operator T differs from an isomorphism

by the compact operator L, which implies that it is a Fredholm operator with zero index.

Now, the triviality of N (T ) can be seen as an immediate consequence of the definition

T = −4πA∗ and lemma 3.5 and hence T maps continuously and bijectively H1/2(∂D)

onto H−1/2(∂D).

For the reader’s convenience, we collect the obtained results in the following

corollary to theorem 3.3.

Corollary 3.7. Assume that ω is not an interior transmission eigenvalue and k2i is

neither a Dirichlet eigenvalue nor a Neumann eigenvalue of −∆ in D. Then the

ranges of G2 and (F ∗F )1/4 coincide. Furthermore, the operators (F ∗F )−1/4G2 and

G−1
2 (F ∗F )1/4 are continuous isomorphisms from H−1/2(∂D) onto L2(Ω) and from L2(Ω)

onto H−1/2(∂D), respectively.

The combination of this corollary with theorem 3.2 and the fact that R(G) =

R(Gk), k = 1, 2, yields the main result of the factorization method, that is, the binary

criterion which determines whether a given point is inside or outside the scattering

obstacle D.

Theorem 3.8. Assume that ω is not an interior transmission eigenvalue and k2i is

neither a Dirichlet eigenvalue nor a Neumann eigenvalue of −∆ inD. Then the scatterer

D can be explicitly characterized as follows:

z ∈ D ⇐⇒ Φ∞
e (·, z) ∈ R

(
(F ∗F )1/4

)
(64)

⇐⇒ [W (z)]−1 :=

∞∑

j=1

|β(z)
j |2
|λj|

<∞, (65)

where β
(z)
j :=

(
Φ∞

e (·, z), ψj

)
Y

are the expansion coefficients of Φ∞
e (x̂, z), x̂ ∈ Ω, with

respect to the complete orthonormal system of eigenfunctions {ψj : j ∈ N} of the
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compact, normal and injective operator F in Y and λj ∈ C are the corresponding

eigenvalues.

Proof. Clearly, what remains is to prove the characterization (65). Let us first recall that

the existence of a countable infinite number of eigenvalues of F is a direct consequence

of the spectral theorem for compact normal operators (cf. [51]) and the completeness of

the set of the corresponding eigenfunctions is attributed to the injectivity of F . Thus,

there exists a countable set of eigenvalues λj ∈ C of F with λj 6= 0 for all j ∈ N,

and the corresponding orthonormal eigenelements {ψj : j ∈ N} with Fψj = λjψj

form a complete orthonormal system in Y . Then, as a consequence of the obvious

relation F ∗Fψj = |λj |2ψj and the spectral decomposition of the compact, self-adjoint

and positive operator F ∗F : Y → Y , one has that (F ∗F )1/4ψj =
√

|λj|ψj . Now, the

characterization (64) suggests that a point z ∈ R3 belongs to D if, and only if, the

equation
(
(F ∗F )1/4gz

)
(x̂) = Φ∞

e (x̂, z), x̂ ∈ Ω, (66)

is solvable in the Hilbert space Y = L2(Ω). Then, by an application of Picard’s theorem

[27], we have that (66) is solvable if, and only if, the series
∑∞

j=1 |β
(z)
j |2/µ2

j is convergent,

where µj are the singular values of (F ∗F )1/4, i.e., µ2
j = |λj|, and in this case the

solution of (66) is given by gz =
∑∞

j=1(β
(z)
j /
√
|λj|)ψj . Thus, z ∈ D if, and only if,

‖gz‖2Y =
∑∞

j=1 |β
(z)
j |2/|λj| <∞, which proves (65).

4. Numerical Results

The explicit characterization of the unknown obstacle D in terms of the solvalibity of

the linear first kind equation (66) in the Hilbert space Y , can now be used as a tool for

exposing its support in an obvious way as the following simple procedure suggests:

(i) select a grid of ‘sampling points’ z in a region known a priori to contain D;

(ii) for each such point compute the value of the function W (z) defined in (65), that

is, the reciprocal of the squared norm of the solution gz of (66);

(iii) determine the scatterer D as the location of those points z where the values of the

functionW become arbitrarily large (since the series fails to converge when z /∈ D).

In what follows, we briefly describe how to generate synthetic far-field data for a

variety of surfaces in three dimensions and, additionally, its numerical approximation

using the boundary element collocation method. Next, we will derive a series expansion

for a sphere of radius R > 0 centered at the origin which we will use as a testing scenario

to verify the correctness of the numerical approximation and show that we are able to

obtain highly accurate far-field data due to superconvergence. Finally, we shortly explain

the implementation of the factorization method and report the successful reconstruction

of a variety of surfaces from the knowledge of the far-field data for different parameter

settings.



The factorization method for the acoustic transmission problem 17

4.1. Generation of synthetic far-field data

First, we derive the system of boundary integral equations to solve the problem (4)–(8).

We make the ansatz of a combination of an acoustic double and single layer potential

of the form

usct(x) = DLeφ(x) + SLeψ(x) , x ∈ R
3\D , (67)

uint(x) = τ DLiφ(x) + τ SLiψ(x) , x ∈ D , (68)

where φ and ψ are two unknown density functions defined on the surface ∂D. Letting

the point x approach the boundary in (67) and (68) and using the jump relations leads

to

usct =
1

2
Keφ+ Seψ +

1

2
φ on ∂D ,

uint =
τ

2
Kiφ+ τ Siψ − τ

2
φ on ∂D .

Using the boundary condition usct − uint = −uinc, with uinc defined by (1), yields

1

2
(1 + τ)φ+

1

2
(Ke − τ Ki)φ+ (Se − τ Si)ψ = −uinc . (69)

Taking the normal derivative in (67) and (68), letting the point x approach the boundary,

and using the jump relations leads to

∂usct

∂ν̂
= −Reφ+

1

2
K ′

eψ − 1

2
ψ on ∂D ,

∂uint

∂ν̂
= − τ Riφ+

τ

2
K ′

iψ +
τ

2
ψ on ∂D .

Using the boundary condition ∂ν̂u
sct − τ−1∂ν̂u

int = −∂ν̂uinc yields

−ψ − (Re −Ri)φ+
1

2
(K ′

e −K ′
i )ψ = −∂u

inc

∂ν̂
. (70)

Equations (69) and (70) can be written in the form of a 2 × 2 system of boundary

integral equations as follows
([

1
2
(1 + τ)I 0

0 −I

]
+

[
1
2
(Ke − τ Ki) Se − τ Si

− (Re − Ri)
1
2
(K ′

e − K ′
i )

])[
φ

ψ

]
=

[
−uinc
−∂uinc

∂ν̂

]
, (71)

which has to be solved for the unknown density functions φ and ψ. The far-field pattern

of (67) is given by

u∞(x̂) =
1

4π

∫

∂D

[
∂e−ikex̂·y

∂ν̂(y)
φ(y) + e−ikex̂·yψ(y)

]
ds(y), x̂ ∈ Ω . (72)

Note that we used the layer ansatz, because all entries in (71) are integral operators

with weakly singular kernel for which numerical approximations can be constructed.

Furthermore, the derivation is similar to the one presented in [42] by the third author.

We use the boundary element collocation method to solve (71) numerically (see [42,

Chapter 5] for a detailed description). After obtaining the unknown densities at the

collocation nodes, we can numerically evaluate (72) to obtain the far-field pattern. In

a similar fashion as in [42, Chapter 6], we will be able to show a rate of convergence
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of almost four using quadratic basis functions, thus leading to superconvergence. Note

that the numerical program developed by the third author (see [39]) is an extension of

BIEPACK (boundary integral equation package for the solution of integral equations of

the second kind arising from the Laplace equation) developed by Atkinson (see [5]) which

has been recently used in a variety of problems dealing with the Helmholtz equation

(see [35, 40, 41, 42, 43, 44] among others).

4.2. Series expansion for a sphere

In this section, we derive a series expansion for a sphere of radius R > 0 centered at the

origin. Note that jn denotes the spherical Bessel function of the first kind of order n,

h
(1)
n the spherical Hankel function of the first kind of order n, and Pn is the Legendre

polynomial of order n. With the notation x = rx̂, r > 0 and x̂ ∈ Ω we have

usct(rx̂) =

∞∑

n=0

n∑

m=−n

amn h
(1)
n (ker)Y

m
n (x̂) , r > R ,

in the exterior (see [16, Theorem 2.14]). In the interior we have

uint(rx̂) =
∞∑

n=0

n∑

m=−n

bmn jn(kir)Y
m
n (x̂) , r < R .

Using the Jacobi-Anger expansion of the incident field yields

uinc(rx̂; d̂) =
∞∑

n=0

n∑

m=−n

4πinjn(ker)Y
m
n (x̂)Y m

n (d̂) .

Using the boundary condition on the sphere r = R yields the following system of two

equations for the unknown coefficients amn and bmn :[
h
(1)
n (keR) −jn(kiR)

keh
(1)′

n (keR) −τ−1kij
′
n(kiR)

][
amn
bmn

]
=

[
−4πinjn(keR)Y m

n (d̂)

−4πinj′n(keR)Y
m
n (d̂)ke

]
.

Solving this system for amn gives

amn = −4πinY m
n (d̂)

kij
′
n(kiR)jn(keR)− τkej

′
n(keR)jn(kiR)

kij′n(kiR)h
(1)
n (keR)− τkeh

(1)′
n (keR)jn(kiR)

.

The far-field pattern of usct is given by (see [16, Theorem 2.15])

u∞(x̂) =
1

ke

∞∑

n=0

1

in+1

m∑

m=−n

amn Y
m
n (x̂)

=
i

ke

∞∑

n=0

(2n+ 1)
kij

′
n(kiR)jn(keR)− τkej

′
n(keR)jn(kiR)

kij′n(kiR)h
(1)
n (keR)− τkeh

(1)′
n (keR)jn(kiR)

Pn(x̂· d̂) , (73)

where the last step follows from the addition theorem for spherical harmonics (see [16,

Theorem 2.8]). In the following, we create 66 incident waves and measure the far-field

pattern in the same directions (see [35, Appendix A.1] for the generation of the 66

waves). This gives our set of data fij with i, j = 1, . . . , 66, which we collect in a matrix,

say F ∈ C66×66. Due to the series expansion (73), we are able to compare our numerical
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approximation of the far-field pattern. The error between the calculated solution fij and

the ‘true’ far-field pattern u∞(x̂i, d̂j) at the point x̂i ∈ Ω corresponding to direction of

incidence d̂j ∈ Ω is denoted by En(x̂i, d̂j). More precisely, we have that

En(x̂i, d̂j) =
∣∣∣u∞(x̂i, d̂j)− fij

∣∣∣ .

The estimated order of convergence is defined by

EOC = log

(
max
i,j

{
En(x̂i, d̂j)

}
/max

i,j

{
E4n(x̂i, d̂j)

})
/ log(2) .

In table 1 we report the maximal error and the estimated order of convergence (EOC)

for ke = 2, ki = 1, τ = 1/2, and R = 1, where n denotes the number of faces of the

triangulation and the number of collocation points is denoted by nv. Using quadratic

Quadratic interpolation

n (nv) maxi,j En(x̂i, d̂j) EOC n (nv) maxi,j En(x̂i, d̂j) EOC

4 (24) 2.3883D-01
2.99

8 (48) 3.4775D-02
4.82

16 (96) 3.0120D-02
5.59

32 (192) 1.2316D-03
6.58

64 (384) 6.2361D-04
5.51

128 (768) 1.2885D-05
3.63

256 (1536) 1.3656D-05 512 (3072) 1.0405D-06

Table 1. Far-field pattern errors for a sphere with R = 1 and the parameters ke = 2,

ki = 1, and τ = 1/2.

interpolation usually leads to a rate of convergence of order three; i.e., O(δ̂3n) (see [42,

Theorem 5.1]) where δ̂n is the mesh size of the parametrization domain. More precisely,

δ̂n is the maximum diameter of the n elements that triangulate the parametrization

domain (see [42, p. 335] for the definition). As shown in [42, Theorem 6.1], we are able

to prove theoretically a convergence rate of almost four; i.e., O(δ̂4n log
(
δ̂−1
n

)
). Although

the estimated rate of convergence is slightly varying, one can observe that we achieve

numerically a rate of convergence of almost four which in turn shows that our boundary

element collocation solver is able to correctly produce highly accurate far-field data. It

is noted that other parameter choices lead to similar results.

4.3. Reconstruction of a variety of surfaces

We proceed by demonstrating that one is able to successfully reconstruct a variety

of different surfaces with the factorization method from the knowledge of the far-field

pattern. The surfaces under consideration are shown in figure 1; specifically, their

triangulation is depicted.

The first surface is a unit sphere. The second surface is an ellipsoid with

semi-axes (1, 1, 6/5). The third surface is peanut-shaped and given in spherical

coordinates via x = ̺ sin(φ) cos(θ), y = ̺ sin(φ) sin(θ), and z = ̺ cos(φ) with

̺2 = 9
{
cos2(φ) + sin2(φ)/4

}
/4. The fourth surface is acorn-shaped and parametrically
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(a) Triangulation of a unit

sphere with 512 faces.
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(b) Triangulation of an

ellipsoidal surface with

512 faces.
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(c) Triangulation of

a peanut-shaped sur-

face with 512 faces.
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(d) Triangulation of an

acorn-shaped surface with

512 faces.
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(e) Triangulation of a cushion-

shaped surface with 512 faces.
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(f) Triangulation of a round short

cylinder-shaped surface with 512

faces.
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(g) Triangulation of a

round long cylinder-

shaped surface with

512 faces.
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(h) Triangulation of a

bumpy sphere with 512

faces.
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(i) Triangulation of a cube

with 768 faces.

Figure 1. Different surfaces under consideration.

given by ̺2 = 9 {17/4 + 2 cos(3φ)} /25. The fifth surface is a cushion-shaped surface

and represented by ̺ = 1 − cos(2φ)/2. The sixth and seventh surface are a round

short and long cylinder given by ̺10 = 1/((2 sin(φ)/3)10 + cos10(φ)) and ̺10 =

1/((2 cos(φ)/3)10+ sin10(φ)), respectively. The eighth surface is a bumpy sphere arising

in tumor growth modeling, which is given by ̺ = 1+sin(3φ) sin(3θ)/5. The last surface

is a cube centered at the origin with edge length two.

Note that we use 3072 collocation nodes for all surfaces with the exception of the

cube, where we use 4608 collocation nodes and the parameters NS = 128 and NNS = 4

to generate the synthetic far-field data.

The implementation of the factorization method for reconstructing the surfaces is
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rather straightforward and easy (see, also, [34] for a description). First, define a grid

G, say a cube C = [−t,+t]3 with some parameter t > 0, with N equidistant points in

each of the three directions. Second, compute a singular value decomposition of the

given matrix F = UΛV ∗ ∈ C66×66, which contains the far-field data. Note that we

are not necessarily restricted to the size of 66. Third, for each point z from the grid

(N × N × N values) we have to compute the expansion coefficients of the expression

rz = (exp(−ikez· d̂j))j=1,...,66 ∈ C66 with respect to the columns of V by

β
(z)
l =

66∑

j=1

Vj,l e
−ikez·d̂j , l = 1, . . . , 66 ,

which is a simple matrix-vector multiplication ρ(z) := V Trz of V T and rz. Finally, we

calculate

W (z) =

[
66∑

l=1

|β(z)
l |2
|λl|

]−1

for the indicator function in (65). Then, the isosurface of the map z 7→ W (z) will be

plotted for an appropriately selected cut-off value, say γ, using the unit sphere as the

‘calibration’ scatterer.

As a first parameters choice, we select ke = 2, ki = 1, and τ = 1/2. Recall that the

values of W (z) should be much larger for z ∈ D than those in the exterior. We plot

the slice W (xi, 0, 0) for i = 1, . . . , 55 for the unit sphere to get an idea of how to choose

the threshold parameter γ. As we can see in figure 2, the threshold parameter should

be chosen between 4 and 7; we choose γ = 6. The reconstructions of all nine surfaces

1.5 1 0.5 0 −0.5 −1 −1.5
10

−2

10
−1

10
0

10
1

10
2

P(x,0,0)

W
(P

)

Figure 2. The slice W (xi, 0, 0) for i = 1, . . . , 55 of W for the far-field data of a sphere

of radius one.

are shown in figure 3. Note that we have used t = 1.5 and N = 55 for all surfaces with

the exception of the cylinders, where we have used t = 2 and N = 73.
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(a) Reconstructed surface of a

unit sphere.

(b) Reconstructed ellipsoidal

surface.

(c) Reconstructed peanut-

shaped surface.

(d) Reconstructed acorn-shaped

surface.

(e) Reconstructed cushion-

shaped surface.

(f) Reconstructed round short

cylinder-shaped surface.

(g) Reconstructed round long

cylinder-shaped surface.

(h) Reconstructed surface of a

bumpy sphere.

(i) Reconstructed surface of a

cube.

Figure 3. Nine reconstructed surfaces with the factorization method using γ = 6.

Parameters are ke = 2, ki = 1, and τ = 1/2.

As we can observe, the reconstruction of all nine surfaces are quiet accurate.

Interestingly, the method also works for piecewise smooth surfaces although this is not

justified from the theoretical point of view. The reconstruction of the bumpy sphere

is very smooth, but the trend is clear. Hence, we have a clear indication that the

(F ∗F )1/4-factorization method is justified not only from the theoretical but from the

computational point of view.

Needless to say that the reconstruction’s quality depends on the amount of noise

in the far-field data. Due to the generation of synthetic data by the forward solver, we

actually, already, deal with noisy far-field data. To quantify this, one may employ the

‘normality’ criterion. More precisely, after measuring ‖F ∗F − FF ∗‖2 using the matrix

spectral norm, we acquire the following values for the previous nine surfaces: 0.5833,

1.3546, 2.9651, 5.8632, 7.0939, 21.6075, 11.0284, 0.8023, 4.2491, respectively.



The factorization method for the acoustic transmission problem 23

Next, we again consider the acorn-shaped surface and add Gaussian white noise

to the real and imaginary part of F of various levels. The obtained reconstructions for

various white noise scenarios are shown in figure 4, where we used t = 2 and N = 73.

As one might expect, an increase in the noise level on the far-field data results in a

(a) Reconstructed acorn-shaped

surface with no noise.

(b) Reconstructed acorn-shaped

surface 0.5% noise.

(c) Reconstructed acorn-shaped

surface 1% noise.

(d) Reconstructed acorn-shaped

surface 1.5% noise.

(e) Reconstructed acorn-shaped

surface 2% noise.

(f) Reconstructed acorn-shaped

surface 5% noise.

Figure 4. The reconstructed acorn-shaped surface with the factorization method

using γ = 6 for various noise levels. Parameters are ke = 2, ki = 1, and τ = 1/2.

deterioration of the reconstruction’s quality. It should be noted, however, that the

region containing the unknown scatterer is clearly identified by the method in all cases.

We now turn our attention to examining the influence of the choice of the

threshold parameter γ on the method’s performance. By virtue of figure 5, where

the reconstruction of the acorn-shaped surface for different values of γ is depicted, we

clearly deduce that the choice of the threshold parameter is crucial, since different choices

lead to good or less accurate reconstructions. In the same spirit, for a different set of

parameters, namely ke = 2, ki = 1, and τ = 2, we again look at the slice W (xi, 0, 0)

for the unit sphere. The suggested choice of γ should now be 4. Figure 6 illustrates

the reconstruction of a selected choice of obstacles for the parameters ke = 2, ki = 1,

and τ = 2. As one can observe, the first three surfaces are reconstructed satisfactorily

whereas the last three surfaces are not that well reconstructed.

Of course, one can, usually, achieve an increase of the reconstruction’s quality by

employing a greater number of incidence and observation directions. This is revealed

in figure 7, where we show the reconstruction of the previous six surfaces (see figure 6

for a comparison) for 258 incident waves and the threshold parameter chosen as γ = 4.

As one easily confirms, the reconstructions are of higher accuracy for increasing number
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(a) Reconstructed acorn-shaped

surface for γ = 3.

(b) Reconstructed acorn-shaped

surface for γ = 3.5.

(c) Reconstructed acorn-shaped

surface for γ = 4.

(d) Reconstructed acorn-shaped

surface for γ = 4.5.

(e) Reconstructed acorn-shaped

surface for γ = 5.

(f) Reconstructed acorn-shaped

surface for γ = 5.5.

Figure 5. Reconstructed surfaces with the factorization method using various γ for

the acorn-shaped surface. Parameters are ke = 2, ki = 1, and τ = 1/2.

(a) Reconstructed surface of a

unit sphere.

(b) Reconstructed ellipsoidal

surface.

(c) Reconstructed acorn-shaped

surface.

(d) Reconstructed round long

cylinder-shaped surface.

(e) Reconstructed surface of a

bumpy sphere.

(f) Reconstructed surface of a

cube.

Figure 6. Six reconstructed surfaces with the factorization method using γ = 4.

Parameters are ke = 2, ki = 1, and τ = 2.
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(a) Reconstructed surface of a

unit sphere.

(b) Reconstructed ellipsoidal

surface.

(c) Reconstructed acorn-shaped

surface.

(d) Reconstructed round long

cylinder-shaped surface.

(e) Reconstructed surface of a

bumpy sphere.

(f) Reconstructed surface of a

cube.

Figure 7. Six reconstructed surfaces with the factorization method using γ = 4 and

F ∈ C258×258. Parameters are ke = 2, ki = 1, and τ = 2.

of incidence and observation directions compared to the previous reconstructions. This

is evident for the acorn-shaped and the round long-cylinder shaped surfaces. However,

the reconstruction of the bumpy sphere, although certainly better, is not that good.

Finally, the surface of the cube appears, also, to be more accurately reconstructed.

Next, we further investigate the quality of the reconstructions for the peanut-

shaped, acorn-shaped, and cushion-shaped surfaces for varying number of incidence and

observation directions, aiming at identifying a ‘lower bound’ for this number. In figure 8,

we provide reconstructions for those three surfaces, where we have used the parameters

ke = 2, ki = 1, τ = 1/2, t = 1.5, and N = 55. We observe that we need more than 34

incident waves and observation directions to obtain a good reconstruction for all three

surfaces under consideration. A descent reconstruction is obtained for 34 incident waves

and observation directions. Using 18 incident waves and observation directions results

in poor reconstructions, even for the increased values t = 2 and N = 73. Of course, our

criterion for assessing the reconstructions’ quality is the human visual perception, since

there is a lack of a quantitative criterion to measure the quality of the reconstructions.

In a next step, we provide some numerical examples, which aim at demonstrating

the ability of the factorization method to deliver reconstructions with no a priori

information about the number of connected components of the unknown scatterer. First,

we consider an example with two scatterers. To create the far-field, we use the following

heuristic approach. We separately compute the far-field for a cube centered at (0, 0, 3)

with edge length two and for a unit sphere centered at (0, 0,−3) using 66 directions
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(a) Peanut-shaped surface with

F ∈ C18×18.

(b) Acorn-shaped surface with

F ∈ C18×18.

(c) Cushion-shaped surface with

F ∈ C18×18.

(d) Peanut-shaped surface with

F ∈ C34×34.

(e) Acorn-shaped surface with

F ∈ C34×34.

(f) Cushion-shaped surface with

F ∈ C34×34.

Figure 8. Three reconstructed surfaces with the factorization method using γ = 6

for varying number of incidence and observation directions. Parameters are ke = 2,

ki = 1, and τ = 1/2.

of incidence and of observation and the parameters ke = 2, ki = 1, and τ = 1/2. We

subsequently form the superposition of the two far-field patterns and use it as the forward

data for the factorization method algorithm. Although a heuristic and mathematically

unjustified approach which, of course, ignores both multiple scattering effects and all

interactions among the members of the cluster, we have decided to adopt it as an

‘ultimate proof’ that the method indeed works with no a priori information♯. Indeed,

this is the case in figure 9(a). Additionally, we provide a second example in figure 9(b)

with an acorn centered at the origin and a unit sphere centered at (0, 0,−5). In both

cases, we are able to reconstruct satisfactorily the two distinct obstacles. However, one

observes that the reconstructions of the sphere and the cube, depicted in figure 9(a),

seem to ‘attract’ each other, which is, also, true for the reconstructions in figure 9(b). To

interpret this behaviour, one should take into account that the ‘real’ distance between

the two objects (lower cube face and top of the sphere) is 4 units, which is very close to

the wavelength λe = π, in the host medium. Not much can be expected for distances

smaller than a wavelength. This is actually revealed in figure 10, where we have used

the first example (figure 9(a)) and inserted an acorn-shaped obstacle between the cube

and the sphere. Therein, the three obstacles, being too close to each other, tend to get

merged. (Note that for the reconstruction of multiple scatterers, we have used t = 2

♯ It is noted that such an approach has already been used by pioneers in the field (see, for example,

[38, p. 104] for generating far-field data for two open arcs).
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(g) Peanut-shaped surface with

F ∈ C66×66.

(h) Acorn-shaped surface with

F ∈ C66×66.

(i) Cushion-shaped surface with

F ∈ C66×66.

(j) Peanut-shaped surface with

F ∈ C130×130.

(k) Acorn-shaped surface with

F ∈ C130×130.

(l) Cushion-shaped surface with

F ∈ C130×130.

(m) Peanut-shaped surface with

F ∈ C
258×258.

(n) Acorn-shaped surface with

F ∈ C
258×258.

(o) Cushion-shaped surface with

F ∈ C
258×258.

Figure 8. Three reconstructed surfaces with the factorization method using γ = 6

for varying number of incidence and observation directions. Parameters are ke = 2,

ki = 1, and τ = 1/2.

with N = 73 in x- and y-direction and N = 163 in the z-direction.)

All the numerical reconstructions presented so far, have been obtained by solving

a discretized version of the far-field equation (66), which is, of course, inherently

ill-posed due to the compactness of the far-field operator. Alternatively, one may

obtain an approximate solution of the continuous problem by employing an appropriate

regularization scheme. In what follows, we investigate the use of a regularized version of

the far-field equation according to the Tikhonov-Morozov regularization scheme [50, 54].

Thus, at the discrete level, instead of considering

‖gz‖2 =
66∑

l=1

|β(z)
l |2
|λl|

:=
1

W (z)
,
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(a) Reconstructed cube of edge length

two and unit sphere with F ∈ C
66×66.

(b) Reconstructed acorn-shaped sur-

face and unit sphere with F ∈ C
66×66.

Figure 9. Two simultaneously reconstructed surfaces with the factorization method

using γ = 6. Parameters are ke = 2, ki = 1, and τ = 1/2.

(a) Reconstructed cube of edge length

two, acorn-shaped surface, and unit

sphere with F ∈ C66×66.

Figure 10. Three simultaneously reconstructed surfaces with the factorization method

using γ = 6. Parameters are ke = 2, ki = 1, and τ = 1/2.

we compute

‖gz,α‖2 =
66∑

l=1

|λl|
(α + |λl|)2

|β(z)
l |2 := 1

Wα(z)
,

where the regularization parameter α is determined for each point z on the selected grid

as the unique zero of the discrepancy function

f(α) =
66∑

l=1

α2 − δ2|λl|
(α + |λl|)2

|β(z)
l |2 ,

for some known estimate δ for the error in the far-field matrix. We use the following

procedure to corrupt the far-field matrix in such a way that ‖F − Fδ‖2 6 δ can be
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ensured: Let NR and NI be two random matrices with entries uniformly distributed in

the interval [−1, 1]. For a given ǫ, we define the perturbed matrix Fδ by

Fδ := F + ǫ (NR + iNI)F.

Hence, we can always choose ǫ so that ‖F − Fδ‖2 6 δ is guaranteed for some δ. With

this δ at hand, we can then compute the regularization parameter α for each point z in

the grid. It is to be noted, however, that this does not include the error in the far-field

data due to the forward solver, which could be much larger than the error due to the

artificially introduced random noise. In other words, the whole approach is very likely

to underestimate the ‘true’ error in the far-field data.

In figures 11 and 12, we show the reconstruction of the acorn-shaped surface for

δ = 1% and δ = 5%, respectively, using both the unregularized and the regularized

version of the far-field equation (i.e., plots of W (z) and Wα(z), respectively) for the

parameters ke = 2, ki = 1, and τ = 1/2. For completeness, we also include isosurface

plots for the map z 7→ α(z), after adjusting appropriately the threshold parameter γ.

(a) Isosurface of W (z) with

threshold γ = 6.

(b) Isosurface of Wα(z) with

threshold γ = 6.

(c) Isosurface of α(z) with

threshold γ = 0.01.

(d) Isosurface of α(z) with

threshold γ = 0.005.

(e) Isosurface of α(z) with

threshold γ = 0.001.

(f) Isosurface of α(z) with

threshold γ = 0.0005.

Figure 11. Reconstruction of the acorn-shaped surface using the unregularized and

regularized version of the far-field equation with 66 incident waves and observation

directions using δ = 1%. Parameters are ke = 2, ki = 1, and τ = 1/2.

Figures 11 and 12, clearly demonstrate that a stable reconstruction can be obtained

upon using the regularized far-field equation. Interestingly, we are also able to exploit

the mapping z 7→ α(z) to get a reconstruction of the unknown scatterer’s surface (see,

e.g., figure 11(e)), which sometimes appears even better than both the regularized and

unregularized reconstructions. However, note that the employment of a regularization
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(a) Isosurface of W (z) with

threshold γ = 6.

(b) Isosurface of Wα(z) with

threshold γ = 6.

(c) Isosurface of α(z) with

threshold γ = 0.1.

(d) Isosurface of α(z) with

threshold γ = 0.05.

(e) Isosurface of α(z) with

threshold γ = 0.01.

(f) Isosurface of α(z) with

threshold γ = 0.005.

Figure 12. Reconstruction of the acorn-shaped surface using the unregularized and

regularized version of the far-field equation with 66 incident waves and observation

directions using δ = 5%. Parameters are ke = 2, ki = 1, and τ = 1/2.

scheme for solving the far-field equation does not lead to superior reconstructions

compared with those obtained without regularization. This has also been observed

in [14]. In fact, the regularized reconstruction appears to be, overall speaking, a little

smoother than the unregularized one.

5. Summary

In this study, the problem of reconstructing three-dimensional acoustically penetrable

obstacles in an infinite acoustic medium from far-field measurements is investigated by

means of the factorization method. To this end, a three-dimensional inverse analysis

of acoustic plane waves scattered by an obstacle is formulated as a linear equation of

the first kind whose solvability offers a binary criterion which determines whether a

given point is inside or outside the scattering obstacle. For a rigorous approach to the

problem, the theoretical foundation of the factorization method has been systematically

extended to the penetrable scatterer case in far-field acoustics by deriving an appropriate

factorization of the far-field operator with the participating operators disposing specific

properties. The theoretical investigation of the method is complemented by numerical

examples which exploit generated synthetic far-field data for a variety of surfaces in

three dimensions. The elaborated numerical reconstructions reveal that the factorization

method is capable of effectively identifying both connected and disconnected scatterers
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in terms of their location and geometry for various selections of the physical parameters

involved.
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