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Abstract

The inverse scattering method via low-frequency moments was intro-
duced several years ago. The specific structure of moments permitted
the construction of a linear inversion algorithm that was based on the
assumption that the moments were known, at least theoretically. The
present work goes deeper and aims at providing a systematic method to
reconstruct these moments from measurements. This turns out to be a
demanding inverse problem by itself, serving to establish a realistic imple-
mentation for the underlying inversion method. It is proved herein how to
determine a specific large class of moments. In addition it is proved that
not all the moments are able to be determined purely from the set of data.
A demanding integral equation methodology is produced to estimate the
large class of the remaining moments that are not directly accessible from
measurements.

1 Introduction

A few years ago, the author has contributed to the development and investiga-
tion of a novel analytic approach - the linear low-frequency moments method
- for the solution of the inverse scattering problem. The proposed technique
had been implemented in a series of publications ranging from acoustics [1] to
elasticity [2] and from polynomial [3] to scatterers with continuous curvature
[4]. The basic idea concerned the reconstruction of a polynomial surface or the
polynomial approximation of a smooth scatterer via the exploitation of a finite
number of generalized moments generated by the leading low-frequency approx-
imation of the total acoustic field and provided by the low-frequency asymptotic
analysis of the far-field pattern.

The really striking result consisted of the fact that the exploitation of the
Rayleigh approximation alone was sufficient for recovering the shape of the
scatterer at least in theoretical terms. It had been proved in that series of papers
that taking advantage of all the zero-order low-frequency moments (up to a
number firmly dependent on the surface degree) leads to the formation of a linear
algebraic system, whose solution provides the coefficients of the representation
of the scattering surface in terms of spherical harmonics.
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All these years, the linear method of low-frequency moments has been re-
stricted to give exclusively theoretical results. Actually only in [3], the method
is subjected to a partial testing in the case of the ellipsoidal scatterer. Even
in that case, the data of the inverse scattering problem were not constructed
synthetically neither were the outcome of a measurement process. Instead, the
moments were analytically constructed via extended use of integral properties
of the ellipsoidal harmonic functions. In addition we pay attention on the work
[5], where we find the establishment of a parallel algorithm for solving the inver-
sion scheme along with all the theoretical argumentation concerning the error
analysis of the suggested methodology. In general terms, the main idea in all the
aforementioned works was to present the manner to reconstruct the scatterer’s
surface polar representation after the low-frequency moments are given. This
approach was of course accompanied with the theoretical establishment of the
in principle ability to determine the moments starting from being provided with
the low-frequency expansion of the far-field pattern.

The purpose of this work is to form the mechanism connecting the moments
with the real data of measurement processes. The first result of this work is the
production of a stabilized technique decomposing the low-frequency expansion
of the far field pattern into its coefficients. The second effort is the decon-
struction of these far field coefficients into the low-frequency moments, which
theoretically constitute surface integrals of integrands incorporating physical
and geometrical characteristics of the scattering problem and can be obtained
by simple measurements in special orientations and specific excitations. How-
ever, an important byproduct is that, apart from theoretical reasoning, not all
the moments generated by the Rayleigh approximation alone, can be produced
immediately and effectively from the knowledge of the far-field pattern. Some
of them are strictly connected with moments of higher order and their separa-
tion from this bonding, is most demanding and intricate. More precisely, the
moments are divided in two classes: The first one contains surface integrals
directly deduced from measurements. The most representative members of this
class are the moments disposing harmonic kernel and pertaining to the Rayleigh
approximation measure alone. However the last members do not exhaust the
set of directly accessible in measurements moments. The second class is wider
and contains all the moments, which participate in a combined and involved
form, whose decomposition is a feasible but demanding process. The investiga-
tion of this second class of moments is purely analytic, belongs to the regime of
integral equation calculus and introduces the new concept of double moments
permitting the estimation of the inaccessible simple moments.

A revised algorithm for the shape reconstruction from low-frequency mo-
ments will also be reported in the near future [6]. More precisely, in [6], we
will show that in most cases in the framework of the solution of the inverse
acoustic scattering problem, it is strongly preferable to abandon the concept
of constructing a necessarily linear algebraic system with well-known structural
matrix elements, since from the application point of view only a few of these
structural moments are deduced directly from data exploitation. There exist
very interesting cases of polynomial scatterers with a structural symmetry per-
mitting to avoid the implication of the so called inaccessible moments. So in
[6], we will verify that in many cases the first class of the measurable moments
is sufficient for the reconstruction of the shape of the scatterer. However it is
always possible to insist in the linearity of the inversion scheme - staying with
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[3] - but in that case it is proved that moments of both classes are necessary
and so the price to pay is the evocation of the heavy integral calculus involving
the double moments.

2 Acoustic scattering and the low-frequency mo-
ments

We consider the propagation of an acoustic harmonic plane wave inside an infi-
nite three dimensional acoustic medium hosting an impenetrable inhomogeneity,
occupying the bounded region D and being separated by the surrounding space
by a soft interface considered to form a star-shaped, smooth surface ∂D having
at least continuous curvature. The plane wave under discussion is character-
ized by the time-reduced potential field uinc(r; k) = exp(ik · r), which due to
the specific time dependence, represents, modulo some multiplicative factor, the
pressure field of the incident disturbance as well [7]. Notice that k = k k̂ where
k represents the wave number of the process and the unit vector k̂ indicates the
direction of the incidence of the plane wave.

Diffraction of the incident field from the obstacle leads to the creation of
the secondary scattering time harmonic wave, with corresponding time-reduced
potential field usc(r; k) obeying, in mathematical terms, to the following exterior
boundary value problem

(∆ + k2)usc(r; k) = 0, r ∈ R3\D̄ (1)
usc(r; k) + exp(ik · r) = 0, r ∈ ∂D (2)

∂

∂r
usc(r; k)− ikusc(r; k) = O(

1
r2

), r = |r| → ∞. (3)

The scattered field as well as the incident one satisfy the well known Helmholtz
equation (1) outside the scatterer. The boundary condition (2) reflects the free
pressure behavior of the interface, while radiation Sommerfeld’s condition (3)
ensures the outgoing orientation of the scattered field and also determines its
energy rate at large distances. Furthermore, the scattered field obtains the
asymptotic expansion

usc(r; k) =
exp(ikr)
ikr

f∞(r̂; k) +O(
1
r2

), r = |r| → ∞, (4)

where the normalized scattering amplitude f∞(r̂; k) describes the response of
the scatterer in the direction of observation r̂ when it is excited by a plane wave
propagating in the direction k̂ = k/k.

The total acoustic field utot = uinc +usc satisfies the integral representation
formula [3]

utot(r; k) = exp(ik · r)−
∫
∂D

G(r, r′)
∂utot

∂n′
(r′; k)ds(r′), r ∈ R3\D, (5)

where G(r, r′) = exp(ik|r− r′|)/4π|r− r′| stands for the free space Green’s
function of the Helmholtz equation and ∂

∂n is the normal derivative with respect
to the outward normal unit vector on ∂D.
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The representation (5) yields the following integral formula for the scattering
amplitude

f∞(r̂; k) =
k

4πi

∫
∂D

exp(−ikr̂ · r′)∂u
tot

∂n′
(r′; k)ds(r′), r̂ ∈ S2, (6)

where S2 denotes the unit sphere in R3.
The low-frequency treatment ([3], [8], [9], [10]) of the scattering problem un-

der discussion reduces the above exterior boundary value problem to an infinite
sequence of exterior boundary value problems for the Laplace’s operator, which
can be solved iteratively. Specifically, the total field assumes the expansion

utot(r; k) =
∞∑
n=0

(ik)n

n!
Φn(r; k̂). (7)

The n-th order low-frequency approximation Φn(r; k̂) vanishes on the scatterer’s
surface ∂D and satisfies the integral representation

Φn(r; k̂) = (k̂·r)n− 1
4π

n∑
ρ=0

(nρ )
∫
∂D

|r−r′|ρ−1 ∂Φn−ρ
∂n′

(r′; k̂)ds(r′), r ∈ R3\D. (8)

The scattering amplitude is then expressed via the low-frequency approxima-
tions as follows

f∞(r̂; k) = −
∞∑
n=0

(ik)n+1

n!
Hn(r̂; k̂)

=
∞∑
n=0

(ik)n+1

n!

n∑
ρ=0

(nρ )(−1)ρ+1Mρ
n−ρ(r̂; k̂), (9)

where we recognize the low-frequency moments met in [3] and given by

Mm
l (r̂; k̂) =

1
4π

∫
∂D

(r̂ · r′)m ∂Φl
∂n′

(r′; k̂)ds(r′) r̂, k̂ ∈ S2. (10)

We notice here that the dependence of the moments on the arguments is sim-
plified in the cases (i) Mm

0 (r̂; k̂) = Mm
0 (r̂) (the zeroth-order approximation

does not depend on the excitation direction) and (ii) M0
l (r̂; k̂) = M0

l (k̂) (the
observation point is irrelevant).

The direct scattering problem in low frequencies consists in the solution of
the mentioned above sequence of potential problems leading to the determina-
tion of the low-frequency components Φn(r; k̂), whose knowledge is necessary
for the acquisition of the far-field f∞(r̂; k) via the representation (9).

The inverse scattering problem is based on expansion (9) again, but in the
opposite direction. A set of measurements of the far-field pattern f∞(r̂; k) for
several possible observations (vectors r̂) and excitations (wave numbers k and
propagation directions k̂) is now given and this information must be decoded
appropriately so that the surface ∂D of the scatterer to be determined or at
least suitably approximated. This task is characterized by several theoretical
and practical issues as the existence and uniqueness of the solution, the stabil-
ity of the reconstruction schemes and the examination of the influence of the
qualitative and quantitative characteristics of the data (i.e. implication of noise
in data, limiting aperture case etc.) on the inverse problem solvability.
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3 The determination of the far field
low-frequency components

In this section we present a stable process to obtain the low-frequency com-
ponents Hn(r̂; k̂) from measurements of the far-field pattern. However this
deduction must take into consideration the involvement of the underlying mea-
surement noise and in general must confront the important issue of stabilization
with respect to measurement inaccuracies.

The investigation of the reliable mining of the quantities Hn(r̂; k̂) from mea-
surements is a multi-parametric problem and constitutes the aim of this section.
The first step is to characterize fully the class of the admissible far field patterns.
Even if measurements are noisy, it is necessary to know exactly the nature of
the ”clear” data. This issue has to do with the concept of the characterization
of the far field pattern. Special effort has been devoted to the establishment of
the necessary and sufficient conditions for a function defined on the unit sphere
to stand as a radiation pattern ([11],[12]). In acoustics then, it is well known
that it is sufficient and necessary for a radiation pattern to constitute the re-
striction on the unit sphere S2 of an entire analytic function whose L2-norm on
a surface of radius R is of exponential type O(e2kCR). The geometrical meaning
of C is just the radius of the sphere circumscribing the scatterer D. Denoting
this set of radiation patterns as P(S2), it is clear that P(S2)⊂ L2(S2), while
P(S2) |L2 = L2(S2) for almost all wavenumbers k. The last assertion stems
for the fact that P(S2) includes the range of the well known far-field operator
[13], which is dense in case that k2 is not a Dirichlet eigenvalue of the negative
Laplacian operator in D. To make clear the dependence on the wave number, we
symbolize the set of admissible radiation patterns as P(S2; k) and mention that
this set includes functions analytic on k̂ ∈ S2, as well as on the wave number k.
Moreover the members of P(S2; k) constitute power series of k in the Rayleigh
region [8]. The set of square integrable functions depending parametrically on
k is denoted as L(S2; k).

Let us denote the set including all possible polarizations and wave numbers
in low-frequency region as

Q = Q(S2) =
{
k ∈ R3, k ∈ [0, k0] ; k̂ ∈ S2

}
(11)

where k0 is selected as a close estimation of the upper bound of the Rayleigh
region. The set of square integrable functions on the unit sphere S2 - with
respect to the orientation vector r̂ - and on the phase space Q(S2) is the Hilbert
space H1 = L2(S2;Q). More precisely, H1 is considered as the direct sum of
Hilbert spaces ⊕

k∈Q(S2)
L2(S2; k), (12)

consisted of the set of all indexed families f = fk with∑
k∈Q(S2)

‖fk‖2L2 <∞,

and endowed with the usual inner product

< f, g >=
∑

k∈Q(S2)

< fk, gk > |L2 .
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H1 is actually the space of all functions with domain Q(S2) (where k belongs),
such that fk is an element of L2(S2) for every possible k. In addition we note
that f ∈ H1 iff f = f(r̂; k) with∫

S2
dr̂
∫
S2
dk̂
∫ k0

0

dkk2|f(r̂,k)|2 <∞.

The family of all possible radiation patterns P(S2;Q) is the set⊕
k∈Q(S2)

P(S2; k)nonumber (13)

and is dense in H1. A relevant definition holds for the notation L2(S2;S2),
where the phase space dependence concerns all possible orientations k̂ ∈ S2

of the incident field. We denote as H2 the Hilbert space considered as the
direct sum

⊕
n∈N∪{0}Xn (with Xn = L2(S2, S2) for every n), endowed with

the weighted inner product

< f, g >=
∞∑
n=0

k2n+2
0

(n!)2
< fn, gn > |L2(S2)×L2(S2).

Let us consider the operator L : P(S2;Q) ⊆ H1 → H2 defined as

L(f∞) = (H0,H1, ...,Hn, ...) (14)

In case that we have restricted data in the directions forming the set A (⊂ S2)
and restricted excitation directions (B ⊂ S2), then the operator L acts on

P(A;Q(B)) ⊆ H1(A,B) = L2(A;Q(B))

and takes values in
H2(A,B) =

∏
n∈N

Xn(A,B)

with Xn(A,B) = L2(A,B). Furthermore if measurements refer to a proper
(usually finite) subset of wavenumbers (k ∈ I ⊂ [0, k0]), then the operator LI
arises mapping P(A;QI(B)) in H2(A,B) where

QI(B) =
{
k ∈ R3, k ∈ I ⊂ [0, k0] ; k̂ ∈ B

}
.

An important case is when the sets A and B are finite containing specific orienta-
tions. Then we denote AN = {r̂i, i = 1, 2, ..., N} and BM = {k̂i, i = 1, 2, ...,M}
where we pay attention on the finite dimensionality M (N) of the parametric
space B (of the set of measurement orientations A).

In practice we are usually given a sequence of measurements fδ∞ ∈ H1(A,B),
approximating the far field pattern f∞ ∈ P(A;Q(B)), collected at observation
directions in A, produced by excitations in B and corresponding to concrete
wavenumbers in [0, k0]. The error in measurements is expressed through the
level δ, while we make the basic assumption that the signal to noise ratio is
strictly bounded above one. We assume then that for some fixed τ > 1,

‖fδ∞ − f∞‖ ≤ δ <
1
τ
‖fδ∞‖ (15)

6



The aim of this section is to suggest a technique mining appropriately good es-
timations of the low-frequency components Hn, n = 1, 2, 3, ... starting from the
knowledge of fδ∞. To that purpose, we follow the basic ideas of [14], where effi-
cient finite-dimensional stabilization techniques are developed to exploit suitably
the Tikhonov regularization methodology. Let us consider again the operator

L : P(A;Q(B)) ⊆ H1(A,B)→ H2(A,B).

We construct an expanded chain of finite dimensional spaces V1 ⊆ V2 ⊆ ... ⊆
D(L) such that H1(A,B) ⊆ ∪∞i=1Vi. In case that the spaces A,B are finite
dimensional then f ∈ Vn iff there exist constants cijn,l such that

f = f(r̂i; kk̂j) =
n∑
l=0

cijn,lk
l,

for i = 1, 2, ..., N , j = 1, 2, ...,M and k ∈ [0, k0]. In the general case when A,B
are portions of the unit sphere of infinite cardinality, then

Vn = {f ∈ H1(A,B) : f(r̂; k) =
n∑
l=0

f
m(n)
l (r̂; k̂)kl},

where m(n) is an integer depending on the index n (m(n) n→∞−→ ∞) and f
m(n)
l

belongs to the space Wm(n) ⊂ L2(S2)×L2(S2), consisted of all the products of
spherical harmonics Y m

′

n′ (r̂)Y m
′′

n′′ (k̂) of order n′, n′′ less than m(n).
We consider the functional Φα(· ; fδ∞), defined on D(L) as follows

Φα(z; fδ∞) = ‖z − fδ∞‖2 + α‖Lz‖2. (16)

We denote by fδn,α the finite dimensional approximation in Vn defined by

fδn,α = argminz∈Vn
Φα(z; fδ∞). (17)

We consider the projection operator Pn : H1(A,B) → Vn. It is easily verified
[14] that

fδn,α = (I + αL?nLn)−1
Pnf

δ
∞ (18)

where Ln = L|Vn
is the restriction of L to Vn. In order to handle the re-

lationship between the approximate and the exact solutions, we need (con-
sult again [14]) the validity of the convergence of the projection method (i.e.
LPnf∞→Lf∞, as n → ∞, for every f∞ ∈ D(L)) or the weaker condition that
limn→∞‖LPnf∞‖ ≤ ‖Lf∞‖. Both relations are easily proved due to the essence
of the specific projection, consisting on keeping the polynomial part (of order n)
of the analytic member (w.r.t k) of D(L). This step is necessary and sufficient
for the establishment of the following convergence theorem.

Theorem 1 Suppose that f∞ belongs to D(L) = P(A;Q(B)) ⊆ H1(A,B) =
L2(A;Q(B)). Assume the measurement fδ∞ is provided where the error level
δ(> 0) is such that the relation (15) is satisfied. Then
(i) There exists Nδ such that

‖LPnf∞‖2 ≤ δ + ‖Lf∞‖2

‖(I − Pn)fδ∞‖ ≤ δ
τδ < ‖Pnfδ∞‖ (19)
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for all n ≥ Nδ.
(ii) Let n(δ) > Nδ. The function d(α) = ‖fδn,α − Pnfδ∞‖ is continuous, strictly
increasing, tends to 0 as α→ 0+ and there exists a unique α = α(n(δ), δ) such
that

‖fδn,α − Pnfδ∞‖ = τδ (20)

(iii) For the above (ii) value of the stabilization parameter α, we have

fδn,α → f∞ and Lfδn,α → Lf∞ as δ → 0 (21)

Proof. The results of the theorem are reformulated issues of the paragraph
5.2.1 of [14], adapted to the current situation.

The part (iii) of the above theorem assures the convergence of the approxi-
mated estimations fδn,α of the far field -based on the noisy data fδ∞- to the exact
data f∞ and - under the application of L - to the exact far field low-frequency
components {Hn;n = 0, 1, 2, ...}.

The implementation of the method suggested by the preceding theorem is
well realized when we consider the case of finite observation and excitation sets
A and B. In that case the situation is getting simpler and some of the previous
steps degenerate to trivial processes. As a clarifying example, let us consider
the case of just one specific excitation k̂0 and only one observation direction r̂0,
in which we would like to estimate the low-frequency components. The elements
of Vn obtain the simple form z =

∑n
l=0 cn,lk

l. The functional Φα(z; fδ∞) defined
on Vn obtains the form

Φα(z; fδ∞) =
∫ k0

0

dkk2|
n∑
l=0

cn,lk
l − fδ(k)|2 + α

n∑
l=0

k2l+2
0

(n!)2
|cn,l|2 (22)

where fδ(k) = fδ∞(r̂0; kk̂0). Minimizing over the coefficients cn,l, we obtain the
linear system

(α
k2l+2

0

(n!)2
+
k2l+3

0

2l + 3
)cαn,l +

∑
l′ 6=l

kl+l
′+3

0

l + l′ + 3
cαn,l′ =

∫ k0

0

dkkl+2fδ(k)

l = 0, 1, 2, ..., n (23)

The parameter α has of course wave-number dimensions and is selected, accord-
ing to Eq.(20), such that

∫ k0

0
dkk2|

∑n
l=0 c

α
n,lk

l − fδ(k)|2 = τδ.
Usually, we do not dispose fδ(k) for all values of k ∈ [0, k0] but for some
discrete frequencies in this interval. This leads to a consequent discretization
of the integral appeared at the r.h.s. of Eq.(23) and a more general appro-
priate discrete modification of the whole system (23). The main result (iii)
of the theorem of this section assures the convergence Lfδn,α → Lf∞, i.e.(
cαn,0, ..., c

α
n,n, 0, 0, ...

)
→ (H0, ...,Hi,Hi+1, ...) as δ → 0, where in this simple

case, Hi stands for the single value Hi(r̂0, k̂0) for every i = 1, 2, 3, ... .

4 Investigation of the low-frequency moments

The old version of the moments method aimed at the determination of smooth
scatterers, would the moments Mm

0 (r̂; k̂) (pertaining exclusively to the capacity

8



(zeroth-order) potential) be given, without consideration to the process of ob-
taining these moments from the real measurements of the problem. Indeed, in
these early days, the fundamental theoretical interest of the authors stemmed
primitively from the well known theoretical work of Minkowski, assuring the
ability to reconstruct a surface after the curvature is determined everywhere on
the surface. Of course the determination of the curvature is a non linear difficult
problem but in the case under discussion the authors had conceived that the
Rayleigh low-frequency moments had some very fruitful properties: They con-
stituted the structural elements of the known far-field pattern and on the other
hand transfered the curvature of the scatterer in a concealed but very particular
integral form. So the curvature was brought into the light of exploration via
the carriers of the moments. In fact the curvature was involved in the surface
measure induced by the capacity potential. The amazing fact was that the
curvature remained concealed till the end but its particular involvement in the
polar generalized moments - produced in a methodological though complicated
manner from the original ones - was the basic ingredient for the determination
of the polar representation [3] of the scatterer’s surface. In other words the
moments method detours the determination of the curvature but exploits its
indirect presence in the integral representations, to determine the polar form
of the surface itself. This result was an affirmative response to the theoreti-
cal challenge originated from the concept of Minkowski and no effort was then
devoted to further investigation of the corresponding inverse problem.

The approach of the present work is characterized in principle by the motif
to define the path originated from the far-field information, passing from the
treatment of the moments and leading finally to the solution of the inverse
scattering problem. In this section, we simply mention that the starting point of
the process is the low-frequency expansion (9) of the far-field pattern. Following
the Tichonov regularized scheme presented in the previous section to ensure the
stabilization in the measurement process, we are in a position to obtain the
far-field low-frequency components

Hn(r̂; k̂) =
n∑
ρ=0

(nρ )(−1)ρMρ
n−ρ(r̂; k̂), n = 0, 1, 2, ... (24)

after exploiting the knowledge of the far-field pattern for several wave numbers k
in the low-frequency region. So we are able to determine the functions M0

0 (r̂; k̂),
M0

1 (r̂; k̂) −M1
0 (r̂; k̂), M0

2 (r̂; k̂) − 2M1
1 (r̂; k̂) + M2

0 (r̂; k̂) etc, for all observation
and excitation directions.

It is important to describe a systematic manner to define and then to mine
a useful subset along the moments Mn

l (r̂; k̂), l = 0, 1, 2, ...; n = 0, 1, 2, ... - or at
least some useful generalized moments stemmed from them - by exploiting the
determined functions Hl(r̂; k̂). The mechanism suggested in [3] was based on
expanding the functions Hl(r̂; k̂), l = 0, 1, 2, ... in terms of spherical harmonics
w.r.t the observation vector r̂ and then using the orthogonality properties of
these functions to separate the moments. This is a very useful, from a theoretical
point of view, method, which is going to be exploited again in the present
framework. However this approach will not be adopted in the final step of
the determination of the necessary moments, since it has the drawback that it
requires using the whole information for all possible observation directions. This
is generally undesirable and is not aligned with the reasonable rule that at least
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for polynomial scatterers (or scatterers approximated suitable by polynomial
surfaces), the lower the degree of the surface, the smaller is the number of
the needed observation directions. We are going then to develop a process to
obtain all the necessary, in this work, moments, using the optimal number of
observation directions.

The path between the two aforementioned approaches will immediately be
apparent through the next ideas. The forthcoming first result reveals the kind of
the generalized moments - deduced by the zeroth-order low-frequency moments
- that can be produced, at least theoretically, from the far-field components.

Proposition 2 For every n = 0, 1, 2, ..., the generalized zeroth-order moments
M(n,m)

0 given by the integrals

M(n,m)
0 =

1
4π

∫
∂D

Y mn (r̂) rn
∂Φ0

∂n
(r)ds(r), |m| ≤ n, (25)

where Y mn (r̂) stand for the well known spherical harmonics, are reconstructible
once the far-field low-frequency component Hn(r̂ ; k̂) is given.

Proof. We notice first that the scatterer’s surface is star-shaped and so r =
r(r̂)r̂ sweeps ∂D as r̂ runs over S2 with a well defined smooth function r(r̂).

The proof is simple and is based on analyzing the powers (r̂·r′)q, appearing in
the kernels of the moments participating in the form of the component Hn(r̂; k̂),
first in terms of Legendre functions through the well known formulae [15]

(r̂ · r̂′)2l =
1

2l + 1
P0(r̂ · r̂′) +

5 · 2l
(2l + 1)(2l + 3)

P2(r̂ · r̂′) + ...

+
(4l + 1)2l(2l − 2)...2

(2l + 1)(2l + 3)...(4l + 1)
P2l(r̂ · r̂′), l = 0, 1, 2, ... (26)

(r̂ · r̂′)2l+1 =
3

2l + 3
P1(r̂ · r̂′) +

7 · 2l
(2l + 3)(2l + 5)

P3(r̂ · r̂′) + ...

+
(4l + 3)2l(2l − 2)...2

(2l + 3)(2l + 5)...(4l + 3)
P2l+1(r̂ · r̂′), l = 0, 1, 2, ... (27)

and then in terms of spherical harmonics via the relations

Pn(r̂ · r̂′) =
n∑

m=−n

(n− |m|)!
(n+ |m|)!

Y mn (r̂)Y mn (r̂′).

Then Hn(r̂; k̂) obtains a polar form where the term corresponding to spheri-
cal harmonics of the highest degree n are provided exclusively by the moment
Mn

0 (r̂; k̂). More precisely, we have

Hn(r̂; k̂) = (−1)n
(2n+ 1) · 2[n2 ] · (2[n2 ]− 2) · · · 2

(2n+ 1− 2[n2 ]) · (2n+ 3− 2[n2 ]) · · · (2n+ 1)

×
n∑

m=−n

(n− |m|)!
(n+ |m|)!

Y mn (r̂)M(n,m)
0 + ( sph. harmonics of order < n), (28)

which immediately guarantees the ability to recover M(n,m)
0 from the far-field

low-frequency components.
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Referring to (28), we notice that the term corresponding to spherical harmonics
of order n′ < n − 1 involve the zeroth-order generalized moments M(n′,m,n)

0

= 1
4π

∫
∂D

Y mn′ (r̂) rn ∂Φ0
∂n (r)ds(r), |m| ≤ n′ together with generalized moments

stemmed from higher order low-frequency approximations Φn. As an example,
the momentM(n−2,m,n)

0 is combined withM(n−2,m)
2 to compose the coefficient

of Y mn−2(r̂) in (28).

Remark 3 It is interesting to mention that the privileged independent general-
ized moments M(n,m)

0 constitute integrals imitating ”inner products” of ∂Φ0
∂n (r)

with all the harmonic functions rn Y mn (r̂) of degree n (as m runs over all its
possible values), while the integrands in the remaining generalized moments
M(n′,m,n)

0 have lost this behavior. In additionM(n,m)
0 can be transformed easily

to ”inner products” with all the possible harmonics transfered in cartesian form,
giving place to the moments M̃(n,j)

0 , j = 1, 2, ..., 2n+ 1 . As an example the set
of M(2,m)

0 , |m| ≤ 2 is equivalent with the set of moments

M̃(2,j)
0 =

1
4π

∫
∂D

h2,j(r)
∂Φ0

∂n
(r)ds(r), j = 1, 2, ..., 5

where h2,j(r) ∈ {x2 − y2, xy, xz, yz, x2 − z2}. It will be clear in the inversion
algorithm [6] that ”tilda”-type moments emerge in a natural way and form the
structural elements of the inversion scheme.

As mentioned before, proving the ability to determine M(n,m)
0 is only the

beginning. It is necessary to obtain these moments in an efficient manner for
the solution of the inverse problem. The next two Lemmas answer partially
the question about the reasonable mining of the generalized moments from
measurements.

Lemma 4 The moments M0
0 , M1

0 (r̂) and M0
1 (k̂) are directly deducible from

measurements.

Proof. It is clear that

M0
0 = H0,

M1
0 (r̂) =

1
2

[H1(−r̂; k̂)−H1(r̂; k̂)]

M0
1 (k̂) =

1
2

[H1(r̂; k̂) +H1(−r̂; k̂)] (29)

Remark that M̃(1,1)
0 (= 1

4π

∫
∂D

x∂Φ0
∂n (r)ds(r))= M1

0 (x̂), M̃(1,2)
0 = M1

0 (ŷ) and
M̃(1,3)

0 = M1
0 (ẑ).

Lemma 5 For the determination of momentsM(2,m)
0 , |m| ≤ 2 - or equivalently

(according to Remark 3) for the construction of M̃(2,j)
0 , j = 1, 2, ..., 5 - only 12

observation directions are needed.

Proof. It is clear from the definition of the far-field low-frequency components
(24) that

Hsym2 (r̂; k̂) def
=

1
2

[H2(r̂; k̂) +H2(−r̂; k̂)] = M2
0 (r̂) +M0

2 (k̂) (30)

11



Consequently

1
4π

∫
∂D

(x2 − y2)
∂Φ0

∂n
(r)ds(r) = Hsym2 (x̂; k̂)−Hsym2 (ŷ; k̂)

1
4π

∫
∂D

(x2 − z2)
∂Φ0

∂n
(r)ds(r) = Hsym2 (x̂; k̂)−Hsym2 (ẑ; k̂)

1
4π

∫
∂D

xy
∂Φ0

∂n
(r)ds(r) = Hsym2 (

1√
2

(x̂ + ŷ); k̂)− 1
2
Hsym2 (x̂; k̂)

− 1
2
Hsym2 (ŷ; k̂)

1
4π

∫
∂D

xz
∂Φ0

∂n
(r)ds(r) = Hsym2 (

1√
2

(x̂ + ẑ); k̂)− 1
2
Hsym2 (x̂; k̂)

− 1
2
Hsym2 (ẑ; k̂)

1
4π

∫
∂D

yz
∂Φ0

∂n
(r)ds(r) = Hsym2 (

1√
2

(ŷ + ẑ); k̂)− 1
2
Hsym2 (ŷ; k̂)

− 1
2
Hsym2 (ẑ; k̂)

(31)

The same technique can be applied to reconstruct generalized moments of
higher degree. The next result is indicative for the development of our approach.

Proposition 6 The moments M̃(3,j)
0 , j = 1, 2, ..., 7 are deducible from mea-

surements.

Proof. The starting point is the representation (24) for n = 3:

H3(r̂; k̂) = M0
3 (k̂)− 3M1

2 (r̂; k̂) + 3M2
1 (r̂; k̂)−M3

0 (r̂) (32)

We infer easily that

3M1
2 (r̂; k̂) +M3

0 (r̂) =
1
2

[H3(−r̂; k̂)−H3(r̂; k̂)]def
= −Hant3 (r̂; k̂) (33)

Expanding suitably the integrands in spherical harmonics, we find that

3
4π

∫
∂D

(r̂ · r′)∂Φ2

∂n′
(r′; k̂)ds(r′) +

3
20π

∫
∂D

(r̂ · r′)r′2 ∂Φ0

∂n′
(r′)ds(r′)

+
2
5

3∑
m=−3

(3− |m|)!
(3 + |m|)!

Y m3 (r̂)M(3,m)
0 = −Hant3 (r̂; k̂) (34)

We apply (34) for three orientations forming an orthonormal basis r̂i, i = 1, 2, 3
∈ R3. Multiplying each relation with the corresponding unit vector r̂i, adding
over i = 1, 2, 3 and using the well known representation of the unit dyadic
I =

∑3
i=1 r̂ir̂i, we obtain

B1(k̂) +
2
5

3∑
m=−3

(3− |m|)!
(3 + |m|)!

3∑
i=1

[r̂iY m3 (r̂i)]M(3,m)
0 = −

3∑
i=1

[r̂iHant3 (r̂i; k̂)] (35)

12



where

B1(k̂) =
3

4π

∫
∂D

r′
∂Φ2

∂n′
(r′; k̂)ds(r′) +

3
20π

∫
∂D

r′r′2
∂Φ0

∂n′
(r′)ds(r′) (36)

depends only in the excitation orientation k̂.
We make two different selections for the orthonormal basis: (a) (x̂, ŷ, ẑ) and (b)
( 1√

2
(x̂ + ŷ), 1√

2
(x̂− ŷ), ẑ).

In the first case, Eq.(35) provides, after extended manipulations, the following
relation

5
2
B1(k̂) + ẑM(3,0)

0 − 3
2!
4!

[<(M(3,1)
0 )x̂ + =(M(3,1)

0 )ŷ]

+30
1
6!

[<(M(3,3)
0 )x̂−=(M(3,3)

0 )ŷ] = −5
2

3∑
i=1

r̂(a)
i H

ant
3 (r̂(a)

i ; k̂) (37)

where the superscript (a) indicates the first choice of vectors and the real and
imaginary parts of the moments have been emerged.
Repeating the same analysis for selection (b), we find that

5
2
B1(k̂) + ẑM(3,0)

0 − 3
2!
4!

[<(M(3,1)
0 )x̂ + =(M(3,1)

0 )ŷ]

−30
1
6!

[<(M(3,3)
0 )x̂−=(M(3,3)

0 )ŷ] = −5
2

3∑
i=1

r̂(b)
i H

ant
3 (r̂(b)

i ; k̂) (38)

Substracting Eqs.(37,38), we find

<(M(3,3)
0 )x̂−=(M(3,3)

0 )ŷ = 30
{

1√
2

(x̂ + ŷ)Hant3 (
1√
2

(x̂ + ŷ); k̂)

+
1√
2

(x̂− ŷ)Hant3 (
1√
2

(x̂− ŷ); k̂)− x̂Hant3 (x̂; k̂)− ŷHant3 (ŷ; k̂)
}
. (39)

Expressing the harmonic kernels ofM(3,3)
0 in terms of cartesian coordinates

and projecting relation (39) on the axes x̂ and ŷ, we find respectively that

1
4π

∫
∂D

(x3 − 3xy2)
∂Φ0

∂n
(r)ds(r) =

√
2Hant3 (

1√
2

(x̂ + ŷ); k̂)

+
√

2Hant3 (
1√
2

(x̂− ŷ); k̂)− 2Hant3 (x̂; k̂) (40)

1
4π

∫
∂D

(y3 − 3yx2)
∂Φ0

∂n
(r)ds(r) =

√
2Hant3 (

1√
2

(x̂ + ŷ); k̂)

−
√

2Hant3 (
1√
2

(x̂− ŷ); k̂)− 2Hant3 (ŷ; k̂). (41)
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In a very symmetric manner we find that

1
4π

∫
∂D

(y3 − 3yz2)
∂Φ0

∂n
(r)ds(r) =

√
2Hant3 (

1√
2

(ŷ + ẑ); k̂)

+
√

2Hant3 (
1√
2

(ŷ− ẑ); k̂)− 2Hant3 (ŷ; k̂) (42)

1
4π

∫
∂D

(z3 − 3zy2)
∂Φ0

∂n
(r)ds(r) =

√
2Hant3 (

1√
2

(ŷ + ẑ); k̂)

−
√

2Hant3 (
1√
2

(ŷ− ẑ); k̂)− 2Hant3 (ẑ; k̂) (43)

and

1
4π

∫
∂D

(z3 − 3zx2)
∂Φ0

∂n
(r)ds(r) =

√
2Hant3 (

1√
2

(ẑ + x̂); k̂)

+
√

2Hant3 (
1√
2

(ẑ− x̂); k̂)− 2Hant3 (ẑ; k̂) (44)

1
4π

∫
∂D

(x3 − 3xz2)
∂Φ0

∂n
(r)ds(r) =

√
2Hant3 (

1√
2

(ẑ + x̂); k̂)

−
√

2Hant3 (
1√
2

(ẑ− x̂); k̂)− 2Hant3 (x̂; k̂). (45)

Although we followed a constructive systematic manner to produce the moments
of third degree, it is very easy to verify the relations above, starting from the
right hand side, exploiting the form of Hant3 and making simple algebra. In the
same spirit, we can show that

1
4π

∫
∂D

xyz
∂Φ0

∂n
(r)ds(r) =

√
3

4

{
Hant3 (

1√
3

(x̂ + ŷ− ẑ); k̂)

−Hant3 (
1√
3

(x̂ + ŷ + ẑ); k̂) +Hant3 (
1√
3

(x̂− ŷ + ẑ); k̂)

−Hant3 (
1√
3

(x̂− ŷ− ẑ); k̂)
}
. (46)

It is interesting to notice that we have determined seven independent generalized
moments of the type M̃(3,j)

0 , (j = 0, 1, ...7) and every other moment of the same
type corresponding to another cartesian harmonic of third degree, is linearly
dependent on them and so easily reducible from them as a linear combination.

It is apparent that when the degree of the harmonic functions entering the
integrand in the definition of the moments increases, the number of the neces-
sary observation points augments. An interesting question arises: Is it necessary
to restrict ourselves to generalized moments referring only to the fundamental
component Φ0 of the low-frequency approximation (7) of the total field? If the
answer is negative, a second question emerges: Is there any profit produced by
exploiting higher order components of the expansion (7)? The answers to these
simple questions is of fundamental importance for the solution of the inverse
scattering problem. As a matter of fact, this work and the forthcoming inver-
sion algorithm [6] aim at giving the strong evidence that it is indeed possible
to exploit the data pertaining to higher order components in the low-frequency
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approximation and so establishes a qualitative broadening as well as a strongly
diversification with the primitive method proposed in [3]. It seems that the
exploitation of the moments concerning the components Φi(r; k̂), (with i > 0)
contributes, at least, to diminish the set of the needed observation points ac-
cordingly. In addition, it is already known that in contrast to the zeroth-order
approximation Φ0(r), the higher order terms involve the excitation orientation
k̂, giving so a rich parametric improvement to the characteristics of the mea-
surement data. We are now in position to stimulate the scatterer from several
directions and this geometrical feature is of course inscribed in the far-field pat-
tern, rendering the data more ”informative” for the sought reconstruction. The
moments and the underlying fields of higher order merit special treatment.

5 Fields and moments of higher order

In the framework of exploring the regime of Φi(r ; k̂), i ≥ 1, we start with next
Proposition characterizing the first-order component:

Proposition 7 It holds that Φ1(r ; k̂) = −M0
0 Φ0(r) + k̂ · A(r) where A(r)

satisfies the integral representation

A(r) = r− 1
4π

∫
∂D

1
|r− r′|

∂A

∂n′
(r′)ds(r′), r ∈ R3\D (47)

Furthermore ∫
∂D

∂A

∂n
(r)ds(r) =

∫
∂D

r
∂Φ0

∂n
(r)ds(r) (48)

Proof. The first order component Φ1(r ; k̂) can be expressed in terms of spher-
ical harmonics with respect to the excitation orientation argument k̂:

Φ1(r ; k̂) = Φ(0)
1 (r) + k̂ ·A(r) +

∞∑
n=2

n∑
m=−n

(n− |m|)!
(n+ |m|)!

Y mn (k̂)A(n,m)
1 (r) (49)

The integral representation (8) obtains the following form for n = 1.

Φ1(r; k̂) = (k̂ · r)− 1
4π

∫
∂D

1
|r− r′|

∂Φ1

∂n′
(r′; k̂)ds(r′)

− 1
4π

∫
∂D

∂Φ0

∂n′
(r′)ds(r′), r ∈ R3\D. (50)

Inserting expansion (49) into the representation (50) and using orthogonality of
the spherical harmonics we obtain the following series of integral equations

Φ(0)
1 (r) = −M0

0 −
1

4π

∫
∂D

1
|r− r′|

∂Φ(0)
1

∂n′
(r′)ds(r′) (51)

A(r) = r− 1
4π

∫
∂D

1
|r− r′|

∂A
∂n′

(r′)ds(r′) (52)

A
(n,m)
1 (r) = − 1

4π

∫
∂D

1
|r− r′|

∂A
(n,m)
1

∂n′
(r′)ds(r′), n > 1, |m| ≤ n (53)(

all for r ∈ R3\D.
)
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In particular
Φ(0)

1 (r) = A(r) = A
(n,m)
1 (r) = 0, r ∈ ∂D (54)

We recall that the Rayleigh approximation Φ0 obeys to

Φ0(r) = 1− 1
4π

∫
∂D

1
|r− r′|

∂Φ0

∂n′
(r′)ds(r′), r ∈ R3\D (55)

and particularly Φ0(r) = 0 for r ∈ ∂D. Comparing Eqs.(52,55) and evoking the
uniqueness of the exterior Dirichlet Laplace boundary value problem, we infer
that

Φ(0)
1 (r) = −M0

0 Φ0(r), r ∈ R3\D. (56)

The last equation can be derived through an alternative approach, based on
the integral equation framework, which is necessary several times in the sequel.
More precisely we consider (55) and take the normal derivative on both sides by
approaching from outside a point r ∈ ∂D. The well known relations concerning
jump properties of layer potentials [16] are evoked to provide

1
2
∂Φ0

∂n
(r) = − 1

4π

∫
∂D

∂

∂n

(
1

|r− r′|

)
∂Φ0

∂n′
(r′)ds(r′), r ∈ ∂D (57)

In terms of the well known integral operator K′ [16] defined by (K′g)(r) =
2 1

4π

∫
∂D

∂
∂n

(
1

|r−r′|

)
g(r′)ds(r′), Eq.(57) is equivalent to state that the normal

derivative ∂Φ0
∂n belongs to the nullspace of the operator I + K′, i.e.

(I + K′)(
∂Φ0

∂n
) = 0, r ∈ ∂D (58)

Due to the second Fredholm alternative, the kernel of I+K′ has equal dimension
with the kernel of I + K, where K stands for the double layer potential defined
by (Kg)(r) = 2 1

4π

∫
∂D

∂
∂n′

(
1

|r−r′|

)
g(r′)ds(r′). But the kernel of I + K consists

of the traces on the boundary ∂D of the harmonic functions defined on D and
satisfying the interior homogeneous Neumann problem (see again [16]). Conse-
quently only the constant functions belong to the kernel of I + K, fact assuring
that dim(I + K′) = 1. Returning to equation (58) (or equivalently to (57)), we
infer that there is only one solution ∂Φ0

∂n modulo multiplicative constants, i.e.
there exists a unique well defined function w(r) such that ∂Φ0

∂n (r) = cw(r). The
constant ambiguity disappears when inserting of ∂Φ0

∂n in the representation (55)
(for r ∈ ∂D) leads to

c−1 =
1

4π

∫
∂D

1
|r− r′|

w(r′)ds(r′), for every r ∈ ∂D. (59)

Applying the analysis above to the component Φ(0)
1 appeared in (52), we find

that Φ(0)
1 (r) = c′w(r), where now c′ = −M0

0 c , and inserting this normal deriva-
tive to the integral representation (52), we recover once more the basic relation
(56). A third application of the integral equation technique to Eq.(54) leads to
the result:

A
(n,m)
1 (r) = 0, n > 1, |m| ≤ n r ∈ R3\D. (60)
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The last equation reflects of course the physical argument according to which
no higher order spherical k̂−harmonics can emerge, when the stimulus of Φ1

disposes terms till the first order spherical harmonics.
Recapitulating, the following representation is valid for the component Φ1(r; k̂)

Φ1(r ; k̂) = −M0
0 Φ0(r) + k̂ ·A(r) (61)

where A(r) obeys to Eq. (47).
Finally, to obtain Eq.(48), we multiply relation (47) (considered for r ∈ ∂D),
with ∂Φ0

∂n and then integrate all over ∂D, exploiting simultaneously Eq.(55)
(again considered on the surface ∂D).

Remark 8 It is obviously deduced from Eqs.(61,48) that

M0
1 (k̂) = −(M0

0 )2 +M1
0 (k̂) (62)

In other words, the knowledge of the zeroth-order moment M1
0 (r̂) in the forward

scattering direction r̂ = k̂ is enough for the determination of the moment M0
1 (k̂)

for every possible excitation. This result is important since it reveals for the first
but not last time that the moments are not independent.

Remark 9 It is interesting to notice that 4M1
1 (r̂ ; k̂) = H2(−r̂ ; k̂)−H2(r̂ ; k̂)

and so M1
1 (r̂ ; k̂) can be reconstructed from measurements. But, due to Eq.(61),

M1
1 (r̂ ; k̂) = −M0

0M
1
0 (r̂) + r̂ · C̃1 · k̂, where the tensor C̃1 = 1

4π

∫
∂D

r∂A∂n (r)ds(r)
is symmetric due to reciprocity.

We keep on by decomposing the second order component of the total field in
terms of harmonics with respect to the excitation orientation k̂:

Proposition 10 The second order component Φ2(r ; k̂) of the low-frequency
approximation of the total field is expanded as follows

Φ2(r ; k̂) = Φ(0)
2 (r) + k̂ ·A2(r) +

2
3

2∑
m=−2

(2− |m|)!
(2 + |m|)!

Y m2 (k̂)A(2,m)
2 (r) (63)

where all the involved components vanish on ∂D. Furthermore

1
4π

∫
∂D

∂A
(2,m)
2

∂n
(r)ds(r) =M(2,m)

0 , |m| ≤ 2, (64)

A2(r) = −
{

1
2π

∫
∂D

r′
∂Φ0

∂n′
(r′)ds(r′)

}
Φ0(r) (65)

while Φ(0)
2 (r) satisfies the integral equation

Φ(0)
2 (r) =

r2

3
− 1

4π

∫
∂D

1
|r− r′|

∂Φ(0)
2

∂n′
(r′)ds(r′)− 1

2π

∫
∂D

∂Φ(0)
1

∂n′
(r′)ds(r′)

− 1
4π

∫
∂D

|r− r′|∂Φ0

∂n′
(r′)ds(r′) (66)
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Proof. Vanishing of all components on ∂D is obvious. Starting from the
representation (8) (with n = 2), expanding the excitation term (k̂ ·r)2 (use (26)
for n = 2) together with the fields Φ2(r ; k̂),Φ1(r ; k̂) in terms of k̂−harmonics
and finally exploiting again the orthogonality of harmonics, we obtain (66) along
with

A2(r) = − 1
4π

∫
∂D

1
|r− r′|

∂A2

∂n′
(r′)ds(r′)− 1

2π

∫
∂D

∂A
∂n′

(r′)ds(r′)(67)

A
(2,m)
2 (r) = r2Y m2 (r̂)− 1

4π

∫
∂D

1
|r− r′|

∂A
(2,m)
2

∂n′
(r′)ds(r′) |m| ≤ 2. (68)

(all for r ∈ R3\D)

Restricting Eq.(68) on ∂D, multiplying with ∂Φ0
∂n and integrating over ∂D, we

obtain Eq.(64) (by using again representation (55) on scatterer’s surface). In
addition, Eq.(67) is the vector analogous of Eq.(52) and so adopting the argu-
mentation of Proposition 7 and using Eq.(48) we form Eq.(65).

Remark 11 It is easy to show, using Eqs.(64,65) of the last Lemma, that

M0
2 (k̂) =

1
4π

∫
∂D

∂Φ(0)
2

∂n′
(r′)ds(r′)− 2M0

0 M1
0 (k̂)

+
2
3

2∑
m=−2

(2− |m|)!
(2 + |m|)!

Y m2 (k̂)M(2,m)
0 (69)

In addition

M2
0 (r̂) =

1
3

1
4π

∫
∂D

r2 ∂Φ0

∂n′
(r′)ds(r′) +

2
3

2∑
m=−2

(2− |m|)!
(2 + |m|)!

Y m2 (r̂)M(2,m)
0 (70)

So, the measured low-frequency component Hsym2 is written as

Hsym2 (r̂ ; k̂) = M2
0 (r̂) +M0

2 (k̂) = B + 2H0Hant1 (r̂ ; k̂)

+
2
3

2∑
m=−2

(2− |m|)!
(2 + |m|)!

(Y m2 (r̂) + Y m2 (k̂))M(2,m)
0 (71)

where 4πB is equal to
∫
∂D

∂Φ
(0)
2

∂n′ (r′)ds(r′) + 1
3

∫
∂D

r′
2 ∂Φ0
∂n′ (r′)ds(r′) and recov-

erable from measurements via Eq.(71). However the quantity B can not be
separated further. In other words there is not a purely measurement process

decomposing B. The generalized moments
∫
∂D

∂Φ
(0)
2

∂n ds and 1
3

∫
∂D

r2 ∂Φ0
∂n ds are

condemned to live together participating always in the same summation and the
only knowledge about them is exactly their sum! Remember that 1

4π

∫
∂D

r2 ∂Φ0
∂n ds

is exactly M(0,m,2)
0 , i.e. belongs to the ”resisting” to identification type of mo-

ments. There appears for the first time the already mentioned - in the Introduc-
tion - bonding between moments, which can not be broken in applications but, as
a concept, lies in the core of the new method presented in this work. Neverthe-
less, it will be clear in the next section that the members of B can be estimated
via a totally analytic technique, independent of the measurement process.

18



Passing to moments of third order, the low-frequency approximation Φ3

emerges. A relation of the form (72) is expected to be valid for Φ3, obtained
with the same steps followed before:

Φ3(r) = Φ(0)
3 (r) +

3
5
k̂ ·A3(r) +

2
3

2∑
m=−2

(2− |m|)!
(2 + |m|)!

Y m2 (k̂)A(2,m)
3 (r)

+
2
5

3∑
m=−3

(3− |m|)!
(3 + |m|)!

Y m3 (k̂)A(3,m)
3 (r), r ∈ R3\D. (72)

Beginning with the representation (8) (with n = 3), exploiting the expansions
of the excitation term (k̂ · r)3 (use (26) for n = 3) as well as of the fields
Φ1(r ; k̂),Φ2(r ; k̂) and Φ3(r ; k̂) in terms of k̂−harmonics and finally using once
more the orthogonality of harmonics, we obtain a sequence of relations reminis-
cent of Eqs. (66,67,68). We mention, for completeness, the relation involving
the vector component A3:

A3(r) = r2r− 1
4π

∫
∂D

1
|r− r′|

∂A3

∂n′
(r′)ds(r′)− 5

4π

∫
∂D

∂A2

∂n′
(r′)ds(r′)

− 5
4π

∫
∂D

|r− r′|∂A
∂n′

(r′)ds(r′) r ∈ R3\D. (73)

Treating the integral equation involving A(3,m)
3 (r), we restrict it on ∂D, multiply

it with ∂A
∂n and integrate it allover the surface to obtain the useful relation

1
4π

∫
∂D

r
∂A

(3,m)
3

∂n
(r)ds(r) =

1
4π

∫
∂D

r3Y m3 (r̂)
∂A
∂n

(r)ds(r), |m| ≤ 3. (74)

In addition the relation involving A(2,m)
3 becomes

A
(2,m)
3 (r) = − 1

4π

∫
∂D

1
|r− r′|

∂A
(2,m)
3

∂n′
(r′)ds(r′)− 3

4π

∫
∂D

∂A
(2,m)
2

∂n′
(r′)ds(r′),

(75)
from where and according to Eq.(64), we find that

A
(2,m)
3 (r) = −3M(2,m)

0 Φ0(r), |m| ≤ 2, r ∈ R3\D. (76)

It would be essential to give the next proposition to present how the low-
frequency components develop a strong dependence when we pass to higher
order terms. This interrelation is valuable for the evolution of the inversion
method.

Proposition 12 (i) The components Φ0, Φ(0)
2 , Φ(0)

3 and A satisfy

Φ(0)
3 (r) + 3M0

0 Φ(0)
2 (r)− 2A(r) ·M1

0 = 3(2(M0
0 )3 − B)Φ0(r), r ∈ R3\D. (77)

(ii) The components Φ(0)
2 , Φ(0)

4 , Φ(0)
5 and A3 are interrelated as follows

Φ(0)
5 (r)+5M0

0 Φ(0)
4 (r)−4A3(r)·M1

0 = 30(2(M0
0 )3−B)Φ(0)

2 (r), r ∈ R3\D, (78)

where M1
0 is the constant vector 1

4π

∫
∂D

r∂Φ0
∂n (r)ds(r).
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Proof. (i) After some straightforward but extended manipulations, it is proved
that the function G= Φ(0)

3 + 3M0
0 Φ(0)

2 − 2A ·M1
0 satisfies the integral equation

G(r) = 3(2(M0
0 )3 − B)− 1

4π

∫
∂D

1
|r− r′|

∂G
∂n′

(r′)ds(r′), r ∈ R3\D, (79)

which is sufficient to establish what lemma states, as explained several times
before.
(ii) Exploiting the differential properties of the participant functions, outside
D̄, we find that,

∆
(

Φ(0)
5 (r) + 5M0

0 Φ(0)
4 (r)− 4A3(r) ·M1

0

)
= 30(2(M0

0 )3 − B)(2Φ0(r)) (80)

Then the function 1
30(2(M0

0 )3−B)

(
Φ(0)

5 (r) + 5M0
0 Φ(0)

4 (r)− 4A3(r) ·M1
0

)
has the

same differential, boundary and asymptotic properties with the function Φ(0)
2

and so coincides with it.
The methodology presented in Proposition 12 can of course be generalized to
components of higher order.

As mentioned before, in this work we prove that we are in position to measure
moments pertaining to higher order components of the total field. The first
evidence has been given in Lemma 4, where M0

1 (k̂) has been extracted from
measurements. In addition we find simply that M1

1 (r̂; k̂) = − 1
2H

ant
2 (r̂; k̂). The

following remark gives more information.

Remark 13 The moments of second order terms, pertaining to the vector com-
ponent A of Φ1 are calculated in accordance with Lemma 5. More precisely, the
starting point is the decomposition 3M2

1 (r̂ ; k̂) + M0
3 (r̂ ; k̂) = −Hsym3 (r̂ ; k̂). We

eliminate M0
3 by substracting measurements in rectangular observations-r̂i, ob-

taining

3M2
1 (r̂i ; k̂)− 3M2

1 (r̂j ; k̂) = −Hsym3 (r̂i ; k̂) +Hsym3 (r̂j ; k̂) (81)

Using the representation Φ1(r ; k̂) = −M0
0 Φ0(r) + k̂ ·A(r), we can find all the

moments of the type
∫
∂D

h2,j(r′) ∂A∂n′ (r′)ds(r′). As an example

3
1

4π

∫
∂D

(x2 − y2)
∂A

∂n
(r)ds(r) · k̂ = −Hsym3 (x̂ ; k̂) +Hsym3 (ŷ ; k̂)

+3M0
0

1
4π

∫
∂D

(x2 − y2)
∂Φ0

∂n
(r)ds(r) (82)

where the last term - referring to the component Φ0 - belongs to the type of
moments determined in Lemma 5.

The case of moments of third order referring to A is complex and merits to be
presented:

Proposition 14 The moments of third order generated by A are determined
from measurements.

Proof. We start by considering H4(r̂; k̂):

H4(r̂; k̂) = M0
4 (k̂)− 4M1

3 (r̂; k̂) + 6M2
2 (r̂; k̂)− 4M3

1 (r̂; k̂) +M4
0 (r̂). (83)
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We deduce that
M1

3 (r̂; k̂) +M3
1 (r̂; k̂) = −1

4
Hant4 (r̂; k̂) (84)

where the antisymmetric part Hant4 is defined similarly as several times before.
Inserting the k̂-expansion of the underlying fields in Eq.(84), considering a new
equation produced by the opposite excitation (−k̂) and substracting the two
equations, we obtain

1
4π

{
3
10

∫
∂D

(r̂ · r′)∂A3

∂n′
(r′)ds(r′) · k̂ +

1
5

3∑
m=−3

(3− |m|)!
(3 + |m|)!

Y m3 (k̂)

(
∫
∂D

(r̂ · r′)∂A
(3,m)
3

∂n′
(r′)ds(r′)) +

1
2

∫
∂D

(r̂ · r′)3 ∂A
∂n′

(r′)ds(r′) · k̂

}
=

− 1
16

(
Hant4 (r̂; k̂)−Hant4 (r̂;−k̂)

)
(85)

Expanding (r̂ · r′)3 in terms of spherical harmonics and using Eq.(74) we trans-
form Eq.(85) in the form

3
10

r̂ ·
{∫

∂D

(
r′
∂A3

∂n′
(r′) + r′

2r′
∂A
∂n′

(r′)
)
ds(r′)

}
· k̂

+
1
5

3∑
m=−3

(3− |m|)!
(3 + |m|)!

(
Y m3 (k̂)r̂ + Y m3 (r̂)k̂

)
·
∫
∂D

r′
3
Y m3 (r̂′)

∂A
∂n′

(r′)ds(r′) =

−1
4
π
(
Hant4 (r̂; k̂)−Hant4 (r̂;−k̂)

)
(86)

We denote generally

Ĥantn (r̂; k̂) =
1
2

(
Hantn (r̂; k̂)−Hantn (r̂;−k̂)

)
. (87)

We apply (86) for three orientations forming an orthonormal basis r̂i, i = 1, 2, 3
∈ R3 and for three perpendicular excitations building the basis k̂j , j = 1, 2, 3
∈ R3. Multiplying each relation with the corresponding dyadic r̂ik̂j , while
considering the same sets r̂i =k̂i, i = 1, 2, 3 and finally adding over i, j = 1, 2, 3,
we obtain

3
10

{∫
∂D

(
r′
∂A3

∂n′
(r′) + r′

2r′
∂A
∂n′

(r′)
)
ds(r′)

}
+

2
5

3∑
m=−3

(3− |m|)!
(3 + |m|)!

3∑
i=1

(
r̂iY m3 (r̂i)

)∫
∂D

r′
3
Y m3 (r̂′)

∂A
∂n′

(r′)ds(r′) =

−π
2

3∑
i=1

3∑
j=1

[r̂iĤant4 (r̂i; r̂j)r̂j ] (88)

Following the same manipulations as in Proposition 6 (the technique exactly
after Eq.(35)), it is proved that Eq.(88) can provide with all the necessary mo-
ments of the type

∫
∂D

r′
3
Y m3 (r̂′) ∂A∂n′ (r′)ds(r′) or the equivalent set of moments

of the type
∫
∂D

h3,j(r′)∂Al

∂n′ (r′)ds(r′), where Al,l = 1, 2, 3 are the components of
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the vector A and h3,j(r′) (j = 1, 2, ...7) stand for an independent set of carte-
sian harmonic functions (the same met in Proposition 6). So, in accordance
with Eqs.(40,41), we find

1
4π

∫
∂D

(x3 − 3xy2)
∂A
∂n

(r)ds(r) =
1
8

{
Ĥant4 (

1√
2

(x̂ + ŷ);
1√
2

(x̂ + ŷ))(x̂ + ŷ)

+Ĥant4 (
1√
2

(x̂ + ŷ);
1√
2

(x̂− ŷ))(x̂− ŷ) +
√

2Ĥant4 (
1√
2

(x̂ + ŷ); ẑ)ẑ

+Ĥant4 (
1√
2

(x̂− ŷ);
1√
2

(x̂ + ŷ))(x̂ + ŷ) +
√

2Ĥant4 (
1√
2

(x̂− ŷ); ẑ)ẑ

+Ĥant4 (
1√
2

(x̂− ŷ);
1√
2

(x̂− ŷ))(x̂− ŷ)− 2Ĥant4 (x̂; x̂)x̂

−2Ĥant4 (x̂; ŷ)ŷ− 2Ĥant4 (x̂; ẑ)ẑ
}

(89)

1
4π

∫
∂D

(y3 − 3yx2)
∂A
∂n

(r)ds(r) =
1
8

{
Ĥant4 (

1√
2

(x̂ + ŷ);
1√
2

(x̂ + ŷ))(x̂ + ŷ)

+Ĥant4 (
1√
2

(x̂ + ŷ);
1√
2

(x̂− ŷ))(x̂− ŷ) +
√

2Ĥant4 (
1√
2

(x̂ + ŷ); ẑ)ẑ

−Ĥant4 (
1√
2

(x̂− ŷ);
1√
2

(x̂ + ŷ))(x̂ + ŷ)−
√

2Ĥant4 (
1√
2

(x̂− ŷ); ẑ)ẑ

−Ĥant4 (
1√
2

(x̂− ŷ);
1√
2

(x̂− ŷ))(x̂− ŷ)− 2Ĥant4 (ŷ; x̂)x̂

−2Ĥant4 (ŷ; ŷ)ŷ− 2Ĥant4 (ŷ; ẑ)ẑ
}

(90)

Reciprocity relations for the low-frequency components Ĥant4 can be used to
prove the mirror (x̂ ↔ ŷ) relationship between the representations above. Fol-
lowing cyclic permutations of (x̂, ŷ, ẑ), exactly as in Lemma 4, we can define
also the moments 1

4π

∫
∂D

(y3 − 3yz2)∂A∂n (r)ds(r), 1
4π

∫
∂D

(z3 − 3zy2)∂A∂n (r)ds(r),
1

4π

∫
∂D

(z3 − 3zx2)∂A∂n (r)ds(r) and 1
4π

∫
∂D

(x3 − 3xz2)∂A∂n (r)ds(r). The last mo-
ment 1

4π

∫
∂D

xyz ∂A∂n (r)ds(r) can be defined as in Proposition 6, but no use of it
will be needed.
The reciprocity property Hn(r̂; k̂) = Hn(−k̂;−r̂) has been just mentioned be-
fore and presents a lot of very interesting consequences. Actually, what has
been evoked in the previous Lemma is the reciprocity entailed (as easily can be
shown) from the original measurements to the functions Ĥantn met frequently in
this work.

It is useful to reconstruct more intrinsic moments from measurements, as
the following Proposition reveals.

Proposition 15 The generalized moments
∫
∂D

h2,j(r)∂A
(2,m)
2
∂n (r), |m| ≤ 2, j =

1, 2, ..., 5 are recoverable from measurements.

Proof. We refer to the low-frequency component H4(r̂; k̂) of the far-field pat-
tern and obtain easily that

Hsym4 (r̂; k̂) = M0
4 (k̂) + 6M2

2 (r̂; k̂) +M4
0 (r̂)
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or

Hsym4 (r̂; k̂) =
∫
∂D

∂Φ4

∂n′
(r′; k̂)ds(r′) + 6

∫
∂D

(r̂ · r′)2 ∂Φ(0)
2

∂n′
(r′)ds(r′)

+4
2∑

m=−2

(2− |m|)!
(2 + |m|)!

Y m2 (k̂)
∫
∂D

(r̂ · r′)2 ∂A
(2,m)
2

∂n′
(r′)ds(r′)

+6
∫
∂D

(r̂ · r′)2 ∂A2

∂n′
(r′)ds(r′) · k̂ +

∫
∂D

(r̂ · r′)4 ∂Φ0

∂n′
(r′)ds(r′)

Introducing

H̃sym4 (r̂; k̂) =
1
2

(
Hsym4 (r̂; k̂) +Hsym4 (r̂;−k̂)

)
,

and an orthogonal triple of unit vectors r̂α, α = 1, 2, 3, we find that

6
∫
∂D

((r̂α · r′)
2 − (r̂β · r′)

2)
∂Φ(0)

2

∂n′
(r′)ds(r′) + 4

2∑
m=−2

(2− |m|)!
(2 + |m|)!

× Y m2 (k̂)
∫
∂D

((r̂α · r′)
2 − (r̂β · r′)

2)
∂A

(2,m)
2

∂n′
(r′)ds(r′)

+
∫
∂D

((r̂α · r′)
4 − (r̂β · r′)

4)
∂Φ0

∂n′
(r′)ds(r′) =

H̃sym4 (r̂α; k̂)− H̃sym4 (r̂β ; k̂), α, β = 1, 2, 3, ... (91)

Selecting the vectors r̂α to coincide with the cartesian unit vectors and stim-
ulate in appropriate directions k̂, we may easily recover all moments of type∫
∂D

h2,j(r)∂A
(2,m)
2
∂n (r). More precisely, we obtain

2
∫
∂D

(x′ 2 − y′ 2)<(
∂A

(2,2)
2

∂n′
(r′))ds(r′) =

(H̃sym4 (x̂; x̂)− H̃sym4 (ŷ; x̂))− (H̃sym4 (x̂; ŷ)− H̃sym4 (ŷ; ŷ)), (92)

2
∫
∂D

(x′ 2 − y′ 2)=(
∂A

(2,2)
2

∂n′
(r′))ds(r′) =

(H̃sym4 (x̂;
1√
2

(x̂ + ŷ))− H̃sym4 (ŷ;
1√
2

(x̂ + ŷ)))

−(H̃sym4 (x̂;
1√
2

(x̂− ŷ))− H̃sym4 (ŷ;
1√
2

(x̂− ŷ))), (93)

4
∫
∂D

(x′ 2 − y′ 2)
∂A

(2,0)
2

∂n′
(r′)ds(r′) =

∫
∂D

(x′ 2 − y′ 2)<(
∂A

(2,2)
2

∂n′
(r′))ds(r′)

+(H̃sym4 (x̂; ẑ)− H̃sym4 (ŷ; ẑ))− (H̃sym4 (x̂; x̂)− H̃sym4 (ŷ; x̂)), (94)∫
∂D

(x′ 2 − y′ 2)<(
∂A

(2,1)
2

∂n′
(r′))ds(r′) =

(
H̃sym4 (x̂;

1√
2

(x̂ + ẑ))

−H̃sym4 (ŷ;
1√
2

(x̂ + ẑ))
)
−
(
H̃sym4 (x̂;

1√
2

(x̂− ẑ))

−H̃sym4 (ŷ;
1√
2

(x̂− ẑ))
)
, (95)
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∫
∂D

(x′ 2 − y′ 2)=(
∂A

(2,1)
2

∂n′
(r′))ds(r′) =

(
H̃sym4 (x̂;

1√
2

(ŷ + ẑ))

−H̃sym4 (ŷ;
1√
2

(ŷ + ẑ))
)
−
(
H̃sym4 (x̂;

1√
2

(ŷ− ẑ))

−H̃sym4 (ŷ;
1√
2

(ŷ− ẑ))
)

(96)

Cyclic permutation of the observation directions lead to the determination of
moments representing ”projections” on the harmonics y′ 2− z′ 2 and z′ 2−x′ 2.
The remaining moments pertaining to the harmonics x′y′, y′z′ and z′x′ are
determined by measuring (and substracting each time) in the direction pairs
( 1√

2
(x̂ + ŷ), 1√

2
(x̂ − ŷ)), ( 1√

2
(ŷ + ẑ), 1√

2
(ŷ − ẑ)) and ( 1√

2
(ẑ + x̂), 1√

2
(ẑ − x̂))

respectively.
A methodology of the same spirit can be applied to Φi with i > 3 and to
the underlying moments. However, the corresponding quantitative burden is
expected to augment drastically. An essential escort to this tough effort would
be the evocation of interrelations of the type introduced in Proposition 12.
However, the complete presentation of all this analysis for higher order terms is
out the scope of this work.

6 Analysis of the second class of not directly
accessible in measurements moments

The members of the measured quantity B are the first resisting to identification
moments that already have made their appearance (see remark 11). The term
B that denies to be decomposed, constitutes the mean value of H2(r̂, k̂) over
S2 × S2, while all other participants of H2(r̂, k̂) display clearly their building
stones.
A fundamental reason for this resisting connection is that the terms participating
in B depend strongly on the position of the coordinate origin, which is not of
course a physical but a geometrical feature of the problem.

Lemma 16 Let us stimulate the scatterer by the incident field exp(ik ·r− ik ·d)
instead of exp(ik · r), where d is some specific translation. The low-frequency
series of the new total field obtains the form

utotnew(r; k) =
∞∑
n=0

(ik)n

n!
Φ̃n(r; k̂). (97)

where the new components are expressed via the old ones (Φn(r; k̂)) as follows

Φ̃n(r; k̂) =
n∑
ρ=0

(−1)ρ(nρ )(k̂ · d)ρΦn−ρ(r; k̂) (98)

Proof. Obtaining Eq.(98) is a straightforward task.
The important remark is that if we change (translate) variables and consider the
new coordinate origin O′′ as the trace of the position vector d, then the new po-
sition variable is r′′ = r−d and clearly utotnew(r′′; k) =

∑∞
n=0

(ik)n

n! Φn(r′′; k̂, O′′).
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Then Eq.(98) can be used to give the relation

Φn(r′′; k̂, O′′) =
n∑
ρ=0

(−1)ρ(nρ )(k̂ · d)ρΦn−ρ(r; k̂) (99)

We remark that Φ0 is not affected by the phase shift (or the equivalent coor-
dinate translation) but all the other components are affected. So the initial
moment M1

0 (r̂) is transformed to M1
0,new(r̂) = M1

0 (r̂)− (r̂ · d)M0
0 . Selecting

d =
1
M0

0

1
4π

∫
∂D

r′
∂Φ0

∂n′
(r′)ds(r′) =

1
M0

0

M1
0 (100)

we find M1
0,new(r̂) = 0. So, this particular d stands for the ”physical” center

of the scatterer with respect to which the vector moment M1
0 vanishes, fact

reflecting the annihilation of the weighted mean value of the locations of the
scatterer’s points ( 1

4π

∫
∂D

r′′ ∂Φ0
∂n′′ (r′′)ds(r′′) = 0). We recognize here the well

known result that a shift in the phase of the incident field can be ”assigned” to
shifting of the coordinate origin. We mention that in case that the scatterer has
inversion symmetry then the ”physical” center d coincides with the geometrical
center of it.

Lemma 17 Translating the coordinate origin from the physical center to a new

position, the members 1
3

∫
∂D

r2 ∂Φ0
∂n (r)ds(r),

∫
∂D

∂Φ
(0)
2

∂n (r)ds(r) of B are aug-
mented equally by the amount d2(4π) 1

3M
0
0 , where d is the distance of the two

coordinate centers.

Proof. Clearly, the new moment 1
3

∫
∂D

r′
2 ∂Φ0
∂n′ (r′, O′)ds(r′) with respect to the

new center O′ - pointed from the physical center via the location vector d = dd̂
- is given by

1
3

∫
∂D

r′
2 ∂Φ0

∂n′
(r′, O′)ds(r′) =

1
3

∫
∂D

r2 ∂Φ0

∂n
(r)ds(r)− 2

3
(4π)d ·M1

0

+d2(4π)
1
3
M0

0 =
1
3

∫
∂D

r2 ∂Φ0

∂n
(r)ds(r) + d2(4π)

1
3
M0

0 . (101)

In addition, in accordance with Eq.(99) (with n = 2) and keeping k̂-terms of
zeroth order, we find that∫

∂D

∂Φ(0)
2

∂n′
(r′, O′)ds(r′) =

∫
∂D

∂Φ(0)
2

∂n
(r)ds(r)− 2

3
d̂ ·
∫
∂D

∂A
∂n

(r)ds(r)

+d2(4π)
1
3
M0

0 =
∫
∂D

∂Φ(0)
2

∂n
(r)ds(r) + d2(4π)

1
3
M0

0 (102)

since as we know (from Eq. (48)),
∫
∂D

∂A
∂n (r)ds(r) = (4π)M1

0, which is zero
with respect to the physical center. Comparing Eqs.(101,102), we verify the
statement of the lemma. It is interesting to note that evoking Eq.(66) (on ∂D)
and integrating over the scatterer, we obtain

1
3

∫
∂D

r2 ∂Φ0

∂n
(r)ds(r)−

∫
∂D

∂Φ(0)
2

∂n
(r)ds(r) = −2(4π)(M0

0 )3

+
1

4π

∫
∂D

∫
∂D

|r− r′|∂Φ0

∂n
(r)

∂Φ0

∂n′
(r′)ds(r)ds(r′). (103)
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The r.h.s of last equation is invariant with respect to coordinate system transla-
tions and this assures alternatively the stated equipartition of moments increase
although no information about the amount of change is provided.
The next Lemma is indicative for the dependence of the moments as the order
of them increases.

Lemma 18 The mean values of the functions H2(r̂, k̂), H4(r̂, k̂) and H5(r̂, k̂)
over S2 × S2 (i.e. the constant moments produced by these components) are
dependent.

Proof. We define the quantities N (m)
n,l = 1

4π

∫
∂D

rl
∂Φ(m)

n

∂n (r)ds(r) and Nn,l =
1

4π

∫
∂D

rl ∂Φ0
∂n (r)ds(r). Let us exploit the pair (83, 26) (keeping the constant

terms), and obtain the measurable quantity B4,0 = 2N (0)
2,2 + 1

5N0,4 + N
(0)
4,0 . We

need additionally the - deducible from H5 - constant moment B5,0 = N
(0)
1,4 +

10
3 N

(0)
3,2 +N

(0)
5,0 . Using Eq.(56), we find that

B5,0 = −M0
0N0,4 +

10
3
N

(0)
3,2 +N

(0)
5,0 . (104)

The two outcomes of Proposition 12 provide the following two results (assuming
w.l.o.g that M1

0 = 0 reflecting the specific choice of the coordinate origin):

N
(0)
3,2 + 3M0

0N
(0)
2,2 = QN0,2 (105)

N
(0)
5,0 + 5M0

0N
(0)
4,0 = 10QN (0)

2,0 (106)

where Q = 3(2(M0
0 )3 − B). We recall that B is the mean value of H2. Using

Eqs.(105, 106), we transform Eq.(104) into the form

−M0
0N0,4 +

10
3

[QN0,2 − 3M0
0N

(0)
2,2 ] + 10QN (0)

2,0 − 5M0
0N

(0)
4,0 = B5,0

Inserting B4,0 into the process, we find

10Q[
1
3
N0,2 +N

(0)
2,0 ]− 5M0

0B4,0 = B5,0 or

10QB − 5M0
0B4,0 = B5,0. (107)

Last equation expresses the stated dependence of the moments.
This is the point to introduce a very useful concept to the service of the recon-
struction of the moments. In contrast to not directly accessible in measurements
moments, there exist integral quantities involving as integrands the same nor-
mal derivatives of the components Φn, that can be recovered. More precisely
we introduce here the notion of double moments. These quantities are useful in
the inversion scheme since they provide good estimations of surface fields in the
case of star shaped scatterers.

Lemma 19 The integrals of the normal derivatives ∂g
∂n (g = Φ0, A, Φ(0)

2 ) over
the surface ∂D, with respect to the measure (r · n̂)∂Φ0

∂n are defined as the double
moments and can be expressed in terms of measured simple moments.
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Proof. We start to evaluate I1 =
∫
∂D

(r · n̂)
(
∂Φ0
∂n (r)

)2
ds(r) or equivalently

I1 =
∫
∂D

r · ∇Φ0
∂Φ0
∂n ds. After applying the operator r · ∇ on representation

(55) and restricting the result on ∂D, (using the well known jump properties of
surface layers), we find that

1
2
r · ∇Φ0(r) = − 1

4π

∫
∂D

r · ∇
(

1
|r− r′|

)
∂Φ0

∂n′
(r′)ds(r′), r ∈ ∂D, (108)

or

1
2
r · ∇Φ0(r) =

1
4π

∫
∂D

1
|r− r′|

∂Φ0

∂n′
(r′)ds(r′)

+
1

4π

∫
∂D

∇′
(

1
|r− r′|

)
· r′ ∂Φ0

∂n′
(r′)ds(r′), r ∈ ∂D. (109)

We multiply Eq. (109) with ∂Φ0
∂n , integrate over ∂D, use Eq.(108) (with inter-

changed ”primed” and ”unprimed” coordinates) and Eq.(55) (on ∂D) to obtain

1
2

∫
∂D

r · ∇Φ0(r)
∂Φ0

∂n
(r) =

1
4π

∫
∂D

∫
∂D

1
|r− r′|

∂Φ0

∂n′
(r′)

∂Φ0

∂n
(r)ds(r′)ds(r)

−1
2

∫
∂D

r′ · ∇′Φ0(r′)
∂Φ0

∂n′
(r′)⇒

I1 =
∫
∂D

(r · n̂)
(
∂Φ0

∂n
(r)
)2

= 4πM0
0 . (110)

Similarly we prove that∫
∂D

(
∂A
∂n

(r)
)

(r · n̂)
∂Φ0

∂n
(r) = 8πM1

0. (111)

We pay attention to the double moment involving the component ∂Φ
(0)
2

∂n (r)ds(r).
So we follow the above methodology to determine the integral

I2 =
∫
∂D

(r · n̂)
∂Φ0

∂n
(r)

∂Φ(0)
2

∂n
(r)ds(r).

The starting point is now Eq.(66), which after being subject to the application
of the operator r · ∇, provides

1
2
r · ∇Φ(0)

2 (r) = 2
r2

3
− 1

4π

∫
∂D

r · ∇
(

1
|r− r′|

)
∂Φ(0)

2

∂n′
(r′)ds(r′)

− 1
4π

∫
∂D

r · r− r′

|r− r′|
∂Φ0

∂n′
(r′)ds(r′), r ∈ ∂D (112)

Similar manipulations as before lead to

1
2
r · ∇Φ(0)

2 (r) = −r
2

3
+

1
4π

∫
∂D

1
|r− r′|

∂Φ(0)
2

∂n′
(r′)ds(r′)

+
1

4π

∫
∂D

r′ · ∇′
(

1
|r− r′|

)
∂Φ(0)

2

∂n′
(r′)ds(r′)

+
1

4π

∫
∂D

r · r′

|r− r′|
∂Φ0

∂n′
(r′)ds(r′), r ∈ ∂D (113)
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and then ∫
∂D

(r · n̂)
∂Φ(0)

2

∂n
(r)

∂Φ0

∂n
(r)ds(r) = −1

3

∫
∂D

r2 ∂Φ0

∂n
(r)ds(r)

+
∫
∂D

∂Φ(0)
2

∂n
(r)ds(r) +

1
4π

∫
∂D

∫
∂D

r · r′

|r− r′|
∂Φ0

∂n
(r)

∂Φ0

∂n′
(r′)ds(r)ds(r′). (114)

Next we multiply Eq.(66) (considered on ∂D), with ∂Φ0
∂n and integrate over the

surface. We obtain

1
3

∫
∂D

r2 ∂Φ0

∂n
(r)ds(r)−

∫
∂D

∂Φ(0)
2

∂n
(r)ds(r) + 2(4π)(M0

0 )3

− 1
4π

∫
∂D

∫
∂D

|r− r′|∂Φ0

∂n
(r)

∂Φ0

∂n′
(r′)ds(r)ds(r′) = 0. (115)

We remark that

1
4π

∫
∂D

∫
∂D

|r− r′|∂Φ0

∂n
(r)

∂Φ0

∂n′
(r′)ds(r)ds(r′)

=
1

4π

∫
∂D

∫
∂D

|r− r′|2

|r− r′|
∂Φ0

∂n
(r)

∂Φ0

∂n′
(r′)ds(r)ds(r′) = 2

∫
∂D

r2 ∂Φ0

∂n
(r)ds(r)

−2
1

4π

∫
∂D

∫
∂D

r · r′

|r− r′|
∂Φ0

∂n
(r)

∂Φ0

∂n′
(r′)ds(r)ds(r′). (116)

Combining Eqs.(114,115,116), we conclude that

I2 =
∫
∂D

(r · n̂)
∂Φ(0)

2

∂n
(r)

∂Φ0

∂n
(r)ds(r) = 4π[

3
2
B − (M0

0 )3] (117)

where we recognize again the measurable ”mixed”-type moment B with

4πB = 1
3

∫
∂D

r2 ∂Φ0
∂n (r)ds(r) +

∫
∂D

∂Φ
(0)
2

∂n (r)ds(r).
Last lemma reveals some fundamental quantitative properties of the normal
derivatives of the total field low-frequency components. First, we see immedi-
ately that the mean value of (r · n̂)∂Φ0

∂n (r) with respect to the positive measure
∂Φ0
∂n is equal to 1. In other words, ∂Φ0

∂n represents, in mean, the inverse of the
inner product (r · n̂), which provides indicative information about the curvature
of the surface ∂D. In addition, the same weighted mean value of 1

2 (r · n̂)∂A∂n (r)
represents the physical center of the scatterer. Finally, referring to star shape
scatterers -to guarantee the positiveness of (r · n̂)- combining Eqs.(109,110) and

applying the mean value theorem, we determine the mean value of
(
∂Φ

(0)
2

∂n /∂Φ0
∂n

)
to be equal to the quantity [ 3

2B − (M0
0 )3] 1

M0
0

. Then we may estimate the not

directly accessible moment 1
4π

∫
∂D

∂Φ
(0)
2

∂n (r)ds(r) by the number [ 3
2B − (M0

0 )3].
This result turns out trivially to be an equality in the case of a sphere for
example, but generally must be considered as an estimation produced via the
application of the mean value integral calculus to the double moments regime.
The following lemma opens up the possibility to give a more rigorous basis to
the present formal argumentation:
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Lemma 20 The normal derivative fields g = ∂Φ0
∂n ,

∂Φ
(0)
2

∂n satisfy the integral
equation

2
∫
∂D

g(r)ds(r)−
∫
∂D

(r · n̂)(∇S · n̂)g(r)ds(r) = 0,

where ∇S is the surface gradient operator on ∂D.

Proof. We consider the fields

w1(r) = r · ∇Φ0(r), r ∈ R3\D (118)

w2(r) =
2
3
r · ∇Φ(0)

2 (r)− 1
3

Φ(0)
2 (r)− 1

3
r2Φ0(r) +

2
3

(M0
0 )2Φ0(r), r ∈ R3\D

(119)

It is straightforward to prove that these fields are harmonic outside the scatterer.
In addition, in the far-field region, we apply asymptotic analysis to obtain

w1(r) = M0
0

1
r

+ o(
1
r2

), r →∞

w2(r) =
1
3
Q̃

r
+ o(

1
r2

), r →∞ (120)

where Q̃ is the quantity [3B − 2(M0
0 )3]. Let us use now the Green’s theorem∫

∂ΩR

∂wj

∂n ds =
∫

ΩR
∆wjdr = 0 (j = 1, 2), where ΩR is the region between a large

sphere BR of radius R and the scatterer D. The boundary ∂ΩR consists of the
surfaces ∂D and ∂BR. Obviously, we obtain∫

∂D

∂w1

∂n
(r)ds(r) = −4πM0

0∫
∂D

∂w2

∂n
(r)ds(r) = −Q̃

On the basis of Eqs.(118,119), the relations above provide that∫
∂D

∂

∂n
(r · ∇Φ0)ds = −

∫
∂D

∂Φ0

∂n
ds,

∫
∂D

∂

∂n
(r · ∇Φ(0)

2 )ds = −
∫
∂D

∂Φ(0)
2

∂n
ds,

which are written equivalently as

2
∫
∂D

∂Φ0

∂n
ds+

∫
∂D

(r · n̂)
∂2Φ0

∂n2
ds = 0, (121)

2
∫
∂D

∂Φ(0)
2

∂n
ds+

∫
∂D

(r · n̂)
∂2Φ(0)

2

∂n2
ds = 0 (122)

Using the decomposition of the Laplacian operator in terms of surface and nor-
mal terms ∆ = ∆S + (∇S · n̂) ∂

∂n + ∂2

∂n2 [17], we prove easily that the func-

tions ∂Φ0
∂n and ∂Φ

(0)
2

∂n satisfy the stated integral equation on ∂D. For the sake
of completeness, we just mention that applying manifold differential calculus
we can prove that the stated integral equation is equivalent with the relation∫
∂D

r · ∇Sg(r)ds(r) = 0. Last equation (as the original one) is useless for a
spherical scatterer, but informative for every other case.
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Remark 21 We use now the results of the preceding lemma in conjunction with
the outcomes of lemma 19 as follows:∫

∂D

∂Φ(0)
2

∂n
ds =

1
2

∫
∂D

(r · n̂)(∇S · r̂)
∂Φ(0)

2

∂n
ds

=
1
2

[
∂Φ(0)

2

∂n

1
∂Φ0
∂n

]m.v.

∫
∂D

(r · n̂)(∇S · r̂)
∂Φ0

∂n
ds

[
3
2
B − (M0

0 )3]
1
M0

0

∫
∂D

∂Φ0

∂n
ds = 4π[

3
2
B − (M0

0 )3] (123)

Consequently we estimate again the ”hidden” in measurements moment
1

4π

∫
∂D

∂Φ
(0)
2

∂n ds with purely analytic tools, without any aid from the measure-
ments arsenal.

The analytic determination of moments of higher order is cumbersome. Indeed
the next step is the decomposition of the moment B4,0 = 2N (0)

2,2 + 1
5N0,4 +N (0)

4,0 in
their components. This is much more demanding than before as it involves the

measure ∂Φ
(0)
4

∂n . The next proposition provides the double moment pertaining to
this measure.

Proposition 22 The double moment
∫
∂D

∂Φ
(0)
4

∂n (r · n̂)∂Φ0
∂n ds is analytically esti-

mated.

Proof. The main steps of the argumentation can be only presented here since
the whole proof process is very complex and elongated. The starting point is
Eq.(8), corresponding to n = 4 and actually its zeroth-order term with respect
to the wave vector k̂. We ”project” as usually this integral representation on
∂Φ0
∂n , while in parallel we execute the same projection after applying on Eq.(8)

the surface operator (r · ∇). Applying suitable jump relations and integral
manipulations, we obtain the following equations:

1
5

∫
∂D

r4 ∂Φ0

∂n
ds−

∫
∂D

∂Φ(0)
4

∂n
ds− 4M0

0

∫
∂D

∂Φ(0)
3

∂n
ds

−6
1

4π

∫
∂D

∫
∂D

|r− r′|∂Φ0

∂n

∂Φ(0)
2

∂n′
dsds′

+4M0
0

1
4π

∫
∂D

∫
∂D

|r− r′|2 ∂Φ0

∂n

∂Φ0

∂n′
dsds′

− 1
4π

∫
∂D

∫
∂D

|r− r′|3 ∂Φ0

∂n

∂Φ0

∂n′
dsds′ = 0 (124)
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∫
∂D

(r · n̂)
∂Φ(0)

4

∂n

∂Φ0

∂n
ds =

4
5

∫
∂D

r4 ∂Φ0

∂n
ds

+
∫
∂D

∂Φ(0)
4

∂n
ds− 6

1
4π

∫
∂D

∫
∂D

|r− r′|∂Φ0

∂n

∂Φ(0)
2

∂n′
dsds′

−6
1

4π

∫
∂D

∫
∂D

r′ · (r− r′)
|r− r′|

∂Φ0

∂n

∂Φ(0)
2

∂n′
dsds′

−8
1

4π

∫
∂D

r2 ∂Φ0

∂n
ds

∫
∂D

∂Φ(0)
2

∂n′
ds′

−3
2

1
4π

∫
∂D

∫
∂D

|r− r′|3 ∂Φ0

∂n

∂Φ0

∂n′
dsds′ (125)

In addition, we project Eq.(66) on ∂Φ
(0)
2

∂n to obtain

1
3

∫
∂D

r2 ∂Φ(0)
2

∂n
ds−

∫
∂D

∫
∂D

|r− r′|−1 ∂Φ(0)
2

∂n

∂Φ(0)
2

∂n′
dsds′

+2(M0
0 )2

∫
∂D

∂Φ(0)
2

∂n
ds− 1

4π

∫
∂D

∫
∂D

|r− r′|∂Φ(0)
2

∂n

∂Φ(0)
2

∂n′
dsds′ = 0 (126)

We project also Eq.(112) on ∂Φ
(0)
2

∂n to give an alternative representation to the

”tough” integral
∫
∂D

r′ · (r−r′)
|r−r′|

∂Φ0
∂n

∂Φ
(0)
2

∂n′ dsds
′ appeared already in Eq.(125) in

order to eliminate it. Finally, eliminating
∫
∂D

∫
∂D
|r − r′|3 ∂Φ0

∂n
∂Φ0
∂n′ dsds

′ from
Eqs.(124, 125) and using Eq.(126) together with the first interrelation outcome
of Proposition 12 (to absorb Φ3), we obtain

1
4π

∫
∂D

(r · n̂)
∂Φ(0)

4

∂n

∂Φ0

∂n
ds =

5
2
B4,0 − 3

1
4π

∫
∂D

(r · n̂)(
∂Φ(0)

2

∂n
)2ds

−12(M0
0 )2

[
3B − 2

1
4π

∫
∂D

∂Φ(0)
2

∂n
ds

]
+ 6Q(M0

0 )2

+24M0
0 |M

1
0|2 − 8

1
4π

(
∫
∂D

∂Φ(0)
2

∂n
ds)

[
3B − 3

1
4π

∫
∂D

∂Φ(0)
2

∂n
ds

]
. (127)

We verify that Eq.(127) expresses the aimed double moment in terms of mo-
ments of lower order that have already been measured or analytically esti-
mated. Actually, among the terms participating in the r.h.s. of Eq.(127),
only the second one merits some special care and this can be estimated as

− 3
4π [∂Φ

(0)
2

∂n
1

∂Φ0
∂n

]2m.v.

∫
∂D

(r · n̂)(∂Φ0
∂n )2ds= − 3

4
Q̃2

M0
0

. Working as before, we estimate,

the moment N (0)
4,0 = 1

4π

∫
∂D

∂Φ
(0)
4

∂n ds to be just the r.h.s L of Eq.(127).

Remark 23 The measured moment B4,0 = 2N (0)
2,2 + 1

5N0,4 +N
(0)
4,0 is decomposed

as follows: The term N
(0)
4,0 has just been defined in proposition 22, while N (0)

2,2 is
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estimated as

1
4π

∫
∂D

r2 ∂Φ(0)
2

∂n
ds = [

∂Φ(0)
2

∂n

1
∂Φ0
∂n

]m.v.
1

4π

∫
∂D

r2 ∂Φ0

∂n
ds

= [
3
2
B − (M0

0 )3]
1
M0

0

[−3
2
B + 3(M0

0 )3] (128)

Then the remaining moment N0,4 = 1
4π

∫
∂D

r4 ∂Φ0
∂n ds, pertaining to the Rayleigh

component Φ0, can be appropriately determined.

Similar deconstruction can be executed in more intrinsic moments. It is not
possible to present extensively all the cases but we present the following indica-
tive steps, omitting the lengthy proofs, which in principle could be reminiscent
of techniques already well exhibited in this work.

Lemma 24 (i) The vector moment B1 = 1
4π

{
3
5

∫
∂D

∂A3
∂n ds +

∫
∂D

r2 ∂A
∂n

}
ds is

metrizable and equal to

B1 =
1
3

∑
i

∑
j

Ĥsym3 (r̂i; k̂j)k̂j −
2
5

3∑
m=−3

(3− |m|)!
(3 + |m|)!

∑
j

[Y m3 (k̂j)k̂j ]M(3,m)
0 ,

(129)

where r̂i, k̂j stand for orthonormal cartesian basis in R3.

(ii) The vector moment B2 = 1
4π

{
3
∫
∂D

r
∂Φ

(0)
2

∂n ds+ 3
5

∫
∂D

r2r∂Φ0
∂n

}
ds is mea-

sured to be:

B2 = −
∑
i

H̃ant3 (r̂i; k̂)r̂i − 2
2∑

m=−2

(2− |m|)!
(2 + |m|)!

Y m2 (k̂)
∫
∂D

r2Y m2 (r̂)
∂A

∂n
ds(r)

−2
5

3∑
m=−3

(3− |m|)!
(3 + |m|)!

∑
i

[Y m3 (r̂i)r̂i]M(3,m)
0 ,

for arbitrary excitation direction k̂. The involved moments
∫
∂D

r2Y m2 (r̂)∂A∂n ds(r)
are constructed in Remark 13.

Proposition 25 The double moment 1
4π

∫
∂D

(r · n̂)∂A3
∂n

∂Φ0
∂n ds is equal to 5

3B1 +
5B2 − 15B 1

M0
0
M1

0.

Following the usual method, we infer that the moment 1
4π

∫
∂D

∂A3
∂n ds is esti-

mated by the quantity 5
3B1 + 5B2 − 15B 1

M0
0
M1

0. Then it is possible to ob-

tain an appropriate evaluation of the moment 1
4π

∫
∂D

r2 ∂A
∂n ds as the quantity

9B 1
M0

0
M1

0 − 3B2.

7 Discussion

In the present work, we investigated all possible ways to determine the surface
moments of the scattering process, which are included in the far field pattern.
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We paid attention first on establishing a systematic method for the determi-
nation of the low-frequency components of the scattering amplitude in a sta-
ble manner, exploiting the data for several wave numbers in the low-frequency
regime. These components contain the moments, which constitute integrals
over the scatterer’s surface with integrands built over the components of the
low-frequency expansion of the total acoustic field. The principal concern of
this work has been the settlement of a method aiming at extracting the mo-
ments from the far field. The moments pertaining to the fundamental total field
component (the Rayleigh component) had been already presented in a series of
introductory papers, which brought into light a novel method for the solution
of the inverse scattering problem. The moments referring to the Rayleigh com-
ponent are not influenced by the excitation direction. In contrast, the moments
corresponding to higher order components of the total field depend strongly
on the direction of the incident plane wave. In any case, in the present work
we prove that the moments are divided in two categories with different char-
acteristics. The first class involves the moments that are deducible from the
measurements - and the present works investigates this deduction - while the
second class contains all the other moments that build measurable superstruc-
tures, which can not be decomposed via the data information. Nevertheless,
these inaccessible moments can be estimated analytically via the integral equa-
tion calculus of double moments, leading to resolving of this involvement of
moments. This methodology is demanding and becomes more complicated as
the order of the total field component increases. As it will be apparent in the
subsequent relative work, insisting in the linear version of the method renders
inevitable the evocation of this analytic complex calculus. However, it is pos-
sible to detour this analysis, drop the not directly accessible in measurements
moments and work only with the first class of moments, for several interesting
cases. The price is to renovate the method in a non linear form, confronting
both the case of polynomial scatterers as well as the case of scatterers estimated
by polynomial manifolds. Working in the old or new framework, it is necessary
to define with stability the path originated from the data and leading to the
determination of the moments and this is the outcome of the present work.
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