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ABSTRACT 

Ultrasonic characterization of bone has been based on the classical linear elastic theory. 

However, linear elasticity cannot adequately describe the mechanical behavior of materials with 

microstructure in which the stress state has to be defined in a non-local manner. In this study, we 

adopt the simplest form of gradient theory (Mindlin FormII) to theoretically determine the 

velocity dispersion curves of guided modes propagating in isotropic bone-mimicking plates. Two 

additional terms are included in the constitutive equations representing the characteristic length 

in bone: (a) the gradient coefficient g , introduced in the strain energy and (b) the micro-inertia 

term h , in the kinetic energy. The plate was assumed free of stresses and of double stresses. Two 

cases were studied for the characteristic length: 410h −= and 510h −= m, i.e., at the order of the 

osteons size. For each case, three subcases for g  were assumed, namely g h> , g h<  and 

g h= . The velocity dispersion curves of guided waves were numerically obtained and compared 

with the Lamb modes. The results indicate that when the elastic constants are not equal, 

microstructure affects mode dispersion by inducing both material and geometrical dispersion. In 

conclusion, gradient elasticity can provide supplementary information to better understand 

guided waves in bones. 

 

PACS numbers: 43.80.Ev, 43.80.Jz, 43.20.Bi  
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I. INTRODUCTION 

In the quite rich literature of quantitative ultrasound assessment of human bones, some new 

techniques exploiting guided waves in long bones seem very promising in the early diagnosis of 

osteoporosis (Bossy et al., 2002; Bossy et al., 2004; Camus et al., 2000; Moilanen, 2008; 

Nicholson et al., 2002; Njeh et al. 1999; Wear, 2007) and the evaluation of fracture healing 

(Dodd et al., 2007; Protoppapas et al., 2005). As it is indicated by the name, guided waves are 

disturbances propagating along the body of a structure. Guided waves are particularly attractive 

for characterization of bone status because they propagate throughout the cortical thickness and 

are thus sensitive to both mechanical and geometrical properties. Since they interact 

continuously with the boundaries of the bone, they propagate in different modes with velocities, 

which depend on the frequency. Although this multimodal and dispersive nature of guided waves 

makes their handling, control and measurement much more difficult and complicated than bulk 

waves, guided ultrasound provides more Non-Destructive Testing parameters than that utilized in 

the traditional through or axial transmission ultrasonic techniques (Chimenti, 1997). Thus, it is 

apparent that understanding of how ultrasonic guided waves propagate through a bone is of 

paramount importance for the qualitative and quantitative inspection process.  

Modelling of guided ultrasound in long human bones is an extremely difficult task due to 

the very complex microstructure of bones. In all the works dealing with guided waves in bones 

and appearing so far in the literature, the bone is mimicked as a linear elastic and homogenized 

medium. However, if we consider human bone as a linear elastic material with microstructure, its 

dynamic mechanical behaviour cannot be described adequately by the classical theory of linear 

elasticity, because this theory is associated with concepts of homogeneity and locality of stresses. 

When the material exhibits a non homogeneous behaviour and its dimensions are comparable to 

the length scale of the microstructure, microstructural effects become important and the state of 
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stress has to be defined in a non-local manner. These microstructural effects can be successfully 

modelled in a macroscopic framework by employing enhanced elastic theories such as the couple 

stresses theory proposed by Cosserat brothers (Cosserat and Cosserat, 1909) and generalized 

later by Eringen as the micropolar elastic theory (Eringen, 1966), the general higher order 

gradient elastic theory proposed by Mindlin (Mindlin, 1964) and the non-local theory of 

elasticity of Eringen (Eringen, 1992). For a literature review on the subject of these theories one 

can consult the review articles (Eringen, 1992; Tiersten and Bleustein, 1974; Exadaktylos and 

Vardoulakis, 2001), the literature review in the recent paper (Tsepoura et al., 2002) and the book 

(Vardoulakis and Sulem, 1995). 

According to couple stresses theories, as proposed by (Cosserat brothers, 1909; Eringen, 

1966) the deformation of the medium is described not only by the displacement vector but also 

by an independent rotation vector. Displacements and rotations are associated to stresses and 

couples stresses through constitutive relations, which contrary to the classical theory of elasticity 

define non-symmetric stress and couple stress tensors. Both Cosserat and micropolar elastic 

theories have been successfully exploited to explain microstructural size effects in bones (Fatemi 

et al., 2002; Hsia et al., 2006; Lakes, 1981; Park and Lakes 1986; Yang and Lakes, 1981; Yang 

and Lakes, 1982; Yoon and Katz, 1983). Due to the rotations, couple stresses theories are able to 

capture wave dispersion phenomena, which are not observed in the classical theory of elasticity. 

In the context of wave propagation in couple stresses continuum many papers have appeared the 

last twenty years in the literature. Some representative are (Chen et al., 2003; Suiker et al., 2001) 

dealing with wave dispersion in free spaces, (Tomar and Gogna, 1995) solving wave reflection 

problems in flat interfaces, (Kumar and Partap, 2006; Ottosen et al., 2000) investigating 

Rayleigh waves in micropolar half spaces and (Kulesh et al., 2007; Midya, 2004) treating 

propagation of dispersive waves in waveguides. However, no previous work has been reported to 
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investigate guided wave propagation in bones in the context of higher order gradient theories of 

elasticity. 

Higher order gradient theories can be considered as generalizations of linear theory of 

elasticity, utilizing the displacement vector to describe the deformation of the continuum and 

introducing in both potential and kinetic energy higher order terms associated with internal 

length scale parameters which correlate microstructural effects with the macrostructural 

behaviour of the considered material. In the regime of isotropic linear elastic behaviour, the most 

general and comprehensive gradient elastic theory is the one due to (Mindlin, 1964; Mindlin, 

1965). However, in order to balance the dimensions of strains and higher order gradients of 

strains as well as to correlate the micro-strains with macro-strains, Mindlin utilized eighteen new 

constants rendering, thus, his initial general theory very complicated from a physical and 

mathematical point of view. In the sequel, considering long wave-lengths and the same 

deformation for macro and micro structure Mindlin proposed three new simplified versions of 

his theory, known as Form I, II and III, where beyond the two Lamé constants other five ones are 

introduced instead of sixteen employed in his initial model.  In Form-I, the strain energy density 

function is assumed to be a quadratic form of the classical strains and the second gradient of 

displacement; in Form-II the second displacement gradient is replaced by the gradient of strains 

and in Form-III the strain energy function is written in terms of the strain, the gradient of 

rotation, and the fully symmetric part of the gradient of strain. The most important difference 

among the aforementioned three simplified versions of the general Mindlin’s theory is the fact 

that the Form-II leads to a total stress tensor, which is symmetric as in the case of classical 

elasticity. This symmetry avoids the problems introduced by the non-symmetric stress tensors in 

Cosserat and couple stress theories. Ru and Aifantis (Ru and Aifantis, 1993) and Altan, et al. 

(Altan, et al., 1996) proposed a very simple static and dynamic, respectively, gradient elastic 

model requiring only one new gradient elastic constant plus the standard Lamé ones. Although 
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elegant, the problem with Aifantis and co-workers models is first the complete lack of a 

variational formulation considering thus boundary conditions which are not compatible with the 

corresponding correct ones provided by Mindlin and second the fact that they ignore of the 

contribution of the inertia of the microstructure to the dynamic behaviour of the gradient elastic 

material. Both drawbacks were corrected later by (Georgiadis et al., 2004; Vardoulakis and 

Georgiadis, 1997) proposing two very simple and elegant gradient elastodynamic theories called 

gradient elasticity with surface energy and dipolar gradient elastic theory, respectively. The 

latter, exploited in the present work, can be considered as the simplest possible special case of 

Mindlin’s Form II gradient elastic theory. In the framework of wave propagation in infinite and 

semi-infinite gradient elastic spaces one can mention the works of (Aggelis et al., 2004; Bennet 

et al., 2007; Chang et al., 1998; Erofeyev, 2003; Georgiadis and Velgaki, 2003; Georgiadis et 

al., 2004; Papargyri-Beskou et al., 2008; Sluys et al., 1993; Vardoulakis and Georgiadis, 1997; 

Yerofeyev and Sheshenina, 2005).  

Finally, in the non-local theory of elasticity of Eringen (Eringen, 1992) stresses at any 

point of the considered continuum are assumed to be a function not only of the strains defined at 

the point itself but also of the strain states defined at all other points of the elastic body. This 

consideration leads to an integro-differential stress-strain constitutive relation, which contains 

integrals defined over the entire region of interest and kernels comprising weighted averages of 

the contributions of the strains of all points of the elastic body. The integro-differential form of 

the constitutive equations renders non-local elastic theory complex for practical applications. 

Some special cases where the integro-differential constitutive equations can be converted to 

differential ones, although convenient for applications in materials with microstructural effects, 

they can be covered by the aforementioned micropolar and higher order gradient elastic theories 

(Artan and Altan, 2002; Chakraborty, 2007).  
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In the present work the simplified Mindlin’s Form II or dipolar gradient elastic theory is 

exploited for the determination of symmetric and anti-symmetric modes propagating in a two 

dimensional and free of stresses gradient elastic plate. The material properties of the plate as well 

as the internal length scale parameters introduced by the considered enhanced elastic theory are 

compatible with the physical properties of human bones. To the authors’ best knowledge, no 

such theory has been proposed up to now for the simulation of propagating guided waves in long 

bones. The main advantages of the utilized gradient elastic theory as compared to other couple 

stresses, micropolar, gradient elastic and non-local elastic theories are its simplicity and the 

symmetry of all classical and non-classical stress tensors involved. The paper is organized as 

follows: the next section is devoted to the basics of the aforementioned gradient elastic theory. In 

the same section the dispersion nature of the waves propagating in an infinitely extended 

gradient elastic continuum is illustrated. Next, in section III the modes corresponding to guided 

waves traveling in a free gradient elastic plate are explicitly derived. The presentation of the 

derived symmetric and antisymmetric modes for a bone mimicked plate is taken place in section 

IV. A comprehensive discussion on the obtained results is demonstrated in section V. Finally, the 

main conclusions of the present study are drawn. 

 

II. MINDLIN’S FORM II SIMPLIFIED GRADIENT ELASTIC THEORY AND WAVE 

DISPERSION  

Mindlin in the Form II version of his gradient elastic theory (Mindlin, 1964) considered 

that the potential energy density Ŵ  is a quadratic form of the strains ijε and the gradient of 

strains, ˆ ,ijkκ  i.e. 

1 2 3 4 5
1ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ
2 ii jj ij ij iik kjj ijj ikk iik jjk ijk ijk ijk kjiW λε ε µε ε α κ κ α κ κ α κ κ α κ κ α κ κ= + + + + + + ,                             (1) 
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where 

( )ijjiij uu ∂+∂=
2
1ε , ( ) ikjjkikjijkiijk uu κεκ ˆˆ =∂∂+∂∂=∂=

2
1 ,                                                   (2) 

with i∂ denoting space differentiation, iu  the displacement, ,λ µ representing Lamé constants 

and 1 5ˆ ˆα α÷  being constants with units of m2 explicitly defined in (Mindlin,1964).  

Extending the idea of non-locality to the inertia of the continuum with microstructure, 

Mindlin  proposed for the isotropic case an enhanced expression for the kinetic energy density 

function T̂ , which beyond velocities includes the gradients of the velocities, i.e. 

21 1ˆ
2 6i i i j i jT u u d u uρ ρ= + ∂ ∂ ,                                               (3) 

where ρ is the mass density, over dots indicate differentiation with respect to time t  and 2d is 

another material constant called velocity gradient coefficient (units of m2.) 

Strains ijε  and gradient of strains ijkκ̂ are dual in energy with the Cauchy and double 

stresses, respectively, defined as: 

ˆ
ˆ ˆij ji

ij

Wτ τ
ε
∂

= =
∂

,                                                                                                                               (4) 

ˆ
ˆ ˆ ,

ˆijk ikj
ijk

Wµ µ
κ
∂

= =
∂

                                                                                                                          (5) 

which implies that 

ˆ 2 ,pq pq ii pqµ λτ ε ε δ= +                                                                                                                      (6) 

and 

( )

ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ ˆˆ 2 2 ( )

ˆ ˆ ˆˆ ˆ .

pqr 1 rii pq iip qr qii rp 2 pii qr 3 iir pq iiq pr

4 pqr 5 rpq qrp

1µ α α α
2
2α α

κ δ κ δ κ δ κ δ κ δ κ δ

κ κ κ

⎡ ⎤= + + + + + +⎣ ⎦

+ + +
                                    (7) 

The total stress tensor pqσ̂  is then defined as 
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rpqrpqpq µτσ ˆˆˆ ∂−= ,                                                                                                                         (8) 

which is symmetric, since both Cauchy stresses pqτ̂  and relative stresses rpqr µ̂∂ are symmetric 

according to Eqs (4), (5). 

Considering an isotropic continuum with microstructural effects confined by a smooth 

boundary and taking the variation of strain and kinetic energy, according to the Hamilton’s 

principle, one can obtain the following equation of motion of a continuum with microstructure 

kppkkijkijkj uduF ∂∂−=+∂−∂ 2

3
1 ρρµτ )ˆˆ( ,                                                                                    (9) 

accompanied by the classical and non-classical boundary conditions, respectively: 

prescribed
kk pp =ˆ ,                                                                                                                             (10) 

prescribed
kk RR =ˆ ,                                                                                                                             (11) 

where the traction vector kp̂  and the double traction vector kR̂ are defined as  

21ˆ ˆ ˆ ˆ( ) ( )
3k j jk i j ijk j i i j ijk i j l l j i ijk n np n n n D n D n D n n D n D n d uτ µ µ µ ρ= − − + + − + ∂ ,                            (12) 

ˆ ˆk i j ijkR n n µ= .                                                                                                                               (13) 

In terms of displacements, the equation of motion (9) obtains the form 

)()ˆ()ˆ)(( uuuu 2222
2

22
1 112 ∇−=×∇×∇∇−−⋅∇∇∇−+ hll ρµµλ ,                                               (14) 

where u stands for displacement vector and 

2
1 1 2 3 4 5
ˆ ˆ ˆ ˆ ˆ ˆ2( ) / ( 2 ),l a a a a a λ µ= + + + + +                                                                                    

2
2 3 4 5
ˆ ˆ ˆ ˆ( 2 ) / 2 ,l a a a µ= + +               (15) 

2 2 / 3.h d=  

Positive definiteness of Ŵ (for reasons of uniqueness and stability) requires that (Mindlin, 

1964) 0020 2 >>+> il̂,, µλµ  and 02 >h .  
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In the simplest possible case where the potential energy density Ŵ is defined as  

2ˆ
ij ij i jk i jkW gε τ ε τ= + ∂ ∂ ,                                                                                                             (16) 

the constants 51 αα ˆˆ ÷  become 2
4

2
2531 20 gg µαλαααα ===== ˆ,/ˆ,ˆˆˆ  and the constants 

2
2

2
1 ll ˆ,ˆ  in (14), 22

2
2

1 gll =≡ ˆˆ . Under the above simplifications, the stresses in Eqs. (6), (7) and (8) 

become 

2ij ij ii ijτ µε λε δ= + ,                                                                                                                      (17) 

jkiijk g τµ ∂= 2 ,                                                                                                                              (18) 

2 2
ij ij ijgσ τ τ= − ∇ ,                                                                                                                        (19) 

and the equation of motion i.e., Eq.(14), through the well known identity ×∇×−∇⋅∇∇=∇ 2  

obtains the simple form: 

2 2 2 2 2(1 ) ( ) ( ),g hµ λ µ ρ⎡ ⎤− ∇ ∇ + + ∇∇⋅ = − ∇⎣ ⎦u u u u                                                                     (20) 

where [ ]uu ⋅∇∇++∇∇ )( µλµ 222g  and u22∇hρ  are the micro-structural and the micro-inertia 

terms, respectively and the operator 2∇  is the Laplacian. Taking the divergence and the curl of 

Eq.(20), it is easy to find the equations governing the propagation of dilatations and rotations, i.e. 

uu ⋅∇∇−=⋅∇∇∇−+ )())(( 22222 112 gg ρµλ ,                                                                            (21) 

uu ×∇∇−=×∇∇∇− )()( 22222 11 gg ρµ .                                                                                    (22) 

Considering plane waves of the form 

ˆ( ) ,i K tAe ω⋅ −∇ ⋅ = k ru  

ˆ( ) ,i K te ω⋅ −∇× = k ru A                (23) 

where ,A A  represent the amplitudes, r stands for the position vector, k̂ is the direction of 

incidence ,K ω are the wave number and the frequency of the propagating waves, respectively, 
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and 1i −= . Inserting Eq. (23) into Eqs. (21) and (22) and representing by ,L TC C the classical 

phase velocities of longitudinal (L) and shear (T) waves, respectively, we obtain the following 

dispersion relation: 

( )2 2 2
2 2 2

2 2

1 2,
1

L L
L L

L

K g K
C C

h K
λ µω
ρ

+ +
= =

+
,                       (24) 

for longitudinal waves and the relation:  

( )2 2 2
2 2 2

2 2

1
,

1
T T

T T
T

K g K
C C

h K
µω
ρ

+
= =

+
,                        (25) 

for shear waves. Thus, using the Eqs. (24) and (25), we can obtain expressions for the phase 

velocities VL and VT of the longitudinal and shear waves, respectively, of the form: 

22

22

1
1

TL

TL
TL

TL
TL Kh

Kg
C

K
V

,

,
,

,
, +

+
==

ω .        (26) 

Equations (25) and (26) reveal that, unlike the classical elastic case characterized by 

constant velocities of longitudinal and shear waves and hence non-dispersive wave propagation, 

the gradient elastic case is characterized by phase velocities for longitudinal and shear waves, 

which are functions of the wave number, indicating wave dispersion. This dispersion is entirely 

due to the presence of the two microstructural material constants 2g  and 2h . By letting 

0g h= =  in Eq. (22) it becomes obvious that , , L T L TV C= , i.e. the classical elastic case with 

constant wave speeds and hence no dispersion. 

Solving Eqs. (24) and (25) for the wave numbers LK and TK , respectively, the following 

relation is obtained: 

( ) ( )22 2 2 2 2 2 2 2 2
, , ,

, 2 2
,

4

2
L T L T L T

L T
L T

C h C h C g
K

C g

ω ω ω− − + − + ⋅
= ⋅                                 (26) 
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Since in a dispersive medium energy propagates with the group velocity ,
g

L TV instead of phase 

velocity TLV ,  (Rose, 1999), we can find from Eq. (26) that: 

( )
( )

2 4 2 2 2 22 2
, , , ,,

, 24 2 2 2 2 2 2
, , , , , ,

2 2 11

1
L T L T L T L TL Tg

L T
L T L T L T L T L T L T

K C K g h K gK hdV
dK K C g K C K h

ω + ++
= = ⋅ ⋅

+ +
                           (27) 

Figure 1 provides the dispersion curves governing the group velocity of longitudinal (L) and 

shear (T) waves propagating in an infinitely extended gradient elastic medium for various 

combinations of g and h  as a function of frequency according to Eq. (27).  

As it is apparent, for h g=  or 0h g= =  there is no dispersion and TL
g

TL CV ,, ≡ . For 

h g> there is dispersion, TL
g

TL CV ,, <  and g
TLV ,  decreases as frequency increases. As it is 

mentioned in (Paparguri-Beskou et al., 2008), this is a physically acceptable case, which is in 

agreement with results of crystal lattice theories for the two-dimensional space (Suiker et al, 

2001; Yim and Sohn, 2000) and the two-dimensional half-space (Gazis et al., 1960). The relation 

h g> was first found to lead to results in agreement with lattice theories during the numerical 

studies of (Georgiadis et al., 2004) for wave dispersion in the half-plane. This case is also in 

agreement with experimental results on metals and alloys (Erofeyev, 2003; Kondratev, 1990) For 

h g< there is dispersion, TL
g

TL CV ,, >  and g
TLV ,  increases with increasing ω in agreement with 

experimental results on granular type of materials, such as marble, sand, concrete, granular 

composites, bones and cellular materials (Aggelis et al., 2004; Chen and Lakes, 1989; Erofeyev, 

2003; Lakes, 1982; Stavropoulou et al., 2003). 
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III. WAVE PROPAGATION IN A GRADIENT ELASTIC FREE PLATE 

Considering  a free two-dimensional (2D) plate and a Cartesian co-ordinate system Ox1x2 

with the axis Ox1 being the axis of symmetry of the plate. Assuming plane strain conditions the 

components of the displacement vector can be written as: 

1 1 1 2( , , )u u x x t= ,    

2 2 1 2( , , ),u u x x t=                                                                                                                           (28) 

3 0u = . 

Solution to the equation of motion i.e, Eq. (20) is given using the method of potentials. The 

displacement vector field is decomposed according to Helmhotz decomposition as a gradient of a 

scalar and the curl of the zero divergence vector, i.e.:  

 0=⋅∇×∇+∇= AAu ,ϕ .                                                                                                  (29) 

Substituting Eq. (29) into the equation of motion derived from the gradient elastic theory, i.e. Eq. 

(20), the following two partial differential equations are obtained 

ϕϕ 2
222 11

LC
g =∇∇− )( ,                                                                                                                (30) 

2 2 2
2

1(1 )
T

g
C

− ∇ ∇ =A A .                                                                                                               (31) 

Writing the scalar and vector potentials as ),,( txx 21φϕ =  and 1 2 3( , , )A A A=A : 1 2 0A A= = , 

3 1 2( , , )A x x tψ= , the displacement vector in terms of potentials is expressed as: 

1 2
1 2 2 1

ˆ ˆx x
x x x x
φ ψ φ ψ⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂

= + + +⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠
u .                                                                                           (32) 

Thus, Eqs. (30) and (31) are expressed as: 

φφ )()( 22
2

222 111 ∇−=∇∇− h
C

g
L

,                                                                                               (33a) 
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2 2 2 2 2
2

1(1 ) (1 )
T

g h
C

ψ ψ− ∇ ∇ = − ∇ .                                                                                              (33b) 

Assuming travelling waves in the 1x  direction and standing waves in the 2x  direction of the form 

2 1Φ( ) exp{ ( )}x i Kx tφ ω= − ,                                                                                                         (34) 

2 1Ψ( ) exp{ ( )}x i Kx tψ ω= − ,                                                                                                        (35) 

where Φ and Ψ  are unknown functions. Substituting Eqs. (34), (35) into Eqs. (33a), (33b) 

respectively, we obtain the following differential equations: 

( )
4 2 2 2

2 2 2 2 2 2 4 2 2 2
4 2 2
2 2

1 2 0L L
L

hg K g K K g K h K K
x C x

ω⎛ ⎞∂ Φ ∂ Φ
− + + − + − − + Φ =⎜ ⎟∂ ∂⎝ ⎠

,                             (36a) 

( )
4 2 2 2

2 2 2 2 2 2 4 2 2 2
4 2 2
2 2

1 2 0T T
T

hg K g K K g K h K K
x C x

ω⎛ ⎞∂ Ψ ∂ Ψ
− + + − + − − + Ψ =⎜ ⎟∂ ∂⎝ ⎠

.                            (36b) 

Note here that K  represents the wavenumber of the propagating guided disturbance and 

2 2 2/L LK Cω= and 2 2 2/T TK Cω= .  

It can be observed that when the volumetric strain gradient coefficient 2g  and the inertia term h2 

becomes zero Eqs. (36a) and (36b) become identical to those obtained in the classical elastic case 

(Rose, 1999). The solutions of Eqs. (36a) and (36b) admit a representation of the form 

2 2 2 2 2Φ( ) sin cos exp{ } exp{ }p px Q px R px S r x T r x= + + + − ,                                                       (37) 

2 2 2 2 2Ψ( ) sin cos exp{ } exp{ }s sx U qx V qx W r x Z r x= + + + − ,                                                       (38) 

where  

( ) ( )22 2 2 2 2 2 2 2 2 2 2 2 4 2 2 2
, , , ,1 2 1 2 4

,
2

L T L T L T L TK g K h K g K h g K K g K h K K
p q i

g

+ − − + − + − − +
= ,(39)

( ) ( )22 2 2 2 2 2 2 2 2 2 2 2 4 2 2 2
, , , ,

,

1 2 1 2 4

2
L T L T L T L T

p s

K g K h K g K h g K K g K h K K
r

g

+ − + + − + − − +
= ,   (40) 
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and the constants ( ), , , , , , ,Q R S T U V W Z are unknown amplitudes, which can be determined by 

satisfying the classical and non-classical boundary conditions of the problem, respectively: 

2 2/2 /2| | 0x d x d= =−= =P P ,                                                                                                                (41a) 

2 2/2 /2| | 0.x d x d= =−= =R R                                                                                                                (41b) 

Satisfaction of the boundary conditions result in two systems of four equations: the first for the 

unknowns , , ,R U S Z  corresponding to the symmetric modes and the second for unknowns 

, , ,Q T V W  the antisymmetric modes. The components of the determinant of the two systems are 

given in Appendix A. Vanishing of each determinant yields the characteristic dispersion 

equations for the propagation of the symmetric and antisymmetric modes in a gradient elastic 

plate. 

 

IV. APPLICATION TO CORTICAL BONE PLATES 

In this section, a free 2D gradient elastic plate is considered to have mechanical properties 

typically used for bone, i.e. Young's modulus 14boneE = GPa, Poisson's ratio 0.37bonev =  and 

density 1500boneρ = Kg/m3. The plate thickness is 4 mm, which is a common cortical value 

found in several types of human long bones. The resulting classical bulk longitudinal and shear 

velocities are 4063 m/s and 1846 m/s, respectively (Bossy et al., 2004; Protopappas et al., 2006). 

Two different cases for the inertia characteristic length 2h  are investigated. In the first case, 

denoted herein as Case-1, 410h −=  m, whereas in the second, denoted as Case-2, 510h −= m. In 

both cases the values of h are comparable to bone’s microstructure (Harvesian systems, osteons), 

i.e. from 10 to 500 µm (Rho et al., 1998).   

Regarding the value for g , there is strong experimental evidence (Aifantis, 1999; 

Georgiadis et al., 2004; Exadaktylos and Vardoulakis, 2001; Lakes, 1995; Lam et al., 2003) that 
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it should be also of the same order as the size of the basic building block of microstructure, e.g. 

the osteons in bones; however, no final conclusion has been drawn in the literature. Therefore, in 

the present analysis for each of the previous two cases for h , we consider three subcases for g , 

resulting totally in six different combinations between g and h . In the first two subcases (Case-

1a and Case-1b), g is assumed higher and smaller than ,h respectively, whereas in the third 

subcase (Case-1c), the value of g  is assumed to be equal to that of h . For Case-2, three subcases 

are constructed in a similar way as in Case-1. The values for h  and g  in each subcase are 

presented in Table I.  

In what follows, the symmetric and antisymmetric modes propagating in the bone-

mimicking plate with microstructure, in the form of frequency-group velocity ( , )gf c  dispersion 

curves for the different combinations of g and h are presented. The symmetric and 

antisymmetric modes obtained from the simplified version of Mindlin’s Form II gradient elastic 

theory, are denoted herein as g_Sn and g_An, respectively, where 0,1,2...n =  represents the 

mode number.  

Figures 2(a), (b) and (c) illustrate the group velocity dispersion curves of the symmetric 

modes for Cases-1a, 1b and 1c, respectively. The group velocity dispersion curves of the Lamb 

modes for a classical elastic plate with the same geometrical and mechanical properties are also 

presented in each figure (dashed lines) for comparison purposes. The Lamb modes are denoted 

as Sn and An, where 0,1,2...n =  In Figs. 2(a)-(b) it can be observed that the bulk shear wave 

(denoted as g_cT.) is dispersive, a result that is in fully agreement with the graphs of Figure 1. 

More specifically, in Fig. 2(a) which represents Case-1a ( g h> ), the velocity of the bulk shear 

wave derived from the gradient theory for zero frequency is equal to the bulk shear velocity of 

the medium in classical elasticity (depicted in the figure by a straight dashed line extending 

across the whole spectrum, denoted as cT.). As frequency increases, the dispersion curve of the 
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bulk shear wave predicted by the gradient theory significantly deviates from the bulk shear 

velocity value in the classical case taking higher values. For Case-1b ( g h< ), g_cT takes lower 

values than cT and the deviation starts after 0.4 MHz but is less pronounced than Case-1a. 

Finally, in Case-1c ( g h= ), the velocity of the bulk shear wave in the gradient elastic case 

exhibits no dispersion, as expected, i.e. its value remains constant with increasing frequency 

exactly the same as the bulk shear velocity of bone.  

Concerning the guided waves in Fig. 2(a), the dispersion of the modes predicted by the 

gradient theory is strongly modified from that of the classical elasticity. The velocity of the 

lowest order g_S0 mode is similar to that of the Lamb S0 mode for very low frequencies (up to 

0.13 MHz). However, as frequency increases, the g_S0 mode starts rapidly to diverge from the 

S0 mode. It is known that S0, as well as, A0 Lamb modes approach asymptotically the Rayleigh 

velocity (Rose, 1999). As it is shown in Fig. 1(a), the g_S0 mode seems to approach the 

dispersive values of the bulk shear wave. Given that in classical elasticity the Rayleigh velocity 

is very close to the bulk shear velocity ( T0.92cRc = , where Rc  is the Rayleigh velocity) (Rose et 

al., 1999), we can say that the g_S0 mode converges actually to the velocity of Rayleigh wave, 

which according to (Georgiadis et al., 2004) is also dispersive. 

The velocity dispersion of the higher-order modes is considerably different from the Lamb 

modes, even at low frequencies. More specifically, g_S1 and g_S2 have different cut-off 

frequencies (0.46 MHz and 0.51 MHz, respectively), their group velocities rapidly increase with 

frequency and seem to converge to the velocity value of the bulk shear wave in the gradient 

elasticity (note that in classical elasticity the group velocities of the higher-order Lamb modes 

converge to the bulk shear velocity of bone). Additional modes, such as g_S3, are expected but 

they appear at higher frequencies than those computed. Similarly, in Case-1b ( g h< ), the 

dispersion curves of the guided modes also diverge from the classical Lamb modes (the mode 
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g_S3 can now be seen in this case). Similarly to what occurred for the bulk shear wave, the 

modes’ group velocities take again lower values than those of the classical Lamb waves; 

nevertheless their deviation is again less pronounced than in Case-1a. In this case, the 

convergence of the modes to the bulk shear velocity can be better observed. 

As opposed to the aforementioned two subcases, in Case-1c ( g h= ), small differences 

exist in mode dispersion between the two theories of elasticity. The theory predicts that no 

differences should exist, thus the small deviation observed is due to arithmetic problems. 

Figures 3(a), (b) and (c) represent the group velocity dispersion curves of the 

antisymmetric modes obtained from the gradient elastic plate in Cases-1a, b and c respectively. 

Similarly to the bulk shear waves and as it is expected (Fig. 1) the bulk longitudinal wave, 

denoted in the figures as g_cL, becomes dispersive. The bulk longitudinal velocity, denoted 

herein as g_cL, for very low frequencies is equal to that of the bulk longitudinal wave 

propagating in a classical elastic medium (depicted by a straight dashed line and is denoted as 

cL). Nevertheless, for higher frequencies in Case-1a, the g_cL rapidly increases from the bulk 

longitudinal velocity in the classical case, whereas in Case-1b, it decreases exhibiting a similar 

behavior to the corresponding bulk shear wave. In Case-1c ( g h= ), as expected, the bulk 

longitudinal wave in the gradient elastic case is non-dispersive.  

Regarding the velocity dispersion of the antisymmetric guided modes, similar conclusions 

can be drawn to those for the symmetric modes. In particular, in Case-1a (Fig. 3(a)), the group 

velocities of the g_A0 and g_A1 modes are close to those of the Lamb A0 and A1 modes for 

very low frequencies, but as the frequency increases they become significantly higher than the 

Lamb modes. Analogous trends are also observed for the g_A2 and g_A3 modes. These modes 

converge to the bulk shear values. In Case-1b (Fig. 3(b)), the antisymmetric modes are again 

affected by the microstructure; the group velocities are lower than those of Lamb modes and the 
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effect is less pronounced than Case-1a. Finally, in the Case-1c (Fig. 3(c)), the velocity dispersion 

curves are again almost identical to those for the Lamb waves.  

Figures 4(a)-(c) and 5(a)-(c) illustrate the group velocity dispersion curves for Case-2, i.e. 

for 510h −= . Similar trends can be observed for all subcases (Figs. 4(a)-(c) and Figs. 5(a)-(c)), 

but the observed microstructural effects are much more mitigated than in Figs. 2(a)-(c) and 3(a)-

(c). 

V. DISCUSSION 

In this paper, a study on the propagation of ultrasound in a free plate with microstructural 

effects was presented. The dipolar gradient elasticity is the enhanced theory exploited for the 

dynamic behavior of the considered plate. Comparisons with the solutions derived from the 

Lamb problem in the classical elasticity were also made to investigate the effect of the 

microstructure on guided wave propagation in 2D plates. Group velocity dispersion curves were 

obtained for a testing case in which the medium was assumed to have properties similar to those 

of cortical bone. 

As it is mentioned in the introduction, the bone is a material with microstructural effects, 

the mechanical behavior of which can be successfully modeled by enhanced elastic theories. 

Although, in the works of (Fatemi et al., 2002; Yoon and Katz, 1983) many higher order elastic 

theories are proposed for the description of the micromechanical effects in bones, only couple 

stresses theories (mainly Cosserat and micropolar) have been utilized up to now for this purpose. 

The main reasons for this are: (i) the use of Cosserat-micropolar theories in bending and torsion 

problems seems to be the most reasonable due to introduction of couple stresses, (ii) the higher 

order gradient elastic theories of Mindlin as initially proposed were much more complicated than 

those of couple stresses and (iii) for numerical solutions, the forth order derivatives introduced in 

the differential operators of the higher order gradient elastic equilibrium equations and equations 

of motion renders the development of a direct finite element algorithm a difficult task since C(1)-
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continuity elements are required. However, during the last decade the simplified versions of 

Mindlin’s general gradient elastic theory (Georgiadis et al,. 2004; Ru and Aifantis, 1993; 

Tsepoura et al., 2002; Vardoulakis and Georgiadis, 1997) have gained much attention since: (i) 

only one microstructural parameter for static problems and two for dynamic ones have to be 

determined instead of four required in couple stresses theories, (ii) in contrary to Cosserat and 

micropolar elasticity, all tensors involved in the aforementioned gradient elastic theories are 

symmetric being thus mathematically simpler and more understandable from a physical point of 

view and (iii) for fracture mechanics problems (very important for applications in bones) 

gradient elastic theories lead to more reasonable results than couple stresses ones (Amanatidou 

and Aravas, 2002; Karlis et al., 2007; Karlis et al., 2008; Stamoulis and Giannakopoulos, 2008) 

predicting phenomena associated with cusp-like crack profiles and development of process zone 

in front of crack tip observed experimentally.  

The problem of wave propagation in plates with microstructure has been solved 

analytically only in the context of the Cosserat theory (Kulesh et al., 2007). The same problem is 

treated here with the aid of the dipolar gradient elastic theory. The values of the inertia internal 

characteristic length h  were assumed to be close to the size of the osteons which correspond to 

the microstructural level of bone’s hierarchical structural organization (Rho et al., 1998). Since 

the determination of the gradient coefficient g  remains an open issue in the literature, we 

considered six different combinations between g  and h . The obtained results make clear that 

the values of the two length scale parameters g  and h  play an important role in the velocity 

trends of the guided modes. In all subcases the values of g  were appropriately chosen so as to 

provide physically acceptable dispersion curves (see Table I). The values: 310g −= m in Case-1 

and 610g −= m in Case-2 were deliberately ignored here; the former value leads to a rapid 

increase of the group velocities even from very low frequencies which would be rather 
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undetectable in the plots, whereas the latter would result in almost unnoticeable differences in 

the velocity variation between the two theories. Thus, it is apparent that reasonable estimations 

for the relation between the material coefficients and the determination of their values can only 

be made by comparing experimental measurements with those predicted by the theory. In the 

analytical study of (Georgiadis et al., 2004) dealing with Rayleigh wave dispersion in a gradient 

elastic half-plane, the value of 54 10g −= × m is proposed as the best value to describe sufficiently 

Rayleigh wave dispersion in a geomaterial. However, it is obvious that the value of g  varies 

according to the mechanical properties of the testing material. Therefore, our results should be 

interpreted in conjunction with measurements from real bones to decide on which is the most 

suitable combination to provide more realistic dispersion curves. 

Figures 2, 3 and 4 reveal that the bulk longitudinal and shear waves propagating in the 

gradient elastic plate are dispersive, which is in agreement with the propagation of plane waves 

in an infinitely extended gradient elastic medium addressed by (Papargyri-Beskou et al., 2008) 

and the results depicted in Figure 1. For some combinations of g  and h , the deviation of the 

obtained velocity dispersion of the bulk waves from the constant velocity of the classical elastic 

ones becomes significant. For instance, in the Case-1a at 1MHz, i.e. for wavelength 4≈  mm, the 

velocity of the bulk longitudinal wave was changed as much as 16% between the classical and 

the gradient theory of elasticity. This may play an important role when interpreting axial-

transmission velocity measurements along the long axis of a bone as it is reported in previous 

experimental studies of (Njeh et al., 1999; Protopappas et al., 2005). In the considered plate, for 

different values of g  and h  and for frequencies from 0.5 MHz (i.e. for wavelength 8≈  mm) to 

1.5 MHz (i.e. for wavelength 2.7≈ mm), which is the commonly used spectrum in the ultrasonic 

bone studies (Protopappas et al., 2008), the velocity dispersion of the guided waves was 

significantly modified from that of the Lamb waves. In a previous study (Protopappas et al., 
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2006), by superimposing the theoretical Lamb wave dispersion curves, computed for a bone-

mimicking plate, on the time-frequency representation of the signal obtained from ex vivo 

measurements on an intact tibia, we found that the propagating guided waves could not be 

sufficiently characterized by the Lamb modes. Therefore, the Lamb wave theory has limited 

efficiency in predicting wave guidance phenomena in real bones. This was further supported by 

the findings of two subsequent 3D computational studies (Bossy et al, 2004; Protopappas et al., 

2007) showing that for the same frequency excitation, irregularities in the tubular geometry of 

the cortex as well as the anisotropy and inhomogeneity of the bone also give rise to major 

changes in the dispersion of the modes predicted by the classical tube theory. To this end, the 

results obtained in the present analysis clearly show that the material dispersion induced by the 

bone’s microstructure even in frequencies well below 1 MHz is an additional parameter, which 

significantly affects the characteristics of wave propagation in bone.  

Finally, when the two internal material lengths g  and h  become zero or equal to each 

other the presented theory provides velocity dispersion curves being identical to those of the 

classical elasticity. Nevertheless, in the present study for g h=  slight differences between the 

two theories of elasticity are observed, obviously due to arithmetic errors in the solution of the 

system of algebraic equations. 

 

VI. CONCLUSIONS 

In this work we presented an analytical study on guided wave propagation in 2D bone-

mimicking plates with microstructure. For the first time the simple theory of gradient elasticity is 

proposed to incorporate bone’s microstructural effects into the stress analysis. Hence, two 

additional elastic constants (i.e. the g and h ) associated with micro-elastic and micro-inertia 

effects were considered. In accordance with the findings of a previous study (Papargyri-Beskou 
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et al., 2008), we demonstrated that when the elastic constants have different values, 

microstructure plays a significant role in the propagation of the bulk longitudinal and shear 

waves by inducing material and geometrical dispersion. It was also shown that the insertion of 

the microstructural characteristics into the stress analysis gives rise to major changes in the 

dispersion of the guided modes predicted by the classical Lamb wave theory. Although previous 

studies (Georgiadis et al., 2004) report that the microstructural effects are important only at high 

frequencies, in the present work it was made clear that they can be equally significant at medium 

frequencies, i.e. 0.7-1 MHz (i.e., for wavelengths from 2.8 mm to 4 mm); which are within the 

region of interest in ultrasonic bone studies. The effect was dependent on the absolute values of 

the coefficients and was less pronounced for the smallest value of h  (i.e. Cases-2a, 2b). 

However, reasonable estimations for the relation between the material coefficients and the 

determination of their values can only be made by comparing experimental measurements with 

those predicted by the theory. Our findings show that bone’s microstructure is an important 

factor which should be taken into account both in theoretical and computational studies on wave 

propagation in bones. The gradient theory of elasticity could provide more accurate 

interpretation of clinical measurements on intact and healing long bones. This study could be 

regarded as a step towards the ultrasonic evaluation of bone.  
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VII. APPENDIX A 

The components of the determinant for of the two systems which correspond to the 
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and for the anti-symmetric are: 
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TABLE I: Values of g and h for each one of the six subcases.  

Cases  
Gradient 

coefficient g 
(m) 

Intrinsic 
characteristic 

length h  
(m) 

Case-1a 45 10−×  410−  

Case-1b  510−  410−  

Case-1c  410−  410−  

Case-2a 410−  510−  

Case-2b  65 10−×  510−  

Case-2c 510−  510−  
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FIGURE CAPTIONS 

FIG. 1. (color online) Dispersion curves of the group velocity versus frequency for elastic 

medium with microstructure. 

 

FIG. 2. (color online) Group velocity dispersion curves of the symmetric modes for a free bone-

mimicking plate for the case of the classical (dashed lines) and the gradient theory of elasticity 

(solid lines) for (a) Case-1a: g h>  ( 45 10 ,g −= × 410h −= ), (b) Case- 1b: g h<  

( 510 ,g −= 410h −= ) and (c) Case- 1c: g h=  ( 410 ,g −= 410h −= ).  

 

FIG. 3. (color online) Group velocity dispersion curves of the antisymmetric modes for a free 

bone-mimicking plate for the case of the classical (dashed lines) and the gradient theory of 

elasticity (solid lines) for (a) Case-1a: g h>  ( 45 10 ,g −= × 410h −= ), (b) Case- 1b: g h<  

( 510 ,g −= 410h −= ) and (c) Case- 1c: g h=  ( 410 ,g −= 410h −= ).  

 

FIG. 4. (color online) Group velocity dispersion curves of the symmetric modes for a free bone-

mimicking plate for the case of the classical (dashed lines) and the gradient theory of elasticity 

(solid lines) for (a) Case-2a: g h>  ( 410 ,g −= 510h −= ), (b) Case- 2b: g h<  

( 65 10 ,g −= × 510h −= ) and (c) Case- 2c: g h=  ( 510 ,g −= 510h −= ).  

 

FIG. 5. (color online) Group velocity dispersion curves of the antisymmetric modes for a free 

bone-mimicking plate for the case of the classical (dashed lines) and the gradient theory of 

elasticity (solid lines) for (a) Case-2a: g h>  ( 410 ,g −= 510h −= ), (b) Case- 2b: g h<  

( 65 10 ,g −= × 510h −= ) and (c) Case- 2c: g h=  ( 510 ,g −= 510h −= ). 
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