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Abstract. Given an embedded planar acyclic digraph G, the acyclic
hamiltonian path completion with crossing minimization (Acyclic-
HPCCM) problem is to determine a hamiltonian path completion set
of edges such that, when these edges are embedded on G, they create
the smallest possible number of edge crossings and turn G to a hamilto-
nian acyclic digraph. In this paper, we present a linear time algorithm
which solves the Acyclic-HPCCM problem on any outerplanar st-digraph
G. The algorithm is based on properties of the optimal solution and an
st-polygon decomposition of G. As a consequence of our result, we can
obtain for the class of outerplanar st-digraphs upward topological 2-page
book embeddings with minimum number of spine crossings.

1 Introduction

A hamiltonian path of G is a path that visits every vertex of G exactly once. De-
termining whether a graph has a hamiltonian path or circuit is NP-complete [3].
The problem remains NP-complete for cubic planar graphs [3], for maximal pla-
nar graphs [9] and for planar digraphs [3]. It can be trivially solved in polynomial
time for planar acyclic digraphs.

Given a graph G = (V, E), directed or undirected, a non-negative integer k ≤
|V | and two vertices s, t ∈ V , the hamiltonian path completion (HPC) problem
asks whether there exists a superset E′ containing E such that |E′ − E| ≤ k
and the graph G′ = (V, E′) has a hamiltonian path from vertex s to vertex t.
We refer to G′ and to the set of edges E′ \ E as the HP-completed graph and
the HP-completion set of graph G, respectively. We assume that all edges of a
HP-completion set are part of the Hamiltonian path of G′, otherwise they can
be removed. The hamiltonian path completion problem is NP-complete [2]. For
acyclic digraphs the HPC problem is solved in polynomial time [4]. When G is
a directed acyclic graph, we can insist on HP-completion sets which leave the
HP-completed digraph also acyclic. We refer to this version of the problem as
the acyclic HP-completion problem (acyclic-HPC).

A drawing Γ of graph G maps every vertex v of G to a distinct point p(v) on
the plane and each edge e = (u, v) of G to a simple open curve joining p(u) with
p(v). A drawing in which every edge (u, v) is a a simple open curve monotonically
increasing in the vertical direction is an upward drawing. A drawing Γ of graph
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G is planar if no two distinct edges intersect except at their end-vertices. Graph
G is called planar if it admits a planar drawing Γ .

An embedding of a planar graph G is the equivalence class of planar drawings
of G that define the same set of faces or, equivalently, of face boundaries. A planar
graph together with the description of a set of faces F is called an embedded
planar graph.

Let G = (V, E) be an embedded planar graph, E′ be a superset of edges
containing E, and Γ (G′) be a drawing of G′ = (V, E′). When the deletion from
Γ (G′) of the edges in E′−E induces the embedded planar graph G, we say that
Γ (G′) preserves the embedded planar graph G.

Definition 1. Given an embedded planar graph G = (V, E), directed or undi-
rected, a non-negative integer c, and two vertices s, t ∈ V , the hamiltonian
path completion with edge crossing minimization (HPCCM) problem
asks whether there exists a superset E′ containing E and a drawing Γ (G′) of
graph G′ = (V, E′) such that (i) G′ has a hamiltonian path from vertex s to
vertex t, (ii) Γ (G′) has at most c edge crossings, and (iii) Γ (G′) preserves the
embedded planar graph G.

We refer to the version of the HPCCM problem where the input is an acyclic di-
graph and we are interested in HP-completion sets which leave the HP-completed
digraph also acyclic as the Acyclic-HPCCM problem.

Over the set of all HP-completion sets for an embedded planar graph G, and
over all of their different drawings that respect G, the one with a minimum
number of edge-crossings is called a crossing-optimal HP-completion set.

In this paper, we present a linear time algorithm which solves the Acyclic-
HPCCM problem for outerplanar st-digrpahs. A planar graph G is outerplanar
if there exist a drawing of G such that all of G’s vertices appear on the boundary
of the same face (which is usually drawn as the external face). Let G = (V, E)
be a digraph. A vertex of G with in-degree equal to zero (0) is called a source,
while, a vertex of G with out-degree equal to zero is called a sink. An st-digraph
is an acyclic digraph with exactly one source and exactly one sink. Traditionally,
the source and the sink of an st-digraph are denoted by s and t, respectively. An
st-digraph which is planar (resp. outerplanar) and, in addition, it is embedded
on the plane so that both of its source and sink appear on the boundary of its
external face, is referred to as a planar st-digraph (resp. an outerplanar st-
digraph). It is known that a planar st-digraph admits a planar upward drawing
[5,1]. In the rest of the paper, all st-digraphs will be drawn upward.

1.1 Our Results

The Acyclic-HPCCM problem was introduced by Mchedlidze and Symvonis
in [8]. They provided a characterization under which a triangulated st-digraph is
hamiltonian. For the class of planar st-digraphs, they established an equivalence
between the acyclic-HPCCM problem and the problem of determining an upward
2-page topological book embedding with a minimal number of spine crossings.
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For any outerplanar triangulated st-digraph G they reported a linear-time algo-
rithm that solves the Acyclic-HPCCM problem with at most one crossing per
edge of G [7].

In this paper, we derive a linear time algorithm that solves the Acyclic-
HPCCM problem for any outerplanar st-digraph G. Our algorithm extends the
results presented in [7] in two ways: (a) it does not require G to be triangu-
lated, and (b) it takes into account all acyclic HP-completion sets (and not only
those which cause at most 1 crossing per edge of G). The algorithm is based on
properties of the optimal solution and a decomposition of graph G.

More specifically, we show that (i) for any st-polygon (i.e., an outerplanar
st-digraph with no edge connecting its two opposite sides) there is always a
crossing-optimal acyclic HP-completion set of size at most 2 (Section 2, Theo-
rem 2), and, (ii) for any outerplanar st-digraph G there exists a crossing optimal
acyclic HP-completion set which creates at most 2 crossings per edge of G (Sec-
tion 4, Theorem 4). Based on these properties and the introduced st-polygon
decomposition of an outerplanar st-digraph (Section 3), we derive a linear time
algorithm that solves the Acyclic-HPCCM problem for outerplanar st-digraphs.
Due to space constraints we present only the main results omitting the proofs
of the lemmata and theorems; for the detailed version see [6].

2 Outerplanar st-Digraphs, Rhombuses and st-Polygons

Let G = (V l ∪ V r ∪ {s, t}, E) be an outerplanar st-digraph, where s is its
source, t is its sink and the vertices in Vl (resp. Vr) are located on the left
(resp. right) part of the boundary of the external face. Let V l = {vl

1, . . . , vl
k}

and V r = {vr
1 , . . . , vr

m}, where the subscripts indicate the order in which the
vertices appear on the left (right) part of the external boundary. By convention,
source and the sink are considered to lie on both the left and the right sides of
the external boundary. Observe that each face of G is also an outerplanar st-
digraph. We refer to an edge that has both of its end-vertices on the same side of
G as an one-sided edge. All remaining edges are referred to as two-sided edges.
The following lemma presents an essential property of an acyclic HP-completion
set of an outerplanar st-digraph G.

Lemma 1. The acyclic HP-completion set of an outerplanar st-digraph G =
(V l ∪ V r ∪ {s, t}, E) induces a hamiltonian path that visits the vertices of Vl

(resp. Vr) in the order they appear on the left side (resp. right side) of G.

The outerplanar st-digraph of Figure 1.a is called a strong rhombus. It has at
least one vertex at each of its sides and it consists of exactly two faces that
have edge (vs, vt) in common. The edge (vs, vt) of a rhombus is referred to as its
median and is always drawn in the interior of its drawing. The outerplanar st-
digraph resulting from the deletion of the median of a strong rhorbus is referred
to as a weak rhombus (Figure 1.b). We use the term rhombus to refer to either
a strong or a weak rhombus.
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Fig. 1. (a) A strong rhombus. (b) A weak rhombus. (c) A strong st-polygon. (d) A
weak st-polygon. (e) A maximal st-polygon.

The following theorem provides a characterization of st-digraphs that have
a hamiltonian path. Its proof is a trivial extension of the proof given in [8] for
triangulated planar st-digraphs.

Theorem 1. Let G be a planar st-digraph. G has a hamiltonian path if and
only if G does not contain any rhombus (strong or weak) as a subgraph.

A strong st-polygon is an outerplanar st-digraph that contains edge (vs, vt) con-
necting its source vs to its sink vt ) (Figure 1.c). Edge (vs, vt) is referred to as
its median and it always lies in the interior of its drawing. As a consequence ,
in a strong st-polygon no edge connects a vertex on its left side to a vertex on
its right side. The outerplanar st-digraph that results from the deletion of the
median of a strong st-polygon is referred to as a weak st-polygon (Figure 1.d).
We use the term st-polygon to refer to both a strong and a weak st-polygon.

Consider an outerplanar st-digraph G and one of its embedded subgraphs
Gp that is an st-polygon (strong or weak). Gp is called a maximal st-polygon if
it cannot be extended (and still remain an st-polygon) by the addition of more
vertices to its external boundary. In Figure 1.e, the st-polygon Ga,d with vertices
a (source), b, c, d (sink), e, and f on its boundary is not maximal since the
subgraph G′

a,d obtained by adding vertex y to it is still an st-polygon. However,
the st-polygon G′

a,d is maximal since the addition of either vertex i or z to it
does not yield another st-polygon.

Observe that an st-polygon that is a subgraph of an outerplanar st-digraph
G fully occupies a “strip” of it that is limited by two edges (one adjacent to its
source and one to its sink), each having its endpoints at different sides of G. We
refer to these two edges as the limiting edges of the st-polygon. Note that the
limiting edges of an st-polygon that is an embeded subgraph of an outerplanar
graph are sufficient to define it. In Figure 1.e, the maximal st-polygon with
vertex a as its source and vertex d as its sink is limited by edges (a, y) and (c, d).
The next two lemmata describe properties of st-polygons.

Lemma 2. An st-polygon contains exactly one rhombus.
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Lemma 3. The maximal st-polygons contained in an outerplanar st-digraph G
are mutually area-disjoint.

The following lemmata are concerned with a crossing-optimal acyclic HP-
completion set for a single st-polygon. They state that there exist crossing opti-
mal acyclic HP-completion sets containing at most two edges and there proofs
are based on the construction of a new HP-completion set.

Lemma 4. Let R = (V l ∪ V r ∪ {s, t}, E) be an st-polygon. Let P be an acyclic
HP-completion set for R such that |P | = 2μ + 1, μ ≥ 1. Then, there exists
another acyclic HP-completion set P ′ for R such that |P ′| = 1 and the edges of
P ′ create at most as many crossings with the edges of R as the edges of P do.
In addition, the hamiltonian paths induced by P and P ′ have in common their
first and last edges.

Lemma 5. Let R = (V l ∪ V r ∪ {s, t}, E) be an st-polygon. Let P be an acyclic
HP-completion set for R such that |P | = 2μ, μ ≥ 1. Then, there exists another
acyclic HP-completion set P ′ for R such that |P ′| = 2 and the edges of P ′ create
at most as many crossings with the edges of R as the edges of P do. In addition,
the hamiltonian paths induced by P and P ′ have in common their first and last
edges.

By combining Lemma 4 with Lemma 5, we get:

Theorem 2. Any st-polygon has a crossing-optimal acyclic HP-completion set
of size at most 2.

3 st-Polygon Decomposition of Outerplanar st-Digraphs

The following lemmata state that we can test effectively whether an edge is the
median of an st-polygon and whether a face is a weak-rhombus. Their proofs are
supported by trivial data structures (i.e., for each vertex, a list of neighbors in
circular order).

Lemma 6. Assume an n vertex outerplanar st-digraph G = (V l∪V r∪{s, t}, E)
and an arbitrary edge e = (s′, t′) ∈ E. If O(n) time is available for the prepro-
cessing of G, we can decide in O(1) time whether e is a median edge of some
strong st-polygon. Moreover, the two vertices (in addition to s′ and t′) that define
a maximal strong st-polygon that has edge e as its median can be also computed
in O(1) time.

Lemma 7. Assume an n vertex outerplanar st-digraph G = (V l∪V r∪{s, t}, E)
and a face f with source s′ and sink v′. If O(n) time is available for the prepro-
cessing of G, we can decide in O(1) time whether f is a weak rhombus. Moreover,
the two vertices (in addition to s′ and v′) that define a maximal weak st-polygon
that contains f can be also computed in O(1) time.
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Denote by R(G) the set of all maximal st-polygons of an outerplanar st-digraph
G, as identified by Lemmata 6 and 7. Observe that not every vertex of G belongs
to one of its maximal st-polygons. We refer to the vertices of G that are not part
of any maximal st-polygon as free vertices and we denote them by F(G). For
example, vertices s, i, j, z and t in the st-digraph of Figure 1.e are free vertices.
Also observe that an ordering can be imposed on the maximal st-polygons of
an outerplanar st-digraph G based on the ordering of the area disjoint strips
occupied by each st-polygon. The vertices which do not belong to some st-
polygon are located in the area between the strips occupied by consecutive st-
polygons.

The next lemma states that the free vertices, the sources and the sinks of
st-polygon are pairwise connected by directed paths.

Lemma 8. Assume an outerplanar st-digraph G. Let R1 and R2 be two of G’s
consecutive maximal st-polygons and let Vf ⊂ F(G) be the set of free vertices
lying between R1 and R2. Then, the following statements are satisfied:

a) For any pair of vertices u, v ∈ Vf there is either a path from u to v
or from v to u.

b) For any vertex v ∈ Vf there is a path from the sink of R1 to v and
from v to the source of R2.

c) If Vf = ∅, then there is a path from source of R1 to the source of R2.

We refer to the source vertex si of each maximal st-polygon Ri ∈ R(G), 1 ≤
i ≤ |R(G)| as the representative of Ri and we denote it by r(Ri). We also define
the representative of a free vertex v ∈ F(G) to be v itself, i.e. r(v) = v. For any
two distinct elements x, y ∈ R(G)∪F(G), we define the relation ∠p as follows:
x∠py iff there exists a path from r(x) to r(y).

Lemma 9. Let G be an n node outerplanar st-digraph. Then, relation ∠p defines
a total order on the elements R(G) ∪ F(G). Moreover, this total order can be
computed in O(n) time.

Definition 2. Given an outerplanar st-digraph G, the st-polygon decomposi-
tion D(G) of G is defined to be the total order of its maximal st-polygons and
its free vertices induced by relation ∠p.

The following theorem follows directly from Lemma 6, Lemma 7 and Lemma 9.

Theorem 3. An st-polygon decomposition of an n node outerplanar st-digraph
G can be computed in O(n) time.

4 Crossing-Optimal Acyclic HP-Completion Set

In this section, we present some properties of a crossing optimal acyclic HP-
completion for an outerplanar st-digraph that will be taken into account in our
algorithm. Assume an outerplanar st-digraph G = (V l ∪ V r ∪ {s, t}, E) and
its st-polygon decomposition D(G) = {o1, . . . , oλ}. By Gi we denote the graph
induced by the vertices of elements o1, . . . , oi, i ≤ λ. The results of this section
are summarized in the following Theorem.
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Fig. 2. Configurations of crossing edges used in the proof of Property 1

Theorem 4. Let G = (V l ∪ V r ∪ {s, t}, E) be an outerplanar st-digraph and
let D(G) = {o1, . . . , oλ} be its st-polygon decomposition. Then, there exists a
crossing optimal acyclic HP-completion set Popt for G such that it satisfies the
following properties:

a) Each edge of E is crossed by at most two edges of Popt.
b) The upper limiting edge ei of any maximal st-polygon oi, i ≤ λ, is

crossed by at most one edge of Popt. Moreover, the edge crossing ei,
if any, enters Gi.

The proof of Theorem 4 follows immediately from the following properties.

Property 1. Let G = (V l∪V r ∪{s, t}, E) be an outerplanar st-digraph. Then,
no edge of E is crossed by more than 2 edges of a crossing-optimal acyclic HP-
completion set for G.

Proof (sketch). For the sake of contradiction, assume that Popt is a crossing-
optimal acyclic HP-completion set for G, the edges of which cross some edge
e = (w1, w2) of G three times. Suppose the edges crossing e are e1, e2, e3. On
Figures 2.a-d the edges e1 = (v1, u1), e2 = (u2, v2) and e3 = (v3, u3) are drawn
by bold dashed line.

The idea of the proof is to show that we can obtain an acyclic HP-completion
set for G that induces a smaller number of crossings than Popt, a clear contra-
diction. We assume that all edges of Popt participate in the hamiltonian path of
G; otherwise they can be discarded.

We distinguish between two cases based on whether edge e is a one-sided or
a two-sided edge and for each of these cases we consider the both directions of
e1, from the right to the left and from the left to the right. In all of these cases
we substitute the edges e1, e2, e3 of the HP-completion set by a single edge
decreasing the total number of crossing created by the HP-completion set (see
the bold solid edge on Figures 2.a-d for each case respectively). �	
Property 2. Let G = (V l ∪ V r ∪ {s, t}, E) be an outerplanar st-digraph and
let D(G) = {o1, . . . , oλ} be its st-polygon decomposition. Then, there exists a
crossing optimal acyclic HP-completion set for G such that, for every maximal
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st-polygon oi ∈ D(G), i ≤ λ, the HP-completion set contains at most one edge
that crosses the upper limiting edge of oi and, moreover, this edge enters Gi. �	

5 The Algorithm

The algorithm for obtaining a crossing-optimal acyclic HP-completion set for
an outerplanar st-digraph G is a dynamic programming algorithm based on the
st-polygon decomposition D(G) = {o1, . . . , oλ} of G. The following lemmata
allow us to compute a crossing-optimal acyclic HP-completion set for an st-
polygon and to obtain a crossing-optimal acyclic HP-completion set for Gi+1 by
combining an optimal solution for Gi with an optimal solution for oi+1.

Assume an outerplanar st-digraph G. We denote by S(G) the hamiltonian
path on the HP-extended digraph of G that results when a crossing-optimal
HP-completion set is added to G. Note that if we are only given S(G) we
can infer the size of the HP-completion set and the number of edge crossings.
Denote by c(G) the number of edge crossings caused by the HP-completion
set inferred by S(G). If we are restricted to Hamiltonian paths that enter the
sink of G from a vertex on the left (resp. right) side of G, then we denote the
corresponding size of HP-completion set as c(G, L) (resp. c(G, R)). Obviously,
c(G) = min{c(G, L), c(G, R)}. Moreover, the notation can be extended to de-
note by ci(G, L) (ci(G, R)) the corresponding minimum number of crossings over
all HP-completion sets that contain exactly i edges. By Theorem 2, we know that
the size of a crossing-optimal acyclic HP-completion set for an st-polygon is at
most 2. This notation that restricts the size of the HP-completion set will be
used only for st-polygons and thus, only the terms c1(G, L), c1(G, R), c2(G, L)
and c2(G, R) will be utilized.

We use the operator ⊕ to indicate the concatenation of two paths. By con-
vention, the hamiltonian path of a single vertex is the vertex itself.

The next lemma (follows from the Lemmata 4 and 5) states that it is sufficient
to examine all HP-completion sets with one or two edges in order to find a
crossing-optimal acyclic HP-completion set for an st-polygon.

Lemma 10. Assume an n vertex st-polygon o = (V l ∪ V r ∪ {s, t}, E) . A
crossing-optimal acyclic HP-completion set for o and the corresponding num-
ber of crossings can be computed in O(n) time.

Let D(G) = {o1, . . . , oλ} be the st-polygon decomposition of G, where element
oi, 1 ≤ i ≤ λ is either an st-polygon or a free vertex. Recall that, we denote by
Gi, 1 ≤ i ≤ λ the graph induced by the vertices of elements o1, . . . , oi. Graph
Gi is also an outerplanar st-digraph. The same holds for the subgraph of G that
is induced by any number of consecutive elements of D(G).

The next two lemmata describe how to combine the optimal solutions for con-
secutive st-polygons into an optimal solution for the whole outerplanar
st-digraph.
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Algorithm 1. Acyclic-HPC-CM(G)

input : An Outerplanar st-digraph G(V l ∪ V r ∪ {s, t}, E).
output : The minimum number of edge crossing c(G) resulting from the addition

of a crossing-optimal acyclic HP-completion set to graph G.
1. Compute the st-polygon decomposition D(G) = {o1, . . . , oλ} of G;
2. For each element oi ∈ D(G), 1 ≤ i ≤ λ,

compute c1(oi, L), c1(oi, R) and c2(oi, L), c2(oi, R):
if oi is a free vertex, then c1(oi, L) = c1(oi, R) = c2(oi, L) = c2(oi, R) = 0.
if oi is an st-polygon, then c1(oi, L), c1(oi, R), c2(oi, L), c2(oi, R) are

computed
based on Lemma 10.

3. if o1 is a free vertex, then c(G1, L) = c(G1, R) = 0;
else c(G1, L) = min{c1(o1, L), c2(o1, L)} and
c(G1, R) = min{c1(o1, R), c2(o1, R)};

4. For i = 1 . . . λ − 1, compute c(Gi+1, L) and c(Gi+1, R) as follows:
if oi+1 is a free vertex, then

c(Gi+1, L) = c(Gi+1, R) = min{c(Gi, L), c(Gi, R)};
else-if oi+1 is an st-polygon sharing at most one vertex with Gi, then

c(Gi+1, L) = min{c(Gi, L), c(Gi, R)} + min{c1(oi+1, L), c2(oi+1, L)};
c(Gi+1, R) = min{c(Gi, L), c(Gi, R)} + min{c1(oi+1, R), c2(oi+1, R)};

else { oi+1 is an st-polygon sharing exactly two vertices with Gi},
if ti ∈ V l, then

c(Gi+1, L) = min{c(Gi, L)+ c1(oi+1, L)+1, c(Gi, R)+ c1(oi+1, L),
c(Gi, L) + c2(oi+1, L), c(Gi, R) + c2(oi+1, L)}

c(Gi+1, R) = min{c(Gi, L) + c1(oi+1, R), c(Gi, R) + c1(oi+1, R),
c(Gi, L)+c2(oi+1, R)+1, c(Gi, R)+c2(oi+1, R)}

else { ti ∈ V r }
c(Gi+1, L) = min{c(Gi, L) + c1(oi+1, L), c(Gi, R) + c1(oi+1, L),

c(Gi, L)+c2(oi+1, L), c(Gi, R)+c2(oi+1, L)+1}
c(Gi+1, R) = min{c(Gi, L)+c1(oi+1, R), c(Gi, R)+c1(oi+1, R)+1,

c(Gi, L) + c2(oi+1, R), c(Gi, R) + c2(oi+1, R)}
5. return c(G) = min{c(Gλ, L), c(Gλ, R)}

Lemma 11. Assume an outerplanar st-digraph G and let D(G) = {o1, . . . , oλ}
be its st-polygon decomposition. Consider any two consecutive elements oi and
oi+1 of D(G) that share at most one vertex. Then, the following statements hold:

a) S(Gi+1) = S(Gi) ⊕ S(oi+1), and
b) c(Gi+1) = c(Gi) + c(oi+1).

Lemma 12. Assume an outerplanar st-digraph G and let D(G) = {o1, . . . , oλ}
be its st-polygon decomposition. Consider any two consecutive elements oi and
oi+1 of D(G) that share an edge. Then, the following statements hold:

1. ti ∈ V l ⇒ c(Gi+1, L) = min{ c(Gi, L) + c1(oi+1, L) + 1, c(Gi, R) + c1(oi+1, L),

c(Gi, L) + c2(oi+1, L), c(Gi, R) + c2(oi+1, L)}
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2. ti ∈ V l ⇒ c(Gi+1, R) = min{ c(Gi, L) + c1(oi+1, R), c(Gi, R) + c1(oi+1, R),

c(Gi, L) + c2(oi+1, R) + 1, c(Gi, R) + c2(oi+1, R)}

3. ti ∈ V r ⇒ c(Gi+1, L) = min{ c(Gi, L) + c1(oi+1, L), c(Gi, R) + c1(oi+1, L),

c(Gi, L) + c2(oi+1, L), c(Gi, R) + c2(oi+1, L) + 1}

4. ti ∈ V r ⇒ c(Gi+1, R) = min{ c(Gi, L) + c1(oi+1, R), c(Gi, R) + c1(oi+1, R) + 1,

c(Gi, L) + c2(oi+1, R), c(Gi, R) + c2(oi+1, R)}
Algorihtm 1 is a dynamic programming algorithm, based on Lemmata 11 and 12,
which computes the minimum number of edge crossings c(G) resulting from the
addition of a crossing-optimal HP-completion set to an outerplanar st-digraph
G. The algorithm can be easily extended to also compute the corresponding
hamiltonian path S(G).

Theorem 5. Given an n vertex outerplanar st-digraph G, a crossing-optimal
HP-completion set for G and the corresponding number of edge-crossings can be
computed in O(n) time.

We note that, from Theorem 2 in [8] and our presented algorithm, the following
theorem is implied.

Theorem 6. Given an n vertex outerplanar st-digraph G, an upward 2-page
topological book embedding for G with minimum number of spine crossings can
be computed in O(n) time.
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