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Abstract

The investigation of the direct scattering problem of an elastic dyadic incident
field from a spherical inclusion, is the main outcome of this work, in the case
where the scatterer and the host environment dispose microstructure. The
framework of the method is based on the implication of Mindlin’s gradient
theory. The development of the method is fully analytic and gives successively
several byproducts, which are indispensable for the solution of the scattering
problem but constitute also independent results of their own theoretical and
practical value. So the numerable set of Navier eigendyadics is constructed,
which is proved to be a basis for every dyadic field obeying the dynamic
gradient elasticity equation. This permits the construction of a useful spectral
representation for every gradient elasticity field. Furthermore, the set of dyadic
spherical harmonics is built, which stands for the extension of the well-known
spherical vector harmonics to the dyadic realm. Every dyadic field restricted on
the unit sphere can be expanded in terms of these spherical dyadic harmonics.
The orthogonality relations of these functions are determined in close form
and this is the prerequisite for the fully analytic treatment of the boundary
conditions involving the scattering problem under consideration.

PACS numbers: 02.30.Jr, 46.40.Cd, 46.05.+b, 62.30.+d
Mathematics Subject Classification: 35G15, 35P25, 74J20, 74N15

1. Introduction

The classical theory is proved inadequate to predict the suitable mechanical behavior of
linear elastic materials when they exhibit a specific type of microstructure. Granular
materials, polymers, liquid crystals, porous media, solids with micro cracks, dislocations
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and disclinations, composites are characteristic cases in which micro continuum field theories
are necessary to be implemented to give the appropriate investigation framework.

The concept of the microcontinuum naturally arises when wave phenomena are studied
in materials with microstructure. This concept is interrelated with the notion of length and
time scale in the involved wave fields. The response of an elastic body to the incidence of
an elastic field is influenced heavily by the ratio of the characteristic wavelength A, which
is a special feature of the external wave stimulus, to the internal characteristic length /. In
the case that ’ll > 1, the classical elasticity theory gives reliable predictions since a large
number of particles act in collaboration. In contrast, when % ~ 1, the response of the several
subcontinua (particles) becomes important, so that the axiom of locality underlying classical
theory fields fails. As an example, the classical theory of elasticity is well known to predict
two non-dispersive waves (the longitudinal and the transverse one) whose short wavelength
behavior departs essentially from experimental observations.

To remedy the non-locality of the involved elastic fields, several approaches have been
followed modeling the microstructural effects in a macroscopic manner by introducing higher-
order strain gradient, micropolar and couple-stress theories. We note here the principal
contributions of Mindlin and co-workers [ 1-3], Aifantis and co-workers [4—7] and Vardoulakis
and co-workers [8, 9] in connection with the higher-order strain theories. In addition one
may pay attention to the contribution of Eringen and co-workers [10—12] pertaining to the
micropolar theories, as well as [13—16] in connection with the couple-stress theories.

The implication of non-classical theories in dynamic problems handling wave propagation
in beams and half-space has been proved very promising [17—19] by achieving the elimination
of singularities or discontinuities of classical theory and capturing the expected size effects
and wave dispersion in cases where, as mentioned before, this was not possible by classical
elasticity methods means. A special study of elastic waves propagation incorporating enhanced
theories is attributed to Georgiadis and his co-authors [20, 21].

In the present work, we examine the scattering problem arising when an arbitrary elastic
field (plane wave in preference) is traveling in a medium with microstructure, which hosts a
spherical elastic inclusion with different elastic macro and micro-parameters. The framework
of the method is based on the implication of Mindlin’s gradient theory [1]. We mention here
a relevant study, instead concerning the micropolar materials case, exposed in [22] and the
relevant references therein. Apart from the different field model, the framework followed in
this work is totally diversified due to the fact that the methodology is developed in the dyadic
framework which suits perfectly to the elasticity realm [23]. As a consequence, the stimulus
of the scattering process as well as the scattered field are supposed to be dyadic elastic fields.
As a first consequence, the dyadic incident field incorporates simultaneously all the possible
excitation orientations and polarizations. As a second consequence, the setting of this work
can be used unaltered to provide with the construction of the dyadic Green function of the
system: host medium-spherical inclusion.

Several byproducts arise along the present work, which constitute generalizations of
well-known important features of classical elasticity. The paper is organized as follows. In
section 2, the boundary value problem in dynamic gradient elasticity is studied in the dyadic
formulation. The ultimate result is the examination of the aforementioned BVP in the time
harmonic framework and under the introduction of spherical coordinates. The outcomes are
several and we pay attention here to the construction of the set of dyadic Navier eigenfunctions
which constitutes the generalization of the Navier eigenvectors. This set is important since
every interior or exterior (radiating or attenuated) dyadic field of gradient elasticity can be
expressed as a countable expansion in terms of the elements of this set. This fact is a fruitful
spectral representation of solutions of the dynamic equation of gradient elasticity in spherical
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coordinates. Special issues of these eigensolutions concerning mainly their independence are
presented in appendix B. It is important to note that the restriction of the Navier eigendyadics
on spherical surfaces gives birth to the dyadic harmonics, which constitute the generalization
of the well-known vector spherical harmonics. This set is also a basis in the sense that the
trace of every dyadic field on a spherical surface can be represented as a countable superposition
of dyadic spherical harmonics. In section 3, the scattering problem by a spherical penetrable
elastic body with microstructure is studied. The incident, interior and scattered fields are
expanded in terms of the Navier eigendyadics and are forced to satisfy the boundary conditions
of gradient elasticity on the scatterer surface. Exploiting the orthogonality relations of the
dyadic spherical harmonics, which are exposed in appendix A, we are in position to decouple
the countable expansions of the involved fields and to acquire for every particular index of the
spectral representation a well-formed linear system with coefficients presented in appendix C
and unknowns the expansion coefficients of the relevant fields corresponding to the specific
index. Potentially then we are in position to determine the expansions of the participating
fields in the scattering process by calculating the coefficients of the spectral representations
by solving finite linear algebraic systems whose production is fully analytical and exact and
is not based on truncation processes, thanks to the exploitation of orthogonality results of the
herein constructed basis of dyadic special functions.

2. Dyadic formulation and spectral analysis in dynamic gradient elasticity

Before introducing the dyadic formalism, let us recall, for the reader’s convenience, some
fundamental concepts related to kinematics of elastic bodies with microstructure, selecting
as a guide reference the famous work of Mindlin [1]. Let us consider a three-dimensional
linear, gradient elastic body, in which we pay attention on a material volume V confined by a
surface S, which is geometrically characterized by its normal vector T, which for simplicity is
taken to be a continuous vector field, fact reflecting the smoothness of the boundary S. As in
[1], we denote by X;,i = 1, 2, 3, the rectangular components of the material position vector,
measured from a fixed origin, and by x; the components, in the same rectangular frame, of the
spatial position vector. The components of displacement of a material particle are defined as

u; Exi—X,'. (1)

Embedded in each material particle there is assumed to be a micro-volume V' in which X
and x; are the components with respect to a Cartesian system, having parallel axis with the
unprimed one and moving with the displacement. The micro-displacement is so introduced
with components

u; =x; — Xj. 2)

The absolute values of the displacement gradients are assumed to be small in comparison with
unity. These gradients play an important role in the dynamic behavior of the elastic medium.
‘We mention here the usual strain (now the macro-strain)

€j = %(8;Mj+8jl/t[), (€))]
in accordance with the micro-strain
_ 1
Vij) = Wi + ¥, “4)
where ¥;; stands for the micro-deformation ;; = du’;, which is assumed to be homogeneous

in the micro-medium V' and non-homogeneous in the macro-medium V. The antisymmetric
part of the micro-deformation is the micro-rotation Vr;;; = %(lﬂi ;i — ¥ji), reminiscent of

the well-known macro-rotation w;; = %(8,-14_,- — d;ju;). We finally introduce the relative

3



J. Phys. A: Math. Theor. 41 (2008) 395203 A Charalambopoulos and L N Gergidis

deformation y;; = 0;u; — ¥;; and the micro-deformation gradient (the macro-gradient of the
micro-deformation) as «;jx = 0;¥r. All three of the tensors ¢;;, y;; and «;j; are proved to
constitute the independent arguments of the potential energy function U (potential energy per
unit-macrovolume) referring to the elastic medium under consideration, i.e.,

U=U(€,'j,]/,'j,K,'jk). (5)

The variation of the potential with respect to the aforementioned arguments gives birth to the

corresponding stresses. In fact, we obtain the ‘macroscopic’ symmetric Cauchy stress 7;; by

differentiating the energy with respect to the macro-strain ¢;; (i.e., 7;; %) and similarly we
ij

define the relative stress as o0;; = % and the double sress as p;jx = (,;”( I_J_k
. ij : ij

of the potential energy obtains the form

. Then the variation

SU = rijSEij+Uij6yij+ﬂijk8Kijk~ (6)

This is the most general form for the variation of potential energy. However, in the framework

of the long-wavelength approximation, the simplifying form II of Mindlin [1] emerges. In

this approach, and using arguments pertaining to similarities with the wave propagation in

homogeneous plates, Mindlin considers vanishing of the antisymmetric relative deformation

viij1 and of the symmetric relative stress o;;). In addition, using the underlying constitutive

relations, the variable «;;x can be expressed (and so replaced) by the new tensor &;jx = 9;¢€x,
U

whose ‘dual’ double stress tensor is now fi;jx = Er So the variation of the energy becomes
ij

sU = Tijfseij + /’lijk(SI/C\,'jk. 7)
We adopt now the dyadic elastic formulation dealing with dyadic displacements instead
of vector ones. We introduce the dyadic displacement field 7 = w; ® X;, where w; = u ﬂij
are the Cartesian vector components. The macro-strain tensor € = %(Vﬁ + (VI)?13) is now a
triadic and can be expanded in the form ¢;;; = %(8iujl + d;u;;). The symbol (0)?13 denotes a
specific permutation of vector arguments, i.e. (a® b ® ¢)?!* = b ® a ® ¢ and similar notation
holds for tensors of higher order. The Cauchy stress tensor 7, which is the dual tensor to a
strain field in the energy functional is also a triadic. The gradient of the strain (V€) becomes
now a dyadic of fourth order and this property is inherited by its dual dyad in the energy
dual pairing, i.e. the double stress tetradic: 1 = w;juX; ® X; @ Xx ® X;. (We omit the hat
symbol over the double stresses for simplicity). The constitutive relations connecting strains
and stresses are given in [1] and reflect the simplest possible assumption of a homogeneous,
isotropic, quadratic (in terms of its arguments) energy density. More precisely, omitting in
the sequel the juxtaposition symbol ® in tensor notation, we express the Cauchy and double
stresses as follows:

F=2uT + M1V - %) = n(Vii + (VI3 + AT(V - %), (8)
and
B = 1a) (@AD" +TVV -7+ AVV - )31 + AVV - )13
+2a,(AVY - )1 + Las[IAT +TVV - & + TAD) 1 + AVV - 1) 1324
+ay[VVii + (VVI) P + Las[2(V Vi)' + VVE + (VVI) P, ©)

_ 243 _ 8g3 Ggi+2g2)°

where & = fmac — Dyibn A+20 = Amac + 2lhmac — Gr4by) ~ 3Gbitbatby) The'pa.rameters
Amacs Mmac are the Lame constants of the macroscopic elastic material, while a;,i =
1,...,5,g,i = 1,2 and b;,i = 1, 2,3 are constitutive parameters due exclusively to the
presence of the microstructure. The operators 7 and i merit symmetry properties. More

precisely, we have that 7;;; = 7% and pju = pikj. Apart from the artificial last index
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introduced via the dyadic formulation, the specific symmetry of the other indices is typical in
the framework of Mindlin theory referring to form II.
The variation of the potential energy Uy stored in region V is given by the formula

sUy =/6Udr=/[?f§€+(ﬁ)4321 2 V€] dr, (10)
%4 |4

where the dots represent tensor contractions.
Adapting suitably the already established vectorial analysis in [24] to the dyadic
displacement case, it is proved that the variation of the energy functional is

SUy = —/[v-(?—v-ﬁ)]:3ﬁTdr+/[ﬁ-ﬁ”“3-ﬁ] cm-vEuh1ds
\%4 S

9
+f [ﬁ-?-ﬁ@ﬁ: a—“’ —ﬁ-(vs-ﬁ)—ﬁ~(v5~ﬁ2‘3“)] :sut ds
Ky n
+f[(vs-ﬁ)ﬁ®ﬁ—(vsﬁ)]:ﬁ:sﬁTdS, (11)
S

where Vg = I —-A®0) - V=V — ﬁ% is the surface gradient operator.
The differential equations along with the accompanying boundary conditions for the
dynamic gradient elasticity problem are produced via the application of Hamilton’s principle

131 3]
8/ (Ky —Uv)dt+f Wy dt =0. (12)

Iy fo
In the previous relation, Ky is the total kinetic energy of the medium occupying the volume
V, while § Wy is the variation of the work done by external forces expressed as [1, 3]

3wv=f f:&ﬁTdr+/Te:ﬁ-V(aﬁT)dS+/T):5iszs, (13)
|4 N S

where f denotes body forces, P surface tractions and R stands for surface double stresses.

Combining equations (11)—(13) and adopting a suitable form for the kinetic energy, we
can construct, from the variational formulation, the governing differential equations along
with the accompanying boundary conditions. There are several models for the kinetic energy
depending on the nature of the microstructure. Following here the approach of Mindlin, where
there exists a non-negligible contribution to the macro-velocity tensor from the micro-velocity
field, whose contribution is actually proportional to the macro-velocity gradients, we infer that
the differential equation of the gradient elasticity problem is

2~

~ — 0% i~ 0%

where p’ stands for the mass of micro-material per unit macro-volume and Disa specific tensor
of fourth order depending on the physical and geometrical parameters of the microstructure.
The corresponding boundary conditions are the following:

(i) classical BCs

~ o~ PN Rim . - . -
Pr)=n-7(r) —n®n: ﬁ(r) —1- (Vs () —10- (Vs 2 (r)
2
+[(Vs - MA®A — (V)] : () +0-p'D : o (ﬁi’ﬁ(r) + vs’ﬁ(r)>
at? on
=P, res (15)
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and/or
u(r) = o, res. (16)
(i) non-classical BCs
Rr) =10 1) -7 =R, res (17)
and/or
ou ~
—(r) = qo, res. (18)
on

The fields Py, %, 730 and go denote prescribed values. Furthermore, assigning to
equation (14) suitable initial conditions, we have the well-posed initial boundary value
problem of dynamic gradient elasticity.

Equivalently, if we repeat the process in a two-phase domain V, confined by its boundary
S and surrounding a matrix relation hosting an inclusion D with boundary d D and different
physical parameters, then we obtain two differential equations of type (14) valid in the interior
domain D and its exterior complement differing only in the involved physical parameters.
Moreover, the boundary condition on the interface d D impose now continuity of the fields
u, %, P and R across d D, while on exterior surface S, the BCs remain unaltered. If we are
interested in transmission scattering processes, the exterior surface S is removed to infinity
and the adoption of the outgoing radiation character of the elastic waves is compatible with
vanishing of the contribution of all relevant fields to the ‘infinite’ surface S integrals.

The contribution §'= —V - 1 to the classical stress tensor in equation (14) is given by
§=—V . [l =—[2uc3 AT + A IA(V - 01) + A2 VV(V - )], (19)

where 2ucy = az + 2a4 + as, Ac; = ay + 2ay, hcp = ay + az + as.
The fourth-order operator D entering equation (14) is written as [1]

D= %dpkmnipikimim (20)
where
dpkmn = %dz[apnakm - 5pm8kn + 2(1(30( + 2ﬂ)8pk5mn + ﬁz(apmﬁkn + Spnakm)]- (21)

In this relation, the constants & and § are constitutive parameters referring to the micro-
deformation field while d is the characteristic dimension of the representative cell of the
microstructure.

Introducing the parameters

/d2 2 2 + + 2 /d2 1+ 2
o PLRL @), pdl )
3p 6p0
we express the inertia term V - (oD : %V'ﬁ) as follows:
- 2 82 ) 5
25 ~ ~ ~
V-(,oD.ﬁVu>=pw(h1VVou—h2VXqu), (23)
while the surface contribution i - p/ﬁ : 337 (ﬁ%ﬁ + VS'IZ) in surface traction P becomes
5050 (300 var " (22 a5 v xm)
n- c— | n—u u)l=p— ——— |nx X U
P \ Mot st ) =P [\ 3,
/dz 8~ /d2 R -
(22 =2 (2 -2+ 2 ) av i | (24)
3p ) on 3p
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On the basis of equations (19) and (23), equation (14) becomes

Q42w (1 —ELA)VV -7 — pu(1 —EA)V x V x &

2

:pw[ﬁ—h%vv-ﬁ+h§VXVXﬁ], (25)

where the involved parameters & and &, are determined uniquely from the knowledge of

¢i,i = 1,2, 3 appearing in equation (19) and of parameters A, 1. Indeed, a simple calculation
shows that

2 A + ) +2ucs

2
1 ) 2 ’ 2 a3 ( )

In the degenerate case that ¢; = c3 = g2 and ¢, = 0, then 512 = 522 = g? and the differential
equation (25) becomes

82
(1 —g*M[A+20)VV -1 —uV x V x ] = pm[u —hiVV U +h3V x V x@].  (27)

This is the case when
B = g2 2uVe + V(Y - )P = g2 [2uVe + AVI(V - )] = g2VF,  (28)

which is the dyadic version of the model proposed by Aifantis and co-workers [5, 6]. We
return now to the investigation of the dynamic equation (25). The general dyadic solution i
will be of the form [25]

U=VVh+VVXxA+V xVxG, (29)

with a general scalar field ¢, a free divergence vector field A and a dyadic field G. This is a
general result for every dyadic field. Inserting equation (29) into equation (25) we find that

(1 —E2A) (A +2w)[VVAQ + VV x AAL+ (1 — E2A)uV x V x AG
=p[VVd+VV x A+V x V x 5]—ph%[vvmjj+vv x AA]
— ph3V x V x AG, (30)

where the dot above the functions denotes time derivative.
Doting two times from the left the equation above with V, which means applying the
operator VV : on it, we find that

A[(1 = EIA) A +2w) A%} — p(Ad — hiAP)] = 0. (31)

We are interesting in time-harmonic dependence of the involved fields of the form exp(—iwt).
This reflects the physical assumption of time-harmonic waves with the specific frequency w.
Then the scalar field ¢ is assumed to be expressed as ¢ (r, t) = ¢O(r) exp(—iwt). Actually,
our attention will be focused on the determination of the time-reduced field ¢° and this is
going to be the case for the vector A and the dyadic G as well. To simplify things, we omit the
superscript ‘0, having in mind that all the produced space fields have to be multiplied with
the time factor exp(—iwt), if the full time-space dependence is to be established. However
this time factor is reduced in all steps of the scattering problem that follows in last section
and so its role is not significant. It would be mentioned here that the specific time reduction
is very common and extensively used in many branches of different origin [26]. In the
framework of dyadic solutions, we mention here the similarity with Einstein’s field equations
of linearized theory [27], involving the wave (D’Alembert) operator and describing weak
gravitational waves. Although the wave operator is much simpler than the operator appearing in
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equation (31), the starting point to determine harmonic dyadic waves, in both approaches, is
this specific time reduction. Then equation (31) obtains the form

A[(1 = EIA) A +2w) AP + po® (Ap — h]A*¢)] = 0. (32)

Excluding space-harmonic (stationary) solutions, since we consider propagating waves, we
infer that

(1 —&EA) O +2) Ad + po*(¢p — hiAP) =0

or

—ET L+ 2 AP + [(A +2u) — phiw’] A + pw’d = 0. (33)
We write equation (33) in the form

(@A +B)(yA+8)¢p =0 (34)
with
ay = —EF (L +2u), ad+ By = (A +2u) — phie?, B8 = pw?. (35)

At first sight, it seems that equation (34) provides wave solutions with wavenumbers g and
3 Actually, solving the system of equations (35), we find that the ratios g and % are always
equal but there are two alternatives for these terms,

B 1) 2 pw?

E(:?>:<A+mo—pﬁw%t¢ﬁaﬁ GO
where

D(@) = (A +2u — phle?)’ +4pwEX (1 + 2p). 37)
Consequently,

¢ € ker (A + ki (w)) Uker (A + k3 (w)), (38)
where
k() = 2p0” () = 200" (39)

(A +2u) — ph20? + /D)’ (A +2u) — phlw? — V/D(w)

It is worth noting that k% (w) < 0 and so the wavenumber k;(w) is imaginary corresponding to
attenuated waves. In the limiting case 41, &; — 0 and A — Apac, 4 = Mmac, We easily find

that ky(w) — ma) and k, (w) — ioo giving place to classical elasticity results where

no attenuated waves exist and the real wavenumber refers to the longitudinal elastic waves
propagating in the isotropic elastic medium with the Lame constants Ayae and fmc.

In the essence of this work is the construction of a complete set of eigendyadics in
the space of solutions of the involved equations expressed mainly in spherical coordinates
(although the construction process can be adapted to Cartesian or cylindrical frames), as well
as the exploitation of this set for the solution of scattering problems involving media with
microstructure. Equation (38) provides that in spherical coordinates

S {g,i(k,-r)Y,f”(r);i =1,2,n=0,1,2,...,m < |n|,l =1,2, 3,4}, (40)
where Y are the spherical harmonics, g/ stand for the spherical Bessel functions (I = 1,2),
or alternatively for the spherical Hankel functions (I = 3, 4).

In the following part of this work, we will use extensively the Navier eigenvectors L, M, N
expressed in spherical coordinates through the relations

L™ (r; k) = V™l (r; k) (41)
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M k) =V ox (g (r; k) 42)

1
Nl k) = EV x M™(r; k), (43)

where x"™!(r; k) = g’ (kr)Y™(F) solves the scalar Helmholtz equation corresponding to the
wavenumber k.
Consequently, the first part of the decomposition of the dyadic solution (29)

U=VVh+VVXxA+VxVxG
is contained in the large set
VV¢ e (VL (k)i =1,2,n=0,1,2,...,|m| <n,l=1,2,3,4}. (44)

Remark that the dyadic solution VL!(r; k) constitutes a field of exponential type and
contains actually radial functions which are modified spherical Bessel or Hankel functions.

To construct now the possible vector functions A appearing in representation (29), we
apply on the differential equation (30) the operator V x (V-) obtaining

42w (1 = EfA)V x V x A’A=pV x V x AA — phiV x V x A’A.
Taking time-harmonic dependence we obtain
42w (1 = EfA)V x V x A’A= — pw’V x V x AA+ phio®V x V x A’A. (45)

Using the well-known property V x Vx = V(V:) — A and the fact that A is solenoidal we
deduce that

A +2w)(1 — E7A)AA—phiw’ AA + po*A} =0
and searching again exclusively for propagating solutions, we obtain
—EL A+ 2 APA + (A +21) — phiw®|AA + po®A = 0, (46)

where we recognize the differential operator met in equation (33) but now applying on the
vector field A.

The possible representations of A obeying the free divergence assumption and assuring
the spherical invariance are of the form

A=Vy xr or A=V x(Vy xr)

Substitution of these expressions into equation (46) easily leads to the result that y» again
satisfies equation (33). Consequently ¥ € ker (A + ki2), i =1, 2, result which in combination
with the nomenclature introduced by equations (41)—(43), provides easily the outcome that
the second term VV x A of the decomposition (29) is characterized as follows:

VV x A e{VM(r;k);i =1,2,n=0,1,2,...,Im| <n,l=1,2,3,4}
U{VNS (s k)i = 1,2, =0,1,2,...,Im| <n,l =1,2,3,4]}. 47)

To characterize the third term of the representation (29), i.e. the possible forms of the dyad
V x V x G, we remark first that the dyadic G can be selected to be of the form

G=Vx§g, (48)
where ¢ is another dyadic. Indeed

where Helmholtz decomposition for vector fields has been adopted. The term Vf can be
ignored since substituted in the solution V x V x G offers no contribution.
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We apply then the operator V x V x on the differential equation (30). Using the solenoidal
property of G and the property V x Vx = V(V-) — A we find that

(1 = A)A’G = pA>G — ph2A3G.
Working with propagating time-harmonic fields we again obtain that
—1EIA’G + (u — ph3w?) AG + pe*G = 0. (50)

There exists a correspondence between the differential equation above and equation (33)
established by the parameter correspondence

n<— rA+2u, hy < hy, & «— &
Consequently,
G e ker (A +K3) Uker (A +£2), (51)
where
20w? 2p0?
I () = ki () = (52)

w — phiw? + /D'(w)’
with

D'(w) = (1 — ,ohng)2 +4pw’Eip.
We remark that kﬁ (w) is always less than zero and so k4(w) is a purely imaginary number
corresponding to attenuated waves. Clearly the limiting values of k3 and k7 as &, h, — 0 are
Mma) and —oo correspondingly and so we recover the wavenumber of transverse classical
waves and again verify the lack of attenuated waves in classical elasticity.

It is clear that for every specific wavenumber k;, j = 3,4 and spectral triple (n, m, )
there exist exactly six independent selections for the dyad C G expressed by equation (48) and
satisfying the corresponding Helmholtz equation. Indeed, G can be decomposed in Cartesian
coordinates as G = (V x g;)X; and the possible independent selections of the solenoidal vectors
V x g; (for every i = 1, 2, 3) are combinations of the two solenoidal Navier eigensolutions
corresponding to (n, m, [) and k; (i.e. the functions M’,f*l(r, k;) and Nﬁ’l(r, k;)). It is proved
in appendix B that the complete set of independent solenoidal dyads G can be selected to be

GelVxLxD,VxMxT,VxNxI),V x (rL),V x (rM), V x (rN)}, (53)

where the abbreviated forms of Navier eigenvectors refer to a specific triples (n, m, [) and
wavenumber k;, j = 3, 4. More precisely, given that V x V x G is equal to — AG = k*G we
infer that the third term of the decomposition (29) is proportional to G and so we conclude to

V x (V x G) € {V x (L (r, k) x 1), V x (M (r, k) x 1),
Vo (N, k) < 1),V x (FL (k) ¥ x (eM (e k))),
v x (eN"(r, k). n=0,1,2,... |ml <nl=1234}. (54

Through equations (29), (44), (47) and (54), we have determined the fundamental eigendyadics
constituting the structural solutions of the dynamic gradient elasticity. For every specific triple
(n,m,l) and wavenumber we deal with nine dyadic eigensolutions which constitute the
analog of the Navier eigenvectors in the dyadic framework. They can so be nominated
Navier eigendyadics indicating their relevance to the vector case. It is very important
to express these eigensolutions in spherical coordinates. This is necessary in order to
handle boundary value problems described geometrically even approximately by the spherical
coordinate system. Even in the study of general geometrical boundary value problems,
the evocation of collocation-type methods to ‘follow’ the boundary conditions is strongly

10
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supported by the ability to express the involved fields in terms of spherical point source dyadic
eigensolutions.

After extended and very elongated analysis, we have constructed the forthcoming spherical
representations for the aforementioned dyadic solutions. Special role to these representations
play the spherical vector harmonics
P’n(’\) ’\Y’n Bln(’\) DYm(A) 9 a + ¢? a Yln(’\) Cm(’\) Bm(’\) o

) =rY), r) = H=0—+—— ), r) = f) x

n n n n 39 sin 9 8¢ n n n
(535

(the usually adopted normalization factor has been omitted here for simplicity). More precisely,
we are in position to present the decompositions,

VL_ apm d 1 apm apm gi’l(kr) Vi3 _ (ppmMm
T = Gn(kr)tP + m <Egn(kr)) [(an )s + (an )a] + k—r[(DPn )s (an )a]
gakr) o 1o [ankr)  ga k)
S (DB), + (117, ] = & (k)P + [ o e ] (B,
Gnlkr) gnkr)
e (DP) + Tk (DB}, (56)
VM _ gulkr) [(ch') _ et D g P;’:)] + gu(kr) (FCT)
k kr s s
. gnkr) | . m
+ [gn (kr) + o ] (rCn )a &)
VN =nn+1) [g"(kr) + g,,(kr)i| PP+ [—g"(kr) +n(n+ l)g"(kr)
k (kr)? kr " kr (kr)?
1 om o gnlkr)
_ (1 + —(kr)2> g,,(kr)] (FB)), — gu(kr)(EB)') +n(n+1) &) (DPy),
gn(kr) — gu(kr) m
+ [ &) + . ](DB,, ), (58)
Vx (LxD 1 . VL T .
S = _VVP+ 0l = — + o — F) + OfF
k k2 k
. &n(kr) gnkr) | . m &n(kr) . gn(kr) _ PR,
= [_2—(kr) +n(n+ 1)—(kr)2 ] P, + [—(kr) —(kr)2 gn(kr)i| (an )s
&n(kr) - gntkr) .
+[ Taa (kr)] (oe), + 25 (o), (59)
VxMxI) (VM)
k ok
_ gu(kr) m e+l o . .
- &b [(DCn )+ 1Dy )} + g (kr) (FC),

n(k .
_ [gn (kr) + g(}gr;)] (FCr), (60)

11
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Vx(NxI) (VN')

k k
_ gnlkr) gnCkr) | .o, | &n(kr) gn(kr)
=nn+1) [ k)2 + ) i|rPn +[ . +nn+1) k)2
1 apm apm 8n (kr) m
— (1 + W) gn (kr)] (an )S + g,,(kr)(an )a +n(n+1) k)2 (DPn )J
gn(kr) = gn(kr) m
+ [ &) + ) ](DBn ), (61)
o D) gk 5 o L
V x (rL) = |:g,, (kr) — —(kr) :| (I x P} ) + gn(kr)(rCn )S
n(k . n(k
- [gn (kr) — %] (FC), + %(DC?)S (62

V x (tM) = —g, (kr)n(n + 1)(DP}') + g, (kr)[n(n +1) — 11(¢B]) + g, (kr)(FB)  (63)

Y x (rN) = nn+1)

n k 7 n k A
[gn(kr) + 3%] ([ x P") +n(n + 1)%(&7)3

gn(kr) g,,(kr)] (f‘Cm)

+ g, (kr) + n

+ [—n(n +1) ) )

(K
+ [g,,(kr) + g(;r;)] (DC?) (64)

where the subscript s(a) indicates the symmetric (antisymmetric) part of the involved dyadics.
We remark that the dyadic eigensolutions of the dynamic equation of gradient elasticity—
after being restricted on a specific sphere—are expanded in terms of a set of dyadic spherical
harmonics, which constitutes the extension of the vector spherical harmonics. For every
specific parameter pair (n,m), this set contains six symmetric and three antisymmetric
elements. These dyadic spherical harmonics are independent and merit concrete orthogonality
relations. These relations are presented in appendix A and are indispensable for the
investigation of the interrelated boundary value problems.

3. Scattering by a spherical penetrable elastic body with microstructure

In this section, we apply the results of the spectral analysis introduced in the previous section to
the solution of a representative scattering problem. We consider a spherical region D of radius a
centered at the coordinates origin O, occupied by an elastic macroscopically isotropic material
with microstructure, fully characterized by the parameters A; and p;, the densities p;, p;, the
gradient parameters «;;, ] = 1,2,...,5, h;1, h;» and the characteristic micro-dimension d;.
The surrounding background space is considered to be elastically isotropic with microstructure
as well, physically determined by the exterior parameters A, ji., the mass densities p,, p, and
the gradient parameters «.;, [ = 1,2, ..., 5, h.1, hep and d,.
We consider an elastic time-harmonic dyadic plane wave of the form %" (r)e ™! where

'it-’inc (r) — Al/l;i(\eikg_l (w)i(\-l‘ + AZ(T _ /l;i(\) eikyg(w)i;l‘ (65)

is the time-reduced part of the field, propagating in the matrix space and interfering with
the penetrable inclusion, giving birth to secondary fields creation. It is worthwhile to note

12
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that the dyadic form of this field permits to represent uniformly all the possible polarizations
of the incident field and it is sufficient to ‘dot’ expression (65) on the specific polarization
direction in order to acquire the corresponding vector field. The scalars A; and A, are just
the amplitudes of the incident plane waves. Furthermore, we mention that the concrete form
of the appeared dyadics reflects the irrotational and solenoidal type of the involved traveling
waves. The wavenumbers k. ;, j = 1, 3, appearing in the representation (65), are determined
via expressions (39) and (52), after substituting there the physical parameters referring to the
background space. We mention that the remaining wavenumbers k. ;, j = 2,4 are absent
in the incident field expression since are imaginary and then cannot be present in a traveling
plane wave with sources remote to infinity.

The scattering process results in the creation of the scattered field % (r)e ™', propagating
outward the inclusion region, as well as of the ‘trapped’ standing wave %' (r)e ™', inside the
scatterer region. The outcome of the above section allows the representation of the produced
fields in terms of the constructed spectral eigendyadics as follows:

2 3 3 3
VL im VMZ’N . VN, i
Z Y + bw,j—k +Chej N
j=1|m|<n eJ eJ e
4 3 3 3 <
V x (anej X I) m (M;nej X I) m (N:lnej I)
e (e, e D gy T e XD T O <)
=3 |m|<n e, e,] e,]
3 3 3
L L) 2 ¥ () 65, N2 )
2 m,1 m,1 m,1
~i: amAAVL”l] m. M”’J m. VN'“J
n,i,j . n,i,j . n,i,j
j=1|m|<n k"J k’a] kl,j
m,1 T 1 T 1 T
m V x (L,fi’j X I) ” V x (Mffl j I) ” V x (Nnml j I)
+2 Y N
Jj=3 Im|<n i " i
1 1 1
+ SfUV X (rL:':lj) € ]V X (rMnmlj) ;‘n”V X (rNZ’lj) , (67)

where the mixture coefficients undertake to encode all the diversifying information about
the represented fields since the functional behavior of them is incorporated in the spectral
eigendyadics, which is a common base for all the relevant dyadic fields. The indices appeared
in every quantity of the form ()n 5,; serve specific notation. More precisely, the index /
determines the type of the involved spherical Bessel (I = 1, 2) or spherical Hankel function
(I =3, 4), the index s defines the exterior (s = e) or interior (s = i) medium imposing the use
of the corresponding material parameters wherever these appear, while j refers to the concrete
wavenumber Furthermore, the summation ), is a simplification of the well-known sum
Yoo > m—", over the integer separation constants of the spherical geometry. It is worthwhile
to mention that the total number of coefficients participating in both fields for every pair (n, m)
is equal to 36.

Clearly, the interior field %’ is represented through eigenvectors constructed with spherical
Bessel functions and modified spherical Bessel functions of the first kind to ensure regularity
in the vicinity of the coordinate system origin, while the exterior scattered field #*¢ involves
spherical Hankel functions of the first kind (to ensure radially outward propagating waves)

13
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as well as modified spherical Hankel functions of the first kind (to ensure radially attenuated
waves).

By construction, the displacement fields introduced by equations (65)—(67) satisfy the
time-reduced dyadic equation of gradient elasticity with the convenient physical parameters
and obey the necessary regularity and asymptotic behavior. What remains to be accomplished
is to force these representations to comply with the boundary conditions of the problem. This
plan will result in the formation of linear algebraic systems, whose unknown quantities are
just the expansion coefficients of the representations (66) and (67).

The total displacement field in the exterior region R*\ D is the superposition of the incident
and the scattered wave, i.e. U u =W+, As we cross the discontinuity surface r = |r| = a,
the adjacent fields %° and % must obey the continuity conditions stemmed from the form of the
boundary fields expressed by equations (15)—(18). More precisely, the conditions describing
the interrelation between the corresponding fields across the boundary of the scatterer are the
following:

Pe(r) = P'(n), rl=a (68)
w(r) = (r), r|=a (69)
R°(r) = R'(v), Il =a (70)
Oaew =L, Ir| =a, (71)
or or

where the superscripts indicate the region in which the quantities tally with.
We express first the incident field in terms of (65) the dyadic eigensolutions of dynamic
gradient elasticity as follows:

a’inc(r) — _ivvelkp Kr + A2 'f_'_ 2 eike‘g(w)ﬁ.r
ke 1 ke,3

Lml3 X,\)

ke 72

=AYz 1(k) L +A; Y Z"’3(k)

[m|<n lm|<n

where Z,’ff j (/k\) 2n + i ((’r’l +;’:)), Y (k) are involved in the decomposition of plane waves in
terms of spherical standing waves [28]

We face the boundary conditions (69) and (71). We use the representations (65)—(67)
which, restricted on the sphere r = a, become expansions in terms of dyadic spherical
harmonics. We project then functionally conditions (69)—(71) on these dyadic spherical
harmonics. This projection is equivalent by double doting with the dyadic functions and
integrate over the unit sphere. The orthogonality relations concerning the complete set of
dyadic harmonics are presented in appendix A and are evoked here to provide fully algebraic
systems. It is interesting that these orthogonality relations help to obtain separate algebraic
systems for every pair (n, m). In other words the terms corresponding to different spectral
pairs (n, m) decouple. We remark that—this is actually the case for the remaining boundary
conditions as well—the projections on the dyadics £P}, (f‘Bf)s, (DPZ‘)S, (DB?)S, (f’BZ’)a
lead, for every specific pair (n,m), to separate equations pertaining to different set of
unknowns for these obtained after projecting on the remaining dyadic spherical harmonics
(FCp),. (D). (FC2),. (1 P,

n
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Recapitulating conditions (69) and (71) lead to the following algebraic systems for every
specific pair (1, m):

2 4
(n,m) (n,m) (n,m) (n,m) (n,m)
Z que/ n.e,j Cpqa/ n.e,j +Z quej n.e,j que/ynef quej nc’/]
j=1 Jj=3
2
(n,m) (n,m) m
_Z Apgirjnij + Cpgij€ ntj]
4
(n,m) (n,m) (n,m) P
_Z A[’qu ”’/+FP‘1’JV”’J+E["IZJ "”]]
— pn.m) — C
— U, for p=1,2,g=1,2,....5 (73)

2 4
[B(" ,m) b + Z B(" m) ﬂrrln,e,] A(" ) om Z(" m) Cn , ]]
= Jj=3

pq.e.j ne] rq.e.j pg.e.jon.ej pg.e.j
j=1
2 4
(m.m) pm (n,m) am (m,m) om (n,m)
3 [BUm b 1= S [BUm g 4 A sz e ]
j=1 Jj=3
—Y®m, for p=1,2 q=1234 (74)

The system (73) contains ten equations with 20 unknowns, while the system (74) consists of
eight equations involving the remaining 16 unknowns. So the subsystems under discussion
are half-built and they are going to be completed after the remaining boundary conditions are
handled.

The coefficients of the unknowns in the above system along with the coefficients appearing
in the forthcoming equations are determined as an outcome of the projection process described
above. Their full derivation is impossible to be presented here since it is based on several
and elongated manipulations of the emerging surface integrals. We though mention that their
derivation is totally analytic. All the coefficients are presented in appendix C. The non-
homogeneous terms of the right-hand side of these systems are provided exclusively from the
incident wave and are totally determined.

Equation (70) expresses the continuity of R=n- 1'%* . across the spherical interphase.
The complicated form of 1z given by equation (9) reveals the complexity of the required analysis
to apply the projection process on the dyadic spherical harmonics after the substitution of the
expansions (65)—(67) is performed. We finally obtain equations of similar structure with (73)
and (74) as follows:

~1243

S5}

4
(n, m) m (n,m) " (n,m) a (n,m) (n,m) _m
Z Aqel n.e,j C(Iej n.e,j +Z Afle} n.e,j Ffiejy”ej quj ”‘—’J]
j= j=3

2 4
(n,m) (n,m) (n, m) (n,m) (n, m)
= Y A ar, ey ] Z Ao, Ty B e ]
j=1 =3
=$om, for q=1,2,3,4,5 (75)

4
(n,m) ym (n,m) am (n,m) om (n,m) .m
Z[qujbﬂEj +Z qu]ﬁﬂ,E,j Aqe18n6j qujé-ngj]
Jj=1 j=3
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2 4
(n,m) ym (n,m) pm (n,m) om (n,m) o m
ZBqlanlJ Z[Bquﬂn%/ AqlJ(Sﬂl/ qujé‘nl/]
Jj=1 Jj=3
— pm) _
a s for ¢g=1,2,3,4. (76)

The remaining boundary condition involves the continuity of the surface traction P. Using
equations (15), (24) and restrict ourselves to the time-harmonic case, we infer that, on the
spherical surface,

~ P 8# . - . - PR -
P <r>=r-r—rr:5—r-(vs-u(r))—r-(vs-ﬂzl3“>+[(vs-?)rr—vs-ﬂ:u

o'd*\ - po'd>\ o
/d2
+ (h% 212+ p3—>?(v -ﬁ(r)):| .
P

We remark that only in the surface traction enter the micro-inertia parameters i, h, and the
constants o, d. Imposing the continuity of the projection of surface traction on the dyadic
spheroidal harmonics on the scatterer’s surface leads after extended analysis to the systems

2 4
(n,m) m = (n,m) " (n,m) ™ (n,m) (n,m) .m
Z[Aqel ne.j qul n.e,j +Z Aqel n.e.j qu/ynw qul nEJ]
Jj=1 j=3
2 4
(n, m) m % (n,m) " (n,m) m (n,m) _m = (n,m) "
_Z Aqtj n,i,j quj n,i,j _ZAth ®n.i,j thjy"lj eq/ ntj]
j=1 j=3
=om, for ¢=1,2,3,4,5 (77

2 4
(n,m) B (. m) (n,m) (n.m)
Z qu,bTe] +Z Bge n61+Aq61‘SZlej+quJ§nej]
j=3

j=1

'MN

4

(n,m) (n,m) (n,m) (n,m)

[Bql]b?ll _Z Bql]ﬁ"1]+AlilJS;ln1]+quj{’l’nlj]
j=3

j=1

v (n,m)
9

for g=1,2,3,4, (78)

PN

where all the involved coefficients are presented in appendix C. Collecting the outcome of the
above analysis, we remark that the first sub-blocks of the constructed systems (i.e. (73), (75),
(77)) constitute a set of 20 equations with 20 unknowns, whilst the second sub-blocks (i.e. (74),
(76), (78)) form a set of 16 equations referring to the remaining 16 unknown coefficients of
the spectral representation of the dyadic fields. It is very interesting to note that, as presented
in appendix C, the non-homogeneous terms Y., ?;*m, Y;’m vanish for the case we examine,
i.e. the plane wave excitation. Consequently only the system (73), (75) and (77) is necessary to
be solved providing the pertaining 20 coefficients while the remaining 16 coefficients vanish
identically. The numerical investigation of the scattering problem under discussion will be
based on the analytic settlement constructed in this paper. It cannot, of course, be included in
this paper, since it is an extensive independent and polyparametric task on which the authors
already work.
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Appendix A. Orthogonality relations of dyadic spherical harmonics

The dyadic spheroidal harmonics are divided in two groups. The first set contains the
symmetric dyads
B + B'f

_ DPr+ (DP))” DB” + (DB")"

P, (FBY), = —' (DY), = ————, (DB}), = >
w  DCre(Cn’ RO+
(bCy), = + (FC), = ————

and the second one the antisymmetric elements
N i‘.Bm _ Bl‘ﬂf. R i‘.Cl‘ﬂ _ Cmf. ~
(rBﬁ)a =1 " 5 n_ (rCﬁ)a =t " 5 n_ IxP?,

all these elements are independent and merit the following orthogonality properties:

/ PP (FP) dS = / YV AS = Sun S | Y7 |2 (A1)
§2 s2
/ PP (FBY) dS = / PP : (FC), dS = / P : (DP?) dS =0 (A.2)
$2 s2 $?
/ iP" : (DBY) dS = / iP” : (DC) dS = f P : (FB) dS =0 (A3)
52 ] 52 ’ 52
f PP (FC), dS = / FP7 : (Ix P?)dS =0 (A.4)
S2 S2
B |

/Sz (FBY"). : (FBIY) dS = I nz||S2 5,8,  — n(n2+ 1)5nn/5mm/ & ”iz (A.5)
/ (FB)'), : (FCY) dS =0 (A.6)
S2

— B 1
/;Z (f‘B?)S . (DP% )s ds = || 2||S2 Snn’(smm’ = @8}1”’8}7’1}%/ || leln “iz (A7)

_ B" |
/S 2 (;By), : (DB)) dS = _%am/amm, = —@(Snn/amm/ Y| (A.8)

fsz (FB)'), : (DCy), dS = /52 (FB)'), : (FB)), dS = /Sz (FB)'), : (FC)),dS =0 (A.9)

/Sz (FB)), : (Ix Pr)dS =0 (A.10)
/S (DP7), : (DPY), dS = [2 ¥ ”(”2+ 1)} S S | Y (A.11)
[ e, @), a5 = -5 5, 12 (12
[ o), s e, as = [ e, s (0C), a5 =0 (A13)
fs (oPy), < (7By), a5 = /S (DP)), < (FC), a5 =0 (A.14)
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/ (DB)) : (IxPy)dS =0 (A.15)
52

3n(n+1)
2

/Sz (DB}) : (DB}) dS = |:(n(n + 1) + ] Su S | Y2 |20 (A.16)

[ By, e, as = [ (oB), s (DCT), a5 = [ (0BY), : (B, 05 =0
SZ 52 SZ

(A.17)
/ (DB?) : (FCJY) dS = / (DB) : (Ix P2)dS =0 (A.18)
§2 s?
2
f (Dc,nn)é : (DCI,:,,/)3 ds = [(n(n; 1)) + 3n(n2+ 1):| S Sy ” Y,:n ||k292 (A19)
S2

[ oep), s @), a5 = [ e, (), as= [ oep), @ xPy)as =0
s2 ' s2 ’ s2 '

(A.20)
[ e, s = M (a2
/SZ (FB), : (FCY), dS = /S (#B), : (IxP2) ds=0 (A.22)
[ em, s Geas = "5 5, Y21 (A23)
/Sz (FCm), : (IxP2) ds=0 (A.24)
/S (ix P7) (T x P2) dS = 28,8 | Y| (A.25)
/S (kCy), - (DCYY) s = —@5””,3,”,,,, Iy |? (A.26)
f ey, : (), ds = "("2+ D S S [ Y. (A27)

Appendix B. Investigation of the solenoidal dyadic eigensolutions

Theorem. The family of solenoidal dyadics

VxLxD,VxMxI),VxNxI),V x L),V x (rM), V x (rN),
where the abbreviated forms of Navier eigenvalues refer to specific triples (n,m,l) and
wavenumber k;, j = 3,4, form a set of independent dyadics.
Proof. Let us consider a linear combination of the members of this family to be zero,i.e.,
aVx LxD+BYx MxD+yV x (NxT)+eV x (rL)

+jV x (tM) +1nV x (fN) =0 (B.1)
for every spherical coordinate point (7,0, ¢). We intend to prove that the coefficients
o, B, v, €, j, n necessarily vanish. Two cases arise:
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(i) n # 1. The linear combination can be written as

a[VL — (V- L)1+ B(VM)” + y(VN)” —er x VL — jr x VM — nr x VN = 0.

(B.2)
Taking the inner product with T (from the left), we obtain
oL ~
o [a— — (V- L)r] +BF- (YM)T +9T- (VN)T = 0. (B.3)
We need to recall that L = %VCD with ® = g(kr)Y (F) € ker (A + k?) and that
(k )
= g(kr)P(r) + =——P(1)
M=V x (d)= g(kr)C('\) (B.4)

nn+1)gkr)
kr

N:%VXM: P®+<(k)+g( )> B®.
Then

A .1 .1 I 1 1

T- (VN)T = lV(r -N) — § = Mp(ﬂ + (M) B — E
r r r kr? r
(B.5)
Consequently equation (B.3) becomes
N gkr)  g(kr) 1
a |:kg(kr)P(f) + < ~ 2 )B(f) +kg(kr)P(f)] - ,B—g(kr)C(ﬂ
+y ["("”)g(k P(E) + )g(k B — ”(’;“g(kr)m
( (kr) + gi"”) BO:| —0. (B.6)
Exploiting independence of P, B, C we obtain
alkr)?g(kr) + yn(n + D) (kr)g(kr) + [a(kr)? — yn(n +1)]1gkr) =0 (B.7)
B=0 (B.8)
gkr) gkr)\ n+1Dy Y (. g(kr)
Ol< T 2 ) + o gkr) — - (g(kr) + o ) =0, (B.9)

we recall that g(kr) stands for g, (kr). As a result, given that n # 1, equation (B.3) is
satisfied only if « = y = 0, fact which renders (B.9) automatically valid. (Remark that
if n = 1, the relation o« = y is enough for the satisfaction of equations (B.7) and (B.9).)

Vanishing of «, §, y transforms equation (B.1) to

V x [erL + jrM +nrN] = 0. (B.10)
So [erL + jrM + nrN] = V¢ for some vector function §. As a result
19§
eL+ jM+nN=-— (B.11)
r or
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and

0 0
_5 = _S =0. (B.12)
¢ 00

We immediately obtain thate = j =n = 0.

We examine now the second case:

(ii)) n = 1. As already stated the satisfaction of equation (B.3) is established only if « = y
and B = 0. Taking contraction in the dyadic relation (B.2) we get

—2a(V-L)—jr-(VxM)=0

= 20k® — jkr -N=0= Qak —2j)® =0= j = ak. (B.13)
Taking the exterior product in the place of juxtaposition in relation (B.2) we obtain
—akM + €(—kr® — V(L - 1) + L) + kM — nV(N - ) + nN = 0. (B.14)

It can easily be shown that the last equation holds if and only if € = n. Consequently, the
combination (B.1) obtains the form

ak[%VX (L xf)+%Vx(N xf)+Vx(rM)]+g[Vx rL) +V x (rN)] = 0.

(B.15)

Using the representations of the eigendyadics in equation (B.15) in terms of the spherical
dyadic harmonics, projecting on the spherical dyadics TP and (rC), and using the
orthogonality relations presented in appendix A we obtain that € = o = 0. 0

Appendix C. The elements of the linear algebraic subsystems

We introduce the following terminology for all the elements of the linear subsystems under
consideration:

W =M | . He{AC.TE.B.AZ), t=eij=1234 (C
d
(nm) _ 2 4 mm
Hogri = drH‘”’j L (C2)
In addition wherever the gradient coefficients a,;, j = 1,2, ..., 5 appear, the index ¢ is omitted.

Then the elements of the subsystems are given by the following relations:

AP (1) = Gulhy i), j=12 (C.3)
L kvl MR
A7 () =2 [g(lik,;;) } g(’;c(,i?rg?} A (C6)

wmy o 2+nm+DIga(k ) 2n(n+1)gn(k jr) .
Az, () = ® ) )2 , j=12 (C.7)

20



J. Phys. A: Math. Theor. 41 (2008) 395203 A Charalambopoulos and L N Gergidis

[2+n(n+D]1gn (ki r) 2n(n + Dgn (ks 1)

(n.m) = . — 5 —
A3,z,j (r)= (kt,jr) +2gn (kt,jr) (kz,jr)z s j=3,4
(C.8)
; , 2 2 .
Ain;r;)(r) _ _ [2n(n + D]gn (ki 1) N [n°(n+ 1) +2n(n + 1)]gn(kt,1r)’ =12
w (ks ;1) (kt,jr)2
) L (C.9)
n,m [ n(n + 1)]gn( t, 'I")
AL (r) = — %o I n(n+1)gn (ks jr)
2 2 ‘
N [n°(n+1) +2n(n+1)]g,,(kwr)’ i=3.4 €.10)
(ky,jr)?
ATy =0, =1,2,3,4 C.11)
(m), Gn(kejr)  gnkejr) | .
q”””_"@+n[<hﬂ)+<hﬂv J=he (€12

28n (ke jr)  2n(n + 1)gu(ky 1) 2 :
C(n,m) - _ ,J »J — (1 k. : = 1, 2 C.13
2i O =" T w2 U+ G 2 o) (19
Cnn+1)g,(k; jr) nn+1) n?(n+ l)zgn(k, ir)
C(n,m) - _ )] _ , k 5J ,
i ) (ki 1) N T
ji=1,2 (C.14)
2 2 )
(n.m) _ [P+ D" +2n(m + 1)]g,(k; j7) n(n+1)
C4,t,j (}’) = (kt,jr) + ) &n (kt,jr)
. [—2n%(n + 1)? + 2n(n + 1)1g, (k; jr) 19 C.15)
(k,,jr)z , J =1, .
C&m (r) = —galks ), j=1.2 (C.16)
.n k 'r) gn(kl 'r) .
pm .y 1 | 8n ke S =34 C.17
1 r)=nn+1) [ &r) + e J (C.17)
28n (ke jr)  2n(n + 1)gu(ky 1) 2
I*(”v”f) - _ 2] ) —(1 k ,
i ) = ) D (+@;?ﬁxwm
j=3.4 (C.18)
Cnn+1)gn(k, jr)  nn+1) n*(n+1)%gu (ki 1)
) - _ J (K, \J .
0y ) (ki 1) N A
j=3,4 (C.19)
2 2 5
1.m) . [+ 1D +2n(n+1)]g, (ki j7) nn+1)
F4,t,j (I") = (kt,jr) + ) &n (k,,jr)
N Run+1)—n*(n+ 1)2]gn(kr,jr) =34 (C.20)
(ki j7)? ’ ’ '
rem o) = gtk ), j=3.4 (C.21)
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EL0) = —guhkeyr).  j=3.4 (€29
o 5 .
EY;7 ) = —JnG+ Dgatkejr),  j=3.4 €24
+1
Ei";f;)(r) — |:n2(n + 1)2 " I’l(l’l ]gn(ki,jr)7 j= 3’ 4 (C25)
ESN ) = gutkiyr).  j=3.4 (C.26)
(n,m) R gﬂ(kt’jr) :
Bl,t,j (r) = gn(ky jr) — =—1=, j=12,3,4 (C.27)
(kt,jr)
B (1) — gn(ky 1) .
S ) = —gu (ke 1) + [n(n + 1) + 312212 j=123.4 (C.28)
(kt,j”)
. w (ke 1) .
B("!m) = n k i + g ’j b = 1’ 2 C.29
3,t,j (l’) 8 ( f,]r) (kt,jr) J ( )
. n(kt 'r)
Bnm =— g,k ir)+ Enl&e, i) , =34 C.30
3,t,j (r) (g ( I»Jr) (kz,jr) J ( )
(n+1) gn(ke jr) ;
B(”qm) — _n »J , e 17 2 C31
4,t,j (r) 2 (kt,jr) ) J ( )
(n+1) gu(k; jr) .
Bm .y — ninr 1) &k, i) , =3,4 C.32
arj (1) > (oir) ) J ( )
. n (ke j7) .
Alm = g, (k, i7) — g—’/’ =34 C.33
L (= &) =20 70 / (€39
A . 8n(k; jr)
2.1,) (I") = —gn(k,,jr)+[n(n+1)+3]—, =374 (C34)
(kt,jr)
. n(ki '7‘) .
AP Gy = — (g (k) — 82T —3.4 C.35
3 () (g (ke j7) (ky jr) / 2
. (n+1) gu(ke jr) .
A(n,m') = g,(k; ir) — n _—’17 =34 C.36
500 = gulhr) - =5 — =0 J (C.36)
wkejr) gn(k jr)
206y = nee DEEE gk, gy — S =3.4 (€.37)
b (ke j7) " (ke jr)
n ki,
Zént’r;) (r) = [n(n+ 1) +3)g, (ke jr) + 3M’ j=3,4 (C.38)
b (kyj7)
n(kl ‘r) . gn(kt 'r)
200 = —n(n+ DELZIE 4 g (k) + B =3.4 (C.39)
30, (ks 7) h (ks ;1)
n,m n(n+1) . gn(k,‘r) .
Zym ) = |:g,,(kt,jr) + 34} . =34 (C.40)
(kt,jr)
Al — —1(3a +2ay +2a3)k> g, (ki 1a)
1.1.f ) 1 2 3 t,jgn t,j
| 2 (Ilz,m)
— —(a; +2a3) A™™ K2+ 2(aq + as)k?  ——0 =1,2 C.4l
2(01 a3) LLLjot (a4 a5) b d(kt,jr)z r=a ! ( )
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d gn(k; ;1)
A<’“">_——3 +2a; + 2a3)k? -/
2.t,j ( ay ar a3) ”d(k,Jr) < (kt,jr)
1 2 (2n,m)
(n,m) 72 t,j .
_E(a1+2a3)A12”k +2(a4+a5)ktjd(k—r)2 s j=12
g (n+1) d gn(ke jr)
A("*’")_—— 3ar +2a; + 2a3)k2 .
3,t,j (Bay as +2a3) > k) )
1 2 én,m)
(n,m) 72 t,j -
_§(a1+2a3)A13”k”+2(a4+a5)k”w s ] =1,2
+1 d n(ky
A — 42 (3a1 +2a; + 2apk2, "D <g ( ””)
2 d(kt,jr) (kt,jr)
1 2 in.m)
(n,m) 712 t.j .
_E(al+2a3)A14l]k +2(a4+615)ktjd(k—r)2 s j= 1,2
d gn(kt 'I‘) .
A<”"’>_——3 +2a, +2a3)k> - , —1.2
5.t,j (Bay ap as) ”d(k, Jr) < (kz,jr) J
(n,m) 1 2 .
Al i = _E(al +a3)kt,j[gn(kt,ja) + gn(k; ja)]
1 2 En,m)
(n,m) 12 t,j -
— §a3Alltjklj+2(a4+a5)ktjd(kt—r)2 s 1_3’4
d w(ks ir) 1
(n,m) 8n Ky, j (nm) 12
Ay =5 a9k 36 ( ke jr) ) ‘ - Ttk
2 ;n,m)
+ 2(ag + as)k?  —=2L
(ag + as) tjd(kl Jr)z -
3  (k
+(a4+_a5) 2 (g(,,r)) -4
2 d(kz i)\ (ke r)
+1) d gn(k, ir) 1
AL = ——(ay + a3k, n(n - az AT |2
3.,j (a1 as) ) d(k,,jr) (kr,jr) 2 1,3,¢,j%,j
2 gn,m)
+ 2(aq +as)k?  —=>11
(s O ol |

3 ) n(n+1) d gn(ke jr) Py
+ (a4 + Eds) kz,j ( ) d(k,,jr) ( (k,,jr) ) ' ) 2gn(kt,]a)> s

j=3,4

(C.42)

(C.43)

(C.44)

(C.45)

(C.46)

(C.47)

(C.48)
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N 1 nn+1) d gn(ks ir) 1
A(’Lm) —— + k2 ) »J _ A("sm) -k2 )
4,[,] 2(a1 a3) t,]( 2 )d(kt’]r) ( (k[,jr) e 2a 1,4,1‘,_1 t,]
2 4 (n,m)
i 3 +1 d (ks s
+2(aq + (ls)kt2 # + a4+ —as ktz . _n(n ) & ( [’Jr)
J d(k,,jr)2 2 & 2 d(k;, jr) (ks,j7)
r=a r=a
+nn+1)g, (k,,ja)) , j=3,4 (C.49)
A (nm 1 d n(ky 1)
AL = —~(ay +az)k?, En )
b 2 d(k;, jr) (ks ;1) '
3 d 8nlks j1) .
+ + — k2 . i s = 3, 4 C.50
(a4 2“5) [ d(k[,jr) < (kt,jr) ) ‘ra J ( )
A 1 d gn(k; ir) 1
(n,m) __ 2 oJ (n,m) 72
Cl’[’j = _E(al +az)n(n + l)kt’j ) ( ) — z(al + 2a3)C1!1J’jij
r=a
1 d (ks s
— = Qay +2a + an(n + DI, (g ( ’*’r))
2 ’ d(kr,jr) (kw-r) rea
2 fn.,rrf)
+2(ag + as)k> , ——2 | =12 C5l1
(a4 +as)k; ; dk, )2 ) J ( )
A 1 . d 8n (ks 1)
CV™ = —Z(Bay +2ay + 2a3)k> | §u (ki ja) + -/
2,j = Ty Bm a2k, (g Cs®* S ) ( kir) )| _
! (n,m) o
nm) 12 2 1 .
_ E(al + 2a3)C1,27t7jkt’j +2(aq + aS)kt’jW , j=12 (C.52)
r=a

R 1 nn+1) [ d gnlk: j1)
(n,m) __ 2 ¥
C3,t,j = —5(3611 +2a; + 2613)]([’1-— (gn (kt,ja) + d(kt,jr) ( -

2 (kyj7)
1 2 3(n,rrg)
(n,m) 12 2 1 .
— 5((11 + 2a3)cl,3,z,jkt,j +2(ay + aS)qujW ) s ] = 1,2 (C.53)
A 1 nn+1)\ (. d 8n(k; jr)
Cm™ = ~(3ay +2ay + 2a3)k? ki ;a) + S
4t 2( ap +2ax +2a3)k; ; 2 gn(k; ja) atem i
1 2 ‘(‘n,m)
(n,m) 72 2 1 -
— 5(611 + 2a3)c1,4,l,jkt,j + 2(614 + aS)kt’jW ) s ] = 1, 2 (C54)

d(ke, jr) \ (ke jr)
2 ~(n,m)

1 (n,m) 712 2 5.1,j
_ E(al + 2a3)C1Y5J’J.kt’j +2(aq + as)k,’j—d(khjr)2

A (n.m 1 ) d n(k ! .r)
Cé,z”j) = —5(3611 +2a, +2a3)kzj (gn(kt,ja) + (g t,j ) ‘ )

, ji=1,2 (C.55)

r=a
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R 1 d gn(kl ‘r)
(n,m) __ 2 .10 . A
Fl,t,j = —5(611 + a3)kl’j ( — kt,]agn(kt,ja) + n(n + 1)d(k;,jr) ( (kt,jr)
r=a

1 2 (m,m) 3
(n,m) 72 2 Lt,j 2
— §a3rl’1’t’jk"'7 +2(ay + aS)kt’j—d(k,,jr)z ) +|ag+ 5615 kz,j
x |n(n+1) d 8nki,jr) — (ke ;a) 8y (ke ia) — 38n (ks )
d(k,,jr) (kt,jr) _ t,j n (Kt j 8nKy,j
— (ke ja)gn (ke ja) — gn(kt,ja):|a j=3.4 (C.56)
N 1 d gn(ks ir) 1
(n,m) __ 2 .. ) t,j - (n,m) ;2
Do = —5(01 +az)k; ; (gn(kt,ja) + o) < ki) . 2a3F1’2’t’jkt,j
2 (n,m)
2 2.t

+2(a4 + as)k

" d(k jr)?

r=a

3 . d gn(kt i) j
Zas Vi | a0k, . ’ o e
+ <a4 + 2a5> 1,j (gl( 0+ d(k; jr) < (ki j7) > ‘r—cl) ' -

R 1 d Lk 1) 1
(n,m) __ 2 .. ) 8 t,j - (n,m) 12
iy = mparak, (g"(k”"“) " a, ,-r)< ) )‘ ] ) BT

3
) + <a4+ 5a5>kij

gn(k jr)
d(k,,jr) (k,,jr)

2 (n,m)
2 3.1,

“d(k, ;1)

nn+1/ . r
X 2 gn( r,ja)+

+ 2(614 + a5)k

)‘ ) — 2((/{[»,(1) 'g“n (kl,ja)

r=a

+38n (ks ja) + (ki ja)gn (ks ja) + gn (kt,ja))i|7 =34 (C.58)

A 1 nn+1) [ . d gn(k; ;1) 1
(n,m) __ 2 yJ (n,m) 12
F4,z,j = 5(01 +a3)k,!j—2 (gn(k,,‘,-a) + ate ) ( ®) _ — §a3rl,4,t,jkt,j

3
) + <a4 + §a5>kij

x[—@(@(krdan d (g"(k”-"’)>‘ >+n<n+1><(k,,,-a>én (k. a)

2 (n,m)
2 4.1,

B d(k, jr)?

+ 2(aq + as)k

dk; jr) \ (ke jr)

r=a

+38n (ke ja) + (ki ja)gn (ks ja) + gn (kr,ja))}, j=3.4 (C.59)
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) ! d [ gathkir) |
(n,m) 2 .. 1,
Foig = =g ek, (g"(kt’j R TT < ) ~ 2%
’ ’ r=a
ey 3
+2(as +as)k?  — 201 4 +2a VK2 (—1
(ag + as)k; ; a7 as + S as 7i(=D
d gn(kt jr) .
x| Gnlkeja) + : , ji=3.4
|: n(Kyj d(k; jr) \ (ke 1) .
Ef) =0, j=3.4
1 2 én,rrg)
. "
By = _§a3E}7éf¢}jkij +2(as +a5)kijm , j=3,4
J r=a
1 2 én,rrg)
. "
Eem = _§a3E}73*j“;}jkij +2(ay +a5)kijm , j=34
J r=a
1 2 A(tn,m)
. "
EXK? = _Ea?’EgZ?tl,)jktz,j +2(as +a5)kt2’jm , j=3,4
J r=a
1 2 g (n,m)
. o .
B = —5mElR, v 2t ak g =3
J r=a
B(n,m) _ 1 3 ) 2 k2 o (k. 1 ) B(n'm) k2
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2 p(n,m)
+2(aq +as)k? ,—20 | i=1.2
(614 615) t,j d(kt,jr)z . J
o 1 1
By} = 5 Gar+2a + 2a3)k] (ki ja) — - (a1 +2a3) BYS k2
2 p(n,m)
21, )
+2(a4+a5)k2.— , ]2172
a7
A 1 1
By = =2 Gar+2a +2a3)k} (ke ja) — 5 (a1 + 2a3) BYS 7
2 p(n,m)
+2(ag +as)k? —2lT | i=1.2
(as + as)k; ; a7 | b
1 2 f;n'”-l)
R "
By = St 2a3) By kG + 2as + as>kijm
J r=a
2 1 (k;,ja) 1
() 2 8n 'K, (n,m) 72 )
Blflt,n; = E(al +az)k; ; <ﬁ> - 5“3317111.]']‘:,;' +2(as + as)k
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f(n,m) 1 2 &nlkija) 1 w2 , @B
B2,t,j = _E(al +a3)k,’jW — §a3Bly2Jij,’j +2(ay +a5)kt’jm -~
+ (a4 + %a5> K2 (= gu ks j)), j=3.4 (C.71)
2 p(n,m)
Bg”’;z@ _ %((1l +az)k} <%§Zl?> - %aﬁﬂg”;")jkﬁj +2(ay +a5)ki’ﬁ B
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) 1 2 p(n,m)
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R 1 2 (ml?})
Al = =3 as AV K]+ 2 +a5)k,%jw’]fr’gz : 1=1,2,3,4, j=34
r:a (C.74)
A 1 2 77 (n,m)
20 = =S asZyi R+ 2as + as)kijﬁ : 1=1,2,3,4, j=34
r:a (C.75)

1 (n,m p,dz 5 n,m
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'd> 3
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r=a
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