
Multi-Stack Boundary Labeling Problems

Michael A. Bekos1, Michael Kaufmann2, Katerina Potika1 Antonios Symvonis1

1 National Technical University of Athens, School of Applied Mathematical & Physical Sciences,
15780 Zografou, Athens, Greece

mikebekos@math.ntua.gr, symvonis@math.ntua.gr, epotik@cs.ntua.gr
2 University of Tübingen, Institute for Informatics, Sand 13,

72076 Tübingen, Germany
mk@informatik.uni-tuebingen.de

Abstract. The boundary labeling problem was recently introduced in [4] as a response to the
problem of labeling dense point sets with large labels. In boundary labeling, we are given a
rectangle R which encloses a set of n sites. Each site pi is associated with an axis-parallel
rectangular label li. The main task is to place the labels in distinct positions on the boundary
of R, so that they do not overlap, and to connect each site with its corresponding label by
non-intersecting polygonal lines, so called leaders. Such a label placement is referred to as
legal leader-label placement.
In this paper, we study boundary labeling problems along a new line of research. We seek
to obtain labelings with labels arranged on more than one stacks placed at the same side of
the enclosing rectangle R. We refer to problems of this type as multi-stack boundary labeling
problems.
We present algorithms for maximizing the uniform label size for boundary labeling with two
and three stacks of labels. The key component of our algorithms is a technique that combines
the merging of lists and the bounding of the search space of the solution. We also present NP-
hardness results for multi-stack boundary labeling problems with labels of variable height.

1 Introduction

A common task in the process of information visualization is the placement of extra information,
usually in the form of text labels, next to the features of a drawing (diagram, map, technical or
graph drawing) they describe. When the labels are small and the features they describe are sparsely
distributed in the drawing, it may be feasible to place most labels next to the features they describe
so that the labels do not overlap with each other and they do not obscure other drawing features.
Obtaining optimal label placements with respect to some optimization criterion is, in general, NP-
hard [7]. An extensive bibliography about map labeling can be found at [11].

In the case of very large labels (or, equivalently, dense feature sets), usually it is impossible to
find a label placement, i.e. place each label next to the feature it describes. In response to this
problem, Bekos, Kaufmann, Symvonis and Wolff [4] (see also [3]) proposed the boundary labeling
model. In this model the labels are placed on the boundary of a rectangle enclosing all features
and each label is connected to its associated feature with polygonal lines, called leaders. If the
labels are non overlapping and the leaders non intersecting we have a legal leader-label placement
or legal labeling. The boundary labeling model is a realistic model for medical atlases and technical
drawings, where certain features of a drawing are explained by blocks of text placed outside the
drawing so that no part of the drawing is obscured. SmartDraw [9] provides boundary labelings in
a primitive form based on labeling templates. It does not support any form of automated boundary
labeling optimization. Bler [5] supports the boundary labeling process and facilitates the annotation
of drawings with text labels.

Sites model features of the drawing. If they model a point-feature (e.g., a city on a map) they are
naturally represented as points (see points in Rectangle R of Figures 1, 2 and 5). So, in its simplest

2

form, a boundary labeling problem specifies as part of its input a set P of n points pi = (xi, yi) on
the plane in general position, i.e. no three points lie on a line and no two points have the same x-
or y-coordinate. Another interesting variation is the one with two candidate points on the plane for
each site (see Figure 3). In practice, several times we want to associate a label with an area-feature
(e.g., a region on a map, a body part on a medical atlas, a machine part on a technical drawing). To
keep things simple, we specify these regions by a closed polygonal line or by a line segment internal
to the feature area, and assume that the site “slides” along the boundary of the polygon or on the
line segment (see Figure 4).

R

Track Routing Area

Fig. 1: Type-opo leaders.

R

Fig. 2: Type-po leaders.

R

Fig. 3: Sites with 2 candidate positions.

R

Fig. 4: Sites associated with vertical line segments.

R

Fig. 5: Three stacks of labels.

In general, each site pi has a corresponding axis-parallel rectangular, open label li of width wi

and height hi. The labels are to be placed around an axis-parallel rectangle R = [lR, rR]x[bR, tR] of
height H = tR − bR and width W = rR − lR which contains all sites pi in P . While in the general
case the labels are of variable dimensions, it is natural to consider the restricted cases where the
labels are of uniform size (height and/or width), or of maximum uniform size.

Each site is connected with its corresponding label in a simple and elegant way by using polygonal
lines, called leaders. In our approach we have leaders that consist of a single straight line segment
or a sequence of rectilinear segments. A leader consisting of a straight line segment is referred to
as a type-s leader. When a leader is rectilinear, it consists of a sequence of axis-parallel segments
either parallel (p) or orthogonal (o) to the side of R containing the label it leads to. The type of a
leader is defined by an alternating string over the alphabet {p, o}. We focus on leaders of types-opo
and po, see Figures 1 and 2, respectively. Furthermore, we assume that each type-opo leader has the
parallel p-segment outside the bounding rectangle R, routed in the so-called track routing area. We
consider type-o leaders to be of type-opo and of type-po as well.

A further refinement of the labeling model has to do with the sides of the enclosing rectangle
containing the labels. Labels can be placed on one or more sides of the enclosing rectangle (in
Figures 1 and 2 all labels are placed on the east side of the enclosing rectangle). Finally, in order to
allow for greater numbers of larger labels, we might have the labels arranged in more than one stack
at each side of the enclosing rectangle. This paper is devoted to the case of multi-stack labelings.
Figure 5 shows a labeling where the labels occupy three stacks to the east side of the enclosing
rectangle. Notice that in the case of multiple stacks of labels (say m stacks), a leader of type-opo
can have its p segment either in between the rectangle R and the first stack (called first track routing
area) or between the i-th and the (i+1)-th stack, where i < m (called (i+1)-th track routing area).

Each leader that connects a site to a label, touches the label on a point on its side that faces
the enclosing rectangle. The point where the leader touches the label is called port. We can assume
either fixed ports, i.e. the leader is only allowed to use a fixed set of ports on the label side (a typical
case is where the leader uses the middle point of the label side) or sliding ports where the leader can

3

touch any point of the label’s side. The labelings in Figures 1, 2, 3 and 4 use sliding ports, while in
Figure 5 it uses fixed ports.

Keeping in mind that we want to obtain simple and easy to visualize labelings, the following
criteria can be adopted from the areas of VLSI and graph drawing: minimizing the total number of
bends of the leaders, minimizing the total leader length, minimizing the maximum leader length. An
additional criterion that we consider is the maximization of the label size for uniform size labels.
This is a quite common optimization criterion in the map labeling literature. In this paper, we seek
to obtain labelings with labels of maximum uniform size arranged on more than one stacks of labels
at the same side of the enclosing rectangle R

This paper is structured as follows: Section 2, reviews preliminary results required for the devel-
opment of our algorithms. In Section 3, we present algorithms for obtaining multi-stack labelings of
maximum uniform label height for the cases of two and three stacks of labels arranged at the same
side of R. In Section 4, we present several NP -hardness results for non-uniform sized labels placed
in two stacks. We conclude in Section 5 with open problems and future work.

1.1 Previous Work

Most of the known results on boundary labeling with point sites were presented in [4] (see also [3]).
A legal labeling, on one side with type-opo (type-po) leaders can be achieved in O(n log n) time (in
O(n2) time, respectively), whereas on all four sides with type-opo leaders in O(n log n) time. The
minimization of the total leader length when uniform sized labels can be placed on two opposite sides
of R with either type-opo and type-po leaders needs O(n2) time. The same problem on two opposite
sides of R with type-opo leaders and non-uniform label sizes O(n2H) is needed. The problem of
minimizing the total number of leader bends on one side with type-opo leaders can be solved in
O(n2) time. An algorithm for minimizing the total leader length on four sides with type-opo leaders
in O(n2 log3 n) time is presented for points in [1] and for polygons in [2].

2 Preliminaries

Throughout the paper we use lists that contain pairs of integers. Given a pair (a, b) of integers, a
and b are referred to as the first and the second coordinate of the pair, respectively. Inspired by an
idea of Stockmeyer [10] which was subsequently used by Eades et. al. [6], we manage to keep the
length of each list bounded by pruning pairs that cannot occur in an optimal solution.

Definition 1. A list L of pairs of integers is sorted if the pairs it contains are lexicographically
sorted in decreasing order with respect to their first coordinate and in increasing order with respect
to their second coordinate.

Definition 2. Let (a, b) and (c, d) be pairs of integers.

(a, b) dominates (c, d) ⇐⇒ a ≥ c and b ≥ d.

Suppose we have to solve a problem where the search space of the solution consists of pairs of
integers, and let f be a monotone function computing a minimization objective on pairs from the
solution search space. Thus, if (a, b) and (c, d) represent possible solutions, then the pair (a, b) can
never be involved in an optimal solution and may be safely removed from the solution set. Given a
list L of pairs of integers, a pair (a, b) ∈ L that does not dominate any other pair in L is called an
atom (with respect to L).

In our algorithms we maintain lists (of pairs) that contain only atoms. A frequently performed
operation is the merging of two lists of atoms, resulting in a new list of atoms. The merging algorithm
resembles the merging step of merge sort algorithm and can be considered to be folklore. It supports
the following lemmas:

4

Lemma 1. k sorted lists L1, L2, . . . , Lk, k ≥ 2, of atoms can be merged in O((k − 1)
∑k

i=1 |Li|)
time into a new sorted list L of at most

∑k
i=1 |Li| atoms.

Lemma 2. Let A and B be two finite set of integers and let L = {(a, b)| a ∈ A and b ∈ B} be a list
of atoms. Then, |L| ≤ min(|A|, |B|).

Finally, we present some notation and terminology that we use in the description of our algo-
rithms. We say that a pair (a, b) obeys the boundary conditions, if a ≤ H and b ≤ H, where H is
the height of the enclosing rectangle. We also define operator ⊕H : R× R→ R, where:

a⊕H b =
{

a + b, if a + b ≤ H
∞, otherwise

3 Label Size Maximization

3.1 Two Stacks of Labels on the Same Side

We consider boundary labeling with type-opo leaders, where the labels are placed at two stacks on
the same side (say, the east side) of the enclosing rectangle. We assume that all labels have the
same size (width and height) and we seek to maximize the height h of all labels. Our approach is
as follows: Given labels of height h, we propose an algorithm, that determines whether there exists
a legal labeling. To determine the maximum value of h, we apply a binary search on all possible
discrete values for height h. We assume the more general case of sliding labels with sliding ports.
The type-opo leaders connecting sites to labels that are on the second stack can have their bends
(or equivalently their p segments) either in the first or in the second track routing area.

Observe that, in any legal one-side labeling with type-opo leaders, the vertical order of the sites
is identical to the vertical order of their corresponding labels on both stacks. This, together with the
assumption that no two sites share the same y-coordinate, guarantees that leaders do not intersect.
So, we assume that the sites are sorted according to increasing y-coordinate.

For a fixed label height h, we propose a dynamic programming algorithm that outputs a boolean
value, which indicates whether there exists a legal label placement, when all sites are associated
with labels of height h. Our algorithm maintains a table T of size (n + 1) × (n + 1). Each entry
T [i, k], i ≤ k of table T describes different possible placements for the subproblem consisting only
of the first i sites, such that k out of the i leaders have their bends in the second track routing area.
Assuming that we have placed the labels for the first i−1 sites, we try to place the i-th label, which
corresponds to the i-th site. We distinguish two cases based on whether the label is placed on the
first or second stack. Additionally, if li is to be placed in the second stack, then we have to check
whether this can be done with a leader that has its bends in the first or second track routing area.
Obviously, such placements can be obtained from placements of the first i − 1 sites with either k
or k − 1 leaders, that bend in the second track routing area. For each possible placement, we are
interested in the height of two stacks. This information is captured by a pair (a, b), where a (b) is the
highest occupied Y -coordinate of the first (respectively second) stack. Thus, entry T [i, k] contains a
list of atoms, each corresponding to a different placement. List T [i, k] is empty, when it is impossible
to place the first i labels, using k leaders that have their bends in the second track routing area.

Label li is placed at the first stack: Let T1[i, k] be a list of pairs (a, b), where a (b) is the highest
occupied Y -coordinate of the first (respectively second) stack, when the labels of the first i sites
have been placed, the i-th site has its label at the first stack and k out of the i leaders have
their bends in the second track routing area. T1[i, k] can be computed based on entry T [i− 1, k]
(see Figure 6a), as follows:

T1[i, k] = {(a⊕H h, b) : ∀(a, b) ∈ T [i− 1, k]}

5

R

b

h

pi
a

(a) Placing li in 1st stack; bend
in 1st track routing area.

R

b

h

pi
a

(b) Placing li in 2nd stack; bend
in 1st track routing area.

R

b

h

pi

a

(c) Placing li in 2nd stack; bend
in 1st track routing area.

R

b

h

a

pi

(d) Placing li in 2nd stack; bend
in 2nd track routing area.

Fig. 6: Different placements obtained for the label of site i. In Figures 6a, 6b and 6c: (a, b) ∈ T [i − 1, k],
whereas in Figure 6d: (a, b) ∈ T [i− 1, k − 1].

Label li is placed at the second stack - bend at the first track routing area: Let T21[i, k]
be a list of pairs (a, b), where a (b) is the highest occupied Y -coordinate of the first (respectively
second) stack, when the labels of the first i sites have been placed, the i-th site is connected with
a label placed at the second stack using a leader that has its bends at the first track routing area
and k out of the i leaders have their bends in the second track routing area. Again, T21[i, k] can
be computed based on entry T [i− 1, k]. This computation is a little bit more complicated. If for
some pair (a, b) ∈ T [i− 1, k] it holds that a ≤ b (i.e. the occupied area of the first stack is lower
or equal than the occupied area of the second stack), then a pair (b, b⊕H h) is added in T21[i, k]
(see Figure 6b). Otherwise, pair (a, max{b⊕H h, a}) is added in T21[i, k] (see Figure 6c). So, we
conclude that T21[i, k] can be computed by using the following formula:

T21[i, k] = A21[i, k] ∪B21[i, k],

where:

A21[i, k] = {(b, b⊕H h) : ∀(a, b) ∈ T [i− 1, k] s.t. a ≤ b}
B21[i, k] = {(a, max{b⊕H h, a}) : ∀(a, b) ∈ T [i− 1, k] s.t. a > b}

Label li is placed at the second stack - bend at the second track routing area: Similarly,
let T22[i, k] be a list of pairs (a, b), where a (b) is the highest occupied Y -coordinate of the first
(respectively second) stack, when the labels of the first i sites have been placed, the i-th site is
connected with a label placed at the second stack using a leader that has its bends at the second
track routing area and k out of the i leaders have their bends in the second track routing area.
T22[i, k] can be computed based on entry T [i− 1, k − 1] (see Figure 6d), as follows:

T22[i, k] = {(yi, b⊕H h) : ∀(a, b) ∈ T [i− 1, k − 1] s.t. a < yi}

All pairs (∞, a), (a,∞) can be removed from lists T1[i, k], T21[i, k] and T22[i, k], in linear to their
length time, since they do not capture possible placements. The implied lists are merged into list
T [i, k] of atoms, based on Lemma 1. We can easily show that |T [i, k]| ≤ 2|T [i−1, k]|+3. This implies
that |T [n, k]| = O(2n), n ≥ k. Also, by Lemma 2, we have that |T [n, k]| ≤ H. However, by employing
the following Lemma 3, we can improve on both of these bounds. Its correctness can easily be shown
inductively, by proving that the distinct values that both coordinates of the pairs in T [i, k] can receive
are drawn from the sets {0, h, 2h, . . . , ih}, {y1, y2, . . . , yi}, and

⋃i
j=1{yj +h, yj +2h, . . . , yj +(i−1)h}.

6

Lemma 3. List T [n, k], n ≥ k contains O(n2) pairs.

To prove the correctness of our algorithm, consider a pair (a, b) ∈ T [i, k] that dominates pair
(c, d) ∈ T [i, k]. Assume, for the sake of contradiction, that pair (a, b) yields a solution and pair
(c, d) does not. That means that, for at least one pair out of {(yi, b + h), (b, b + h), (a,max{b +
h, a}), (a + h, b)} the boundary condition holds while the boundary condition does not hold for any
of the pairs {(yi, d + h), (d, d + h), (c, max{d + h, c}), (c + h, d)}. This is impossible since a ≥ c and
b ≥ d. Therefore (a, b) can never be involved in an optimal solution and can be discarded. This
implies that each list T [i, k] should only contain atoms.

Each of the (n + 1) × (n + 1) entries of T is computed in O(n2) time. Thus, our algorithm
terminates after O(n4) time. For a fixed label height h, the algorithm outputs a boolean value,
which indicates whether there exists a legal label placement. This is done by identifying whether
there exists a non-empty list T [n, j], with 0 ≤ j ≤ n. By using an extra table of the same size as T ,
our algorithm can easily be modified, such that it also computes the label and leader positions.

Theorem 1. Given a rectangle R of integer height H and a set P ⊂ R of n points (sites) in general
positions, there exists an O(n4 log H) time algorithm that produces a legal multi-stack labeling with
two stacks of labels and with type-opo leaders such that the uniform integer height of the labels is
maximum.

Proof. In order to solve the size maximization problem (i.e. to determine the maximum height of the
labels), we can simply apply a binary search on all possible discrete values for height h. To complete
the proof, observe that H

n ≤ h ≤ 2H
n . ut

3.2 Sample Labelings

Figures 7 and 8 are produced from the algorithm of Section 3.1 and depict two regional maps of UK
and Italy, respectively. The labels occupy two stacks to the east side of the enclosing rectangle. In
both labelings the label size is maximum.

Fig. 7: A regional map of UK. Fig. 8: A regional map of Italy.

3.3 Three Stacks of Labels on the Same Side

In this section, we extend the algorithm of Section 3.1 to support an additional stack of labels. We
consider the case, where leaders connected to labels of the i-th stack are restricted to bend in the
i-th track routing area. The objective, again, is to maximize the uniform height h of all labels.

7

R
h

pi

a

(a) Placing li in 1st stack.

R
h

pi

a b

(b) Placing li in 2nd stack.

R
h

pi

a b

mh

(c) Placing li in 3rd stack.

Fig. 9: Different placements obtained for the label of the i-th site. In Figure 9a: a ∈ T [i−1, k, m], in Figure
9b: (a, b) ∈ T [i− 1, k − 1, m], whereas in Figure 9c: (a, b) ∈ T [i− 1, k, m− 1]

Theorem 2. Given a rectangle R of integer height H and a set P ⊂ R of n points (sites) in general
positions, there exists an O(n4 log H) time algorithm that produces a legal multi-stack labeling with
three stacks of labels and with type-opo leaders such that the uniform integer height of the labels is
maximum and the leaders connected to labels of the i-th stack are restricted to bend in the i-th track
routing area.

Proof. We use dynamic programming algorithm employing a table T of size (n+1)×(n+1)×(n+1).
For each i ≥ k + m, entry T [i, k, m] contains a list of pairs (a, b), where a (b) is the Y -coordinate
of the first (second) stack, that is needed to place the first i labels, when m labels are placed in the
third stack, k labels are placed in the second stack and i− k−m labels are placed in the first stack.
Note that the height of the third stack is mh, since all leaders connected to labels of the third stack
are restricted to bend in the third track routing area. List T [i, k,m] is empty, when it is impossible
to route the first i labels using k labels in the second stack and m in the third stack. This implies
that table entries T [i, k, m], where i < k + m, contain empty lists. Following similar arguments as
in Section 3.1, entry T [i, k, m] can be computed based on the following recurrence relation:

T [i, k, m] = Merge{T1[i, k, m], T2[i, k, m], T3[i, k, m]} (1)

where:

T1[i, k, m] = {(a⊕H h, b) : ∀(a, b) ∈ T [i− 1, k, m]}
T2[i, k, m] = {(yi, b⊕H h) : ∀(a, b) ∈ T [i− 1, k − 1, m] s.t. a < yi}
T3[i, k, m] = {(yi, yi) : ∀(a, b) ∈ T [i− 1, k, m− 1], s.t. mh ≤ H and (a, b) < (yi, yi)}

List T1[i, k, m] of Equation 1 captures placements of the i-th label in the first stack (see Figure 9a).
Similarly, list T2[i, k, m] of Equation 1 captures placements of the i-th label in the second stack.
Since we assumed that leaders connected to labels of the second stack are restricted to bend in the
second track routing area, this is possible only for pairs (a, b) ∈ T [i − 1, k − 1, m] with a ≤ yi (see
Figure 9b). Finally, list T3[i, k,m] of Equation 1 captures placements of the i-th label in the third
stack. This is possible only for pairs (a, b) ∈ T [i− 1, k,m− 1] with (a, b) ≤ (yi, yi) (see Figure 9c).
To compute entry T [i, k, m], we first remove all pairs (∞, a), (a,∞) from lists T1[i, k,m], T2[i, k,m]
and T3[i, k,m] and then we merge the implied lists to T [i, k, m] of atoms, based on Lemma 1.

Lemma 4. For n ≥ k + m, |T [n, k, m]| ≤ n + 1.

Proof. Lists T2[i, k,m] and T3[i, k,m] contain pairs of numbers with the same first coordi-
nate. This implies that they contribute at most one non-dominating pair, while list T1[i, k, m]
contains at most i elements, since |T [i− 1, k, m]| ≤ i. Thus, T [i, k,m] ≤ i + 1. ut
Each of the (n+1)× (n+1)× (n+1) entries of T is computed in O(n) time. Thus, our algorithm

terminates after O(n4) time. For a fixed label height h, the algorithm outputs a boolean value,
which indicates whether there exists a legal label placement. This is done by identifying whether

8

there exists a non-empty list T [n, i, j], with 0 ≤ i + j ≤ n. By using an extra table of the same
size as T , our algorithm can easily be modified, such that it also computes the label and leader
positions. In order to solve the size maximization problem (i.e. to determine the maximum height
of the labels), we can simply apply a binary search on all possible discrete values for height h. To
complete the proof, observe that H

n ≤ h ≤ 3H
n . ut

4 Computational Complexity of Multi-Stack Labeling Problem

In this section, we investigate the computational complexity of several multi-stack boundary labeling
problems with either type-opo or po leaders and labels of arbitrary size, which can be placed at two
stacks on the same side of the enclosing rectangle. Without loss of generality, we assume that the
labels are located to the east side of the enclosing rectangle. We consider several different type
of sites. In the most applicable case, site si is associated with a point pi = (xi, yi) on the plane.
However, we also consider the cases, where site si is associated with either two candidate points
p1

i = (x1
i , y

1
i) and p2

i = (x2
i , y

2
i) on the plane (see Figure 3) or with a vertical line segment, so that the

site “slides” along the boundary of the proposed line segment (see Figure 4). The assumed models
are quite general, since we allow sliding labels with sliding ports.

4.1 Line sites with type-opo leaders at two stacks on one side.

We focus on type-opo leaders, where each site si can slide along a line segment parallel to the y-axis
and is associated with a label li of height hi. We seek to find a legal labeling.

Theorem 3. Given a rectangle R of height H, a set P ⊂ R of n line segments (sites) that are
parallel to the y-axis and a label of height hi for each site si ∈ P , it is NP -hard to place all labels
at two stacks on one side of R with non-intersecting type-opo leaders.

Proof. We reduce the Partition problem [8] to our problem. The Partition problem is defined
as follows: Given positive integers a1, a2, . . . , am, is there a subset I of J = {1, 2, . . . , m} such that∑

i∈I ai =
∑

i∈J−I ai? We will reduce an instance A of Partition to an instance B of our problem,
such that instance A can be partitioned if and only if there exists a legal labeling for instance B.

The reduction we propose is somewhat immediate. Our site set P = {s1, s2, . . . , sm} consists
of m (parallel to y-axis) line segments of identical length H = 1

2

∑
i∈J ai (H is the height of the

enclosing rectangle R; see Figure 10). Each site si is also associated with a label li of height ai. Both
stacks contribute 2H height, which is equal to the sum of all label heights.

It is clear that if there exists a labeling for instance B, the labels should be partitioned into two
sets such that the sum of the label heights of each set sums up to H. Therefore, the indices of the
sites whose labels lie in the first stack imply the desired partition I of J .

Suppose now that there exists a subset I of J = {1, 2, . . . , m} such that
∑

i∈I ai =
∑

i∈J−I ai.
Without loss of generality, we further suppose that |I| ≥ |J − I|. For each site si with i ∈ I, we
choose to place its label to the first stack. The remaining labels are placed to the second stack. To
complete the reduction, we have to describe how to connect each site with its corresponding label
such that the implied labeling is legal.

The leaders of the sites whose labels lie in the first stack are of type-o, i.e. horizontal line segments
with no bends. In this case, the ports of both sites and labels can be chosen arbitrarily. Since the
labeling is tight (i.e. the sum of the label heights on each stack is equal to H), we use the fact that
the labels are open and use the gaps between them as corridors to route the leaders, whose labels
lie in the second stack. Since we assumed that |I| ≥ |J − I|, there exist enough corridors to route
all leaders, adopting the following scenario: The leader which corresponds to the lowest label that
has not been routed yet, can use the lowest available corridor. In this case the site ports are defined
based on the corridors, whereas the label ports can be chosen arbitrarily again. ut

9

R

Fig. 10: Instance to which Partition is reduced.

4.2 Two candidate points with type-opo leaders at two stacks on one side.

We will show that the problem remains NP -hard even if we restrict ourselves in sites, which may have
two candidate points, i.e. leader of site si connects either point p1

i = (x1
i , y

1
i) or point p2

i = (x2
i , y

2
i)

with label li. To show NP -hardness, we reduce the following variant of Partition to our problem.
The NP -hardness of this problem follows easily from the Even Odd Partition problem (see [8]).

Lemma 5 (RPartition). Given 2m non-negative integers a1, a2, . . . a2m, the problem of finding a
subset I of J = {1, 2, . . . 2m} such that the following three conditions are satisfied is NP -hard.

1. I contains exactly one of {2i− 1, 2i} for i = 1, 2, . . . m
2.

∑
i∈I ai =

∑
i∈J−I ai

3.
∑

i∈I&i≤k ai <
∑

i∈J−I&i≤k ai for k = 2, 4, . . . 2m− 2

Theorem 4. Given a rectangle R of height H, a set P ⊂ R of n sites, each associated with two
candidate points, and a label of height hi for each site si ∈ P , it is NP -hard to place all labels at
two stacks on one side of R with non-intersecting type-opo leaders.

Proof. We will reduce an instance A of RPartition to an instance B of our problem, such that A can
be partitioned if and only if there exists a legal labeling for instance B. Let C be a very large number,
e.g. C = (2m + 1)2

∑
i∈J ai. Set P = {s1, s2, . . . , s2m} consists of 2m sites. Site si is associated

with p1
i = (xi, y

1
i) and p2

i = (xi, y
2
i). Consecutive sites s2i−1 and s2i, i = 1, 2, . . . ,m, form m

parallelograms ri, i = 1, 2, . . . ,m, such that y1
2i−1 < y1

2i < y2
2i−1 < y2

2i and |y2
2i−1−y1

2i| = a2i−1+a2i

2 +1
(see Figure 11). We assume that parallelogram ri−1 is placed lower than ri. The vertical distance
between two consecutive parallelograms is C, whereas the vertical distance between the bottommost
(topmost) parallelogram r1 (rm) and the bottommost (topmost respectively) side of the enclosing
rectangle R is C/2. The height of the enclosing rectangle is H = m(C + 1) + 1

2

∑
i∈J ai. The

corresponding label li of site si, has height hi = C + ai + 1, thus
∑

i∈J hi = 2m(C + 1) +
∑

i∈J ai.
Observe, that both stacks contribute 2H height, which is equal to the sum of all label heights.

The construction ensures that the same number of labels are placed at the two stacks. For the
sake of contradiction, suppose that the number of labels of the first stack is m + δ, where δ ≥ 1.
Then, the sum of the corresponding label heights is at least (m + δ)(C + 1), which is greater than
H, since δC >

∑
i∈J ai, yielding to a contradiction.

If there exists a legal labeling L for instance B, the labels should be partitioned into two sets
of equal cardinality, such that the sum of the label heights of each set sums up to H. Since the
labeling L is tight, we use the fact that the labels are open and use the gaps between the labels
of the first stack as corridors for the leaders of the sites routed at the second stack. Observe, that
due to the large label heights and the point locations of the sites, all leaders should bend in the
first track routing area. Two consecutive sites s2i−1 and s2i, i = 1, 2, . . . m can not have their labels
both at the first stack (consequently at the second stack), because at least one corridor is lost and
therefore at least one label at the second stack can not be routed. To avoid leader crossings, the
order of indices should be preserved at both stacks, i.e. label li will be stacked lower than lj if

10

s1

s2

s2i−1

s2i

s2m−1

s2m

1 + a2i+a2i−1

2

iC

C

2
(lR, bR)

(rR, tR)

W

H

Fig. 11: Instance to which RPartition is reduced.

s1

s2i−1

s2i
s2m−1

s2m

3iC

2

s2 C

(lR, bR)

(rR, tR)

W

H

Fig. 12: Instance to which RPartition is reduced.

i < j. To connect all sites with their labels, it must either hold
∑

i∈I&i≤k hi <
∑

i∈J−I&i≤k hi or∑
i∈I&i≤k hi >

∑
i∈J−I&i≤k hi for all k = 2, 4, . . . 2m− 2, which is equivalent to the third condition

of RPartition, since all labels are augmented by C + 1. Therefore, the indices of the sites whose
labels lie on the first or on the second stack respectively imply the desired partition I of J .

Suppose that there exists a subset I of J = {1, 2, . . . , 2m} of instance A such that all three
conditions of RPartition are satisfied. If i ∈ I, then the label of site si is placed at the first stack
preserving the order of indices, i.e. label li will be stacked lower than lj , if i < j. The remaining
labels (i ∈ J − I) are placed to the second stack in the same manner. This ensures that all labels
of the second stack can be hit by a leader. Suppose for the sake of contradiction that a label of the
second stack, say the k-th from the bottom, can not be hit by a leader. This implies that the sum of
the label heights of the k−1 bottommost labels of the second stack is greater than the corresponding
sum of the k bottommost labels of the first stack, which is a contradiction due to the third condition
of RPartition, and the facts that all labels are augmented by C + 1 and C >

∑
i∈J ai. A legal

labeling can be obtained as follows: Take the lowest site which has not been routed. If its label is
to be placed at the second stack, use the lowest available corridor for its leader, else route it at the
first stack with a type-o leader. Since two consecutive sites s2i−1 and s2i form a parallelogram ri,
we can determine in constant time which point of both s2i−1 and s2i will be used, such that their
leaders do not intersect. ut

4.3 Type-po leaders at two stacks on one side.

We focus on type-po leaders, where each site si corresponds to a point pi = (xi, yi) of the plane
and is associated with a label li of height hi. The labels are located to the east side of the enclosing
rectangle at two stacks. We seek to find a legal labeling.

Theorem 5. Given a rectangle R of height H, a set P ⊂ R of n and a label of height hi for each
site si ∈ P , it is NP -hard to place all labels at two stacks on one side of R with non-intersecting
type-po leaders.

Proof. As in the proof of Theorem 4, we will reduce an instance A = {a1, a2, . . . am} of RPartition
to an instance B of our problem, such that A can be partitioned if and only if there exists a legal
labeling for B. Without loss of generality, we further suppose that a1 < a2.

Let C be a very large number, e.g. C = (2m + 1)2
∑

i∈J ai. Our point set P = {s1, s2, . . . , s2m}
consists of 2m sites. Site si is associated with a label li of height hi = C + ai. The height of the
enclosing rectangle is H = mC + 1

2

∑
i∈J ai. Both stacks contribute 2H height, which is equal to the

sum of all label heights. As shown in proof of Theorem 4, the construction ensures that the same

11

number of labels are placed at the two stacks. In the construction we propose the odd and even
indexed sites lie on two separate lines. A detailed description of their exact positions is given below.

– Sites s2i−1, i = 1, 2, . . . m − 1 lie on the line, which is defined from the points (rR, bR) and
(lR + W/2, tR), such that: y1 = bR and y2i−1 = bR + (2i− 1)C/2, i = 2, 3, . . .m− 1.

– Sites s2i, i = 1, 2, . . . m lie on the line, which is defined from points (lR, tR−C) and (lR+W/2, tR),
such that: y2 = tR − C and y2i+2 − y2i = C

m , i = 1, 2, . . . , m− 1.

– Site s2m−1 is placed at x2m−1 = x2m+x2m−3
2 and such that 0 < (y2m − y2m−1) → 0

Such a construction is depicted in Figure 12 and can be obtained in linear time. The last condition
(i.e. 0 < (y2m−1 − y2m) → 0) ensures that no horizontal leader can lie between s2m−1 and s2m.

Suppose that there exists a subset I of J = {1, 2, . . . , 2m} of instance A, such that all conditions
of RPartition are satisfied. If i ∈ I, then the label of site si is placed at the first stack preserving
the order of indices, i.e. if i < j, label li will be stacked lower than lj . The remaining labels are placed
at the second stack in the same manner. Following similar arguments as in proof of Theorem 4, we
can show that there exists no label which can not be hit by a leader. A legal labeling can be obtained
as follows: Take the lowest site which has not been routed. If its label is to be placed at the second
stack, use the lowest available corridor for its leader, else route it at the first stack.

In the other direction, suppose that there exists a legal labeling L for instance B. Then, the
labels should be partitioned into two sets of equal cardinality, such that the sum of the label heights
of each set sums up to H. Since the labeling L is tight, we use the fact that the labels are open and
use the gaps between the labels of the first stack as corridors for the leaders of the sites routed at
the second stack.

We first focus on the case, where label l1 is placed at the first stack. Then it holds, for all
k = 1, 2, . . . , m− 1, that the sum of the label heights of the k bottommost labels of the first stack is
less than the sum of the heights of the k bottommost labels of the second stack, otherwise at least
one label of the second stack would be unable to be connected to its site. Label l1 can only be the
bottommost label of the first stack, otherwise at least one corridor (the one which will be used for
the leader of the bottommost label of the second stack) will be lost.

Similar claim can be proved for label l2, which corresponds to the leftmost site s2, i.e. that l2 is
the bottommost label of the second stack. For the sake of contradiction, suppose that l2 is at the
first stack. Obviously it can not be the bottommost label, since this is label l1. If l2 is the topmost
label and the proposed leader is of

– type-o, then several crossings with leaders of even indexed sites or s2m−1 exist, a contradiction
since L is legal.

– type-po, then the o segment of this leader either lies between s2m−1 and s2m (a contradiction
since 0 < (y2m−1− y2m) → 0) or between s2i−2 and s2i, and hence several crossing with leaders
of even indexed sites exist, a contradiction since L is legal.

Suppose that l2 is the k-th bottommost label (of the first stack), where 1 < k < m. In this case
labeling L has to contain crossings, because only k − 1 sites can be connected to the (k − 1)-th
bottommost labels of both stacks (totally 2k − 2 labels) without crossings. Therefore, l2 should be
at the second stack. If l2 is the topmost label of this stack, then its leader would overlap with site
s2m. Using similar arguments as in the case of l2 being the k-th bottommost label at the first stack,
we conclude that label l2 can only be the bottommost label of the second stack.

Inductively, we can show that two sites s2i−1 and s2i, i = 1, 2, . . . m can not have their labels
both at the same stack and that label li should be stacked lower than lj if both li and lj belong to
the same stack and i < j. So, the indices of the sites whose labels lie at the first stack imply the
desired partition I of J , since we have supposed that a1 < a2 and l1 lies in the first stack. Similarly,

12

we can prove that if l1 is placed at the second stack, then the desired partition I of J is formed from
the indices of the labels at the second stack. ut

Since, each point site can be thought as a line site of zero length, Corollary 1 follows immediately.

Corollary 1. Given a rectangle R of height H, a set P ⊂ R of n lines (sites) and a label of height
hi for each site si ∈ P , it is NP -hard to place all labels at two stacks on one side of R with
non-intersecting type-po leaders.

Following similar arguments as in proofs of Theorems 4 and 5, one can show that the problem
remains NP -hard even if we restrict ourselves in sites, which may have two candidate points, i.e.
leader of site si connects either point p1

i = (x1
i , y

1
i) or point p2

i = (x2
i , y

2
i) with label li.

Theorem 6. Given a rectangle R of height H, a set P ⊂ R of n sites, each associated with two
candidate points, and a label of height hi for each site, it is NP -hard to place all labels at two stacks
on one side of R with non-intersecting type-po leaders.

5 Open Problems and Future Work

For multi-stack labeling problems we presented results only for the label size maximization problem
and the legal leader-label placement. No results are known regarding the total leader length mini-
mization and the minimization of the total number of bends. Another line of research is to design
good approximation algorithms that solve the problems, that are proved to be NP -hard.

References

1. M. A. Bekos, M. Kaufmann, K. Potika, and A. Symvonis. Boundary labelling of optimal total leader
length. In Proc. 10th Panhellenic Conference On Informatics (PCI2005), LNCS 3746, pages 80–89,
2005.

2. M. A. Bekos, M. Kaufmann, K. Potika, and A. Symvonis. Polygon labelling of minimim leader length.
In Asia Pacific Symposium on Information Visualisation (APVIS2006), CRPIT 60, pages 15–21, 2006.

3. M. A. Bekos, M. Kaufmann, A. Symvonis, and A. Wolff. Boundary labeling: Models and efficient
algorithms for rectangular maps. Computational Geometry: Theory and Applications. To appear.

4. M. A. Bekos, M. Kaufmann, A. Symvonis, and A. Wolff. Boundary labeling: Models and efficient
algorithms for rectangular maps. In Proc. 12th Int. Symposium on Graph Drawing (GD’04), LNCS
3383, pages 49–59, 2004.

5. M. A. Bekos and A. Symvonis. Bler: A boundary labeller for technical drawings. In Proc. 13th Int.
Symposium on Graph Drawing (GD’05), LNCS 3843, pages 503–504, 2005.

6. P. Eades, T. Lin, and X. Lin. Minimum size h-v drawings. In Advanced Visual Interfaces (Proceedings
of AVI ’92), volume 36 of World Scientific Series in Computer Science, pages 386–394, 1992.

7. M. Formann and F. Wagner. A packing problem with applications to lettering of maps. In Proc. 7th
Annuual ACM Symposium on Computational Geometry (SoCG’91), pages 281–288, 1991.

8. M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory of NP-
Completeness. W. H. Freeman, New York, NY, 1979, 1979.

9. SmartDraw-7. Product web site: http://www.smartdraw.com.
10. L. Stockmeyer. Optimal orientations of cells in slicing floorplan designs. Information and Control,

57(2–3):91–101, 1983.
11. A. Wolff and T. Strijk. The Map-Labeling Bibliography. http://i11www.ira.uka.de/map-

labeling/bibliography, 1996.

