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Abstract

We study a variation of the boundary labelling model,
with floating sites, labels of uniform size placed in
fixed positions on the boundary (that encloses all
sites) and special type leaders connecting labels to
sites. We seek to obtain a labelling of all sites with
leaders that are non-overlapping and have minimum
total length. We present an O(n2 log3 n) time algo-
rithm for the labelling of polygons.

Keywords: map labelling, boundary labelling, floating
sites, polygons.

1 Introduction

Placing extra information, in the form of text labels,
next to features of a drawing (map) is an important
task in the process of information visualization. Usu-
ally, it is desired that the label placement is done so
that each label is close to the feature (site) it de-
scribes and is not intersecting with any other label.
In general it is NP -hard (Formann & Wagner 1991)
to obtain optimal label placements. An extensive bib-
liography about map labelling can be found at (Wolff
& Strijk 1996). Besides labelling point feature in a
map, some deal with labelling lines such that labels
do not intersect (Strijk & van Kreveld 1999).

There are cases, i.e. when the labels are very large
or the features are too many, where it is impossible
to find a label placement so that the labels are close
to the feature they describe. To cope with such cases,
one direction is to allow the labels to be placed not
close to each feature but in the boundary of the rec-
tangle that encloses all features. Each feature is con-
nected to its label by non-intersecting polygonal lines,
called leaders. We call such a label placement legal
or crossing free. The boundary labelling was first de-
fined in (Bekos, Kaufmann, Symvonis & Wolff 2005).
Bler (Bekos & Symvonis 2005) supports the boundary
labelling process.

The sites model features of the drawing. Very of-
ten in practice, we want to label an area feature (e.g.
a region of a map). Any point inside the area feature
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can be arbitrarily chosen to represent the area in the
input of the boundary labelling problem. However,
instead of arbitrarily selecting a point to represent
the area feature, we can specify as part of the input
a region in which the site is allowed to “float” in any
legal solution of the boundary labelling problem. To
keep things simple, we specify these regions to be gen-
eralized canonical polygons or rectangles or line seg-
ments internal to the feature area, and assume that
the site “slides” along the boundary of the polygon
or on the line segment. We call generalized canoni-
cal polygon or gc-polygon, a simple closed polygon
whose edges are vertical, horizontal or diagonal (at
angles which are multiples of 45 degrees with respect
to the axes). Figure 1 shows an example where the
regions pi and pj are represented by gc-polygons.

All labels have the same width and the same
height. The labels are placed in distinct places on
all four sides of the boundary of an axis parallel rec-
tangle R = [lR, rR] × [bR, tR] of height H = tR − bR
and width W = rR − lR which contains all sites pi
in P .
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Figure 1: Leader cj is oriented towards corner A and
leader ci is oriented away of corner A.

Each site is connected with its corresponding label
in a simple and elegant way by using polygonal lines,
called leaders. Labels are placed on the boundary of
the enclosing rectangle and are connected to their site
in such a way that the labels are non overlapping and
the leaders are non crossing. In our approach we have
leaders that consist of a single straight line segment
or a sequence of rectilinear segments. When a leader
is rectilinear, it consists of a sequence of axis-parallel
segments either parallel (p) or orthogonal (o) to the
side of R containing the label it leads to. The type
of a leader is defined by an alternating string over
the alphabet {p, o}. We use leaders of type- opo and
po, see Figure 2. Furthermore, we assume that each
type-opo leader has the parallel p-segment outside the
bounding rectangle R, routed in the so-called track
routing area. We consider type-o leaders to be of type-
opo and of type-po as well.

Each leader that connects a site to a label, touches
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Figure 2: Type-opo (top) and type-po (bottom) leaders.

the label on a point on its side that faces the enclosing
rectangle. The point where the leader touches the
label is called port. We can assume fixed ports where
the leader is only allowed to use a fixed set of ports on
the label side (a typical case is where the leader uses
the middle point of the label side) or sliding ports
where the leader can touch any point of the label’s
side. In the labelling presented in Figure 1, the label
port is point q. Let us denote by cj the leader of site
pj . The labellings in Figures 1-2 use sliding ports.

We want to obtain labellings that optimize some
criterion. Keeping in mind that we want to obtain
simple and easy to visualize labellings, the following
criterion of minimizing the total leader length can be
adopted from the areas of VLSI and graph drawing.
The length of a leader ci is the Manhattan (or L1)
distance of site pi to its label.

A gc-polygon p is a set of k corners indexed
{1, . . . , k} in clockwise direction that define the
boundary of p. (see in Figure 1 gc-polygon pi has
4 corners while gc-polygon pj has 5 corners). We
extend the notion of general position for points to
gc-polygons as follows: We say that gc-polygons
p1, p2, . . . pn are in general position if we can not lo-
cate any two corners belonging to gc-polygons pi
and pj with the same x- or y-coordinate. The point
of site pj that the leader cj hits, is called port of site
pj (see an example in Figure 1, the port of site pj is
point pp).

Generally, the number of sites is n, the number
of labels is m and the maximum number of corners
of each site is k. Each label is a rectangle with four
corners.

Lets give some useful definitions for the type-opo
labelling. Consider an type-opo leader c which origi-
nates from port pp of a gc-polygon and is connected
with a label on the east side (segment AB) of the
rectangle at port q (see Figure 1). The line ypp (con-
taining the segment of the leader which is incident to
pp and is orthogonal to side AB) divides the plane
into two half-planes. We say that leader c is oriented
towards corner A of the rectangle if port q and corner
A are on the same half-plane, otherwise, we say that
leader c is oriented away of corner A. In the case of
type-o leader, we consider the leader to be oriented
towards corner A (and also towards corner B).

This paper is structured as follows: In Section 2,
we formally define the boundary labelling problem.
Section 3 studies the problem of minimizing the total
leader length when type-opo leaders are used and the
labels are placed on all four sides of R. In Section 4,
we study the problem of minimizing the total leader
length when type-po leaders are used and the labels

are placed on two opposite sides of R. We conclude
in Section 5 with open problems and future work.

2 The Boundary Labelling models

The boundary labelling model is a 7-tuple (Side,
LabelSize, LabelPort, LabelPos, Leader, Site,
Objective), where:

Side: Sides of the enclosing rectangle next to which
we place labels. We use any sequence of N , E,
W and S (for North/East/West/South). In the
case of multiple stacks, we use NiEjWkSl when
the labels are attached to the North, East, West
and South side of R and use i, j, k, l number of
stacks, respectively. If no labels are placed next
to a side we omit the letter corresponding to that
side, and if only one stack is used we omit the
index 1.

LabelSize: UnifSize (all labels have the same size),
MaxSize (all labels are Uniform of Maximum
Size) or NonUnifSize (each label li is associated
with a height hi and a width wi)

LabelPort: FixedPorts (points where a leader can
touch a label are predefined) or SlidPorts (points
can slide along the label’s edge)

LabelPos: FixedPos (labels have either to be aligned
with a predefined fixed set of points on the
boundary of the rectangle) or SlidPos (labels can
slide along the rectangle’s sides)

Leader: Type of the leader (opo, po or o)

Site: Type of the sites. Each site is a 1-point, line,
rectangle, a polygon etc.

Objective: LEGAL (just find a legal label place-
ment), TLLM (find a legal label placement, such
that the total leader length is minimum), TBM
(find a legal label placement, such that the to-
tal number of bends is minimum or, equivalently,
the number of type-o leaders is maximum), LSM
(find the maximum label size for which a legal la-
bel placement is possible), etc.

2.1 Previous Work and Our Results

All the known results on boundary labelling are given
in Table 1. Most of the results were presented
in (Bekos, Kaufmann, Symvonis & Wolff 2005) where
the boundary labelling problem was defined. A vari-
ety of models based on the type of leader, the location
of the label and the size of the label are studied for le-
gal label placement and leader bend and leader length
minimization.

In Table 2 we present the results of this paper.

3 Four-side Labelling of gc-polygons with
type-opo Leaders

We consider boundary labelling with “floating” sites,
such as gc-polygons, rectangles and lines. Accord-
ing to the notation of Section 2, first we examine
the Boundary Labelling(NEWS, UnifSize, SlidPort,
FixedPos, opo, gc-polygon, TLLM) problem. We
assume that we have fixed labels of uniform size,
placed on all four sides of rectangle R, sliding ports
and type- opo leaders. We present a polynomial time
algorithm, that returns a legal labelling of minimum
total leader length.

Let P = {p1, p2, . . . pn} be the set of gc-
polygons and L = {l1, l2, . . . lm} be the set of labels.
Since the labels have uniform size, each site pi can be



Model Time complexity
In (Bekos, Kaufmann, Symvonis & Wolff 2005)
(E, NonUnifSize, SlidPort, SlidPos, opo, 1-point, LEGAL) O(n log n)
(E, NonUnifSize, SlidPort, SlidPos, opo, 1-point, TBM) O(n2)
(NESW, UnifSize, SlidPort, FixedPos, opo, 1-point, LEGAL) O(n log n)
(E, UnifSize, SlidPort, SlidPos, po, 1-point, LEGAL) O(n2)
(EW, MaxSize, SlidPort, FixedPos, opo/po, 1-point, TLLM) O(n2)
(EW, NonUnifSize, SlidPort, SlidPos, opo, 1-point, TLLM) O(nH2)
(E, UnifSize, SlidPort, SlidPos, s, 1-point, LEGAL) O(n log n)
(E/NEWS, UnifSize, SlidPort, FixedPos, s, 1-point, TLLM) O(n2+δ), δ > 0
In (Bekos, Kaufmann, Potika & Symvonis 2005)
(NESW, UnifSize, SlidPort, FixedPos, opo, 1-point, TLLM) O(n2log3n)

Table 1: Known results on boundary labelling. H is the height of the enclosing rectangle.

Model Time complexity
(NEWS, UnifSize, SlidPort, FixedPos, opo, gc-polygon TLLM) O(n2log3n)
(NEWS, UnifSize, SlidPort, FixedPos, opo, Rectangle/Line, TLLM) O(n2log3n)
(EW , UnifSize, SlidPort, FixedPos, po, gc-polygon TLLM) O(n2log3n)
(EW , UnifSize, SlidPort, FixedPos, po, Rectangle/Line, TLLM) O(n2log3n)

Table 2: The results presented in this paper.

connected to any label lj . We seek to connect each
site pi to a label lj and to specify two points one on
the periphery of pi (port of site pi) and one on the
periphery of label lj (port of label lj).

We propose Algorithm 1 for this problem.

Algorithm 1: 4side-area-opo

input : A set of n gc-polygons pi in the plane
and a set of m uniform sized labels lj .

output: A crossing free four-side type-opo
labelling of minimum total leader
length.

Step A. Shortest Leader Computation:
Construct a complete weighted bipartite
graph G = (P ∪ L,E, w) between all sites
p ∈ P and all labels l ∈ L. The weight of an
edge (pi, lj) ∈ E is the Manhattan length of
the shortest (under the Manhattan metric)
leader, say dij , which connects pi with lj .

Step B.

Proceed by applying to graph G, Vaidya’s
algorithm (Vaidya 1989) for minimum-cost
bipartite matching under the Manhattan
metric. It computes a matching between
sites and labels that minimizes the total
Manhattan distance of the matched pairs.

Step C. Obtain a labelling M as follows:

If an edge (pi, lj) ∈ E is selected in the
matching then connect site pi to label lj
with a leader of length dij.

Step D. Crossing Free Procedure:

Eliminate all crossings of leaders and
obtain a crossing free labelling M ′.

3.1 Shortest Leader Computation

We propose Algorithm 2 for computing the minimum
Manhattan distance between every site and every la-
bel (Step A of Algorithm 1).

Theorem 1 Algorithm 2 computes the minimum
distance under the Manhattan metric between any la-
bel and any polygon, when the labels are placed in fixed
positions on all four sides of rectangle R. Moreover
this algorithm runs in O(n(k′+m) log k′) time, where
m is the number of labels, n is the number of gc-
polygons, k′ = O(k + m) and k is the maximum
number of corners that a site of type gc-polygon
can have.

Proof: The number of points in each set pe
i is

O(m+k) and each set pe
i is computed in O(n(m+k))

time. Note that set pe
i contains candidate site ports.

In Step 1 we construct the Voronoi diagram under the
Manhattan distance of the set pi∪pe

i (k′ points total),
where k′ = O(k+m). The construction of the Voronoi
diagram can be done in O(k′ log k′) time (Lee 1980).

Algorithm 2: minimum Manhattan distance
between any gc-polygon and any label.
input : A set of m labels placed in fixed

positions on all four sides of rectangle R
and a set of n gc-polygon sites in the
plane, with their corners indexed
clockwise.

output: The minimum Manhattan distance
between any gc-polygon and any
label.

Step A.
for each site pi (1 ≤ i ≤ n) do

for each label site lj (1 ≤ j ≤ m) do
find the crossing points of each edge of pi
with the vertical (horizontal) lines of each
corner of label lj . Add these points to pe

i .
Step B.
for each site pi (1 ≤ i ≤ n) do

1. Construct the Voronoi diagram, under the
Manhattan distance, Hi for pi ∪ pe

i .
2. for each label lj (1 ≤ j ≤ m) do
for each corner of lj find the nearest neighbor
in Hi (Voronoi diagram) and compute their
Manhattan distance. Set dij to be the
minimum distance and ppij the port of pi for
this distance.



Finding the nearest neighbor of a point q in the
Voronoi diagram Hi costs O(log k′). Therefore, we
compute Step B.2 in O(m log k′) time. Totally the
running time of Algorithm 2 is O(n(k′ + m) log k′).
tu

If the polygons are convex, then we can find the
minimum Manhattan distance between any label and
any convex polygon faster by using Algorithm 3.

Algorithm 3: minimum Manhattan distance
between any convex polygon and any la-
bel.
input : A set of m labels placed in fixed

positions on all four sides of rectangle R
and a set of n convex gc-polygons
sites in the plane, with their corners
indexed clockwise.

output: The minimum Manhattan distance
between any convex gc-polygon and
any label.

for each site pi (1 ≤ i ≤ n) do
for each side (West | North| East| South) do

1. take the south | west | north | east
- most label of that side, say lj

2. compute the minimum distance of lj to
all corners 1, . . . , ki and edges of pi.
Keep the minimum distance in dij , and
the point ppij of pi for which this
minimum was achieved.

3. while not all labels of the
West | North | East | South side
have been examined do

i) pp := ppij ; take the next label in
clockwise direction say lj′
ii) compute the minimum distance of
label lj′ to pp, the corners that are
between pp and the north | east |
south | west - most corner of pi in
clockwise direction, and the edges
that have these corners as endpoint.
keep the minimum distance in dij′ ,
and the point ppij′ of pi for which
this minimum was achieved.

Theorem 2 Algorithm 3 computes the minimum
distance under the Manhattan distance between any
label and any convex gc-polygon when the labels
are placed in fixed positions in all four sides of rectan-
gle R. Moreover this algorithm runs in O(n(m + k))
time, where m is the number of labels, n is the num-
ber of sites and k is the maximum number of corners
that a site of type gc-polygon can have.

Proof: In each side we compute the minimum dis-
tance for the first pair of label site in O(k) time
(Step (2)). Recall that our sites are convex and there-
fore we can determine the minimum Manhattan dis-
tance without checking all corners and edges of a site
to a label, just by finding the first point of the con-
vex site where the distance starts again to increase.
In the computation of the minimum distance between
site pi and label lj′ (Step 3.(ii) of Algorithm 3), we
need to examine only the part of the site that lies in
between the port of the previous label and the north
(east | south | west) most corner, because label lj′
lies between the previous label and the north | east
| south | west -side of rectangle R in clockwise direc-
tion. This step requires O(m + k) time. Totally the
required time is O(n(m + k)). tu

3.2 Crossing Free Procedure

After Step (C) of Algorithm 1 some leaders may cross,
thus we have not yet a legal label placement.

Lemma 1 Labelling M of Algorithm 1 is of mini-
mum total leader lengths with some crossings. Let ci
and cj be two leaders that cross each other. Then the
following holds (i) the labels of these leaders are on
adjacent sides of the rectangle R and the sides are in-
cident to a corner A and (ii) leaders ci and cj are
oriented towards corner A of the rectangle R and can
be rerouted so that they do not cross each other with
unchanged total leader length.

Proof:
Prove of (i):
We show that it is impossible to have the labels placed
at the same or opposite sides of R. Suppose that the
labels lie on the same side, say the east side, and the
leaders intersect or overlap.

If leaders ci and cj overlap, then we can slide on of
the two leaders, by choosing new site port and proba-
bly new label port. Then either the total leader length
is reduced (see an example in Figure 3), which is a
contradiction, or it remains the same. Note that in
the latter case, in a gc-polygon we can use a new
leader with site port a point that is next to the site
port of the old leader, so that the new leader length
is equal to the old leader length.

If the leaders ci and cj intersect, then the inter-
section takes place outside rectangle R (in the track
routing area). This implies that, along the east side,
the order of the sites is the reverse of the order of
their associated labels. However, by swapping the la-
bels to which each site is connected, we can reduce the
total leader length (and also eliminate the crossing),
a contradiction since we assumed that the total leader
length of the labelling is minimum (see an example in
Figure 4).

Consider now the case where the labels lie on oppo-
site sides of rectangle R. Then, since the leaders inter-
sect each other, the segments of the leaders which are
inside the rectangle (and incident to the sites) have to
overlap. Again, if the leaders overlap then by swap-
ping the labels to which each site is connected, we can
reduce the total leader length (and also eliminate the
overlapping), a contradiction since we assumed that
the total leader length of the labelling is minimum
(see an example in Figure 5).

We showed that leaders which have their associ-
ated labels lying on the same or on opposite sides of
rectangle R can not cross and therefore, if we find
two crossing leaders, their associated labels must lie
on adjacent sides of the rectangle R.
Prove of (ii):
Lets say that leaders ci and cj are oriented towards
corner A. First we show that in a labelling of mini-
mum total leader length, it is impossible to have one
(Case (a)) or both leaders oriented away of corner A
(Case (b)). We proceed to consider these two cases.

Case a: Exactly one leader, say cj , is oriented
away of corner A. This case is described in the left of
Figure 6. Rerouting the leaders as described in Fig-
ure 6 results in a reduction of the total leader length,
a contradiction since we assumed that the total leader
length of the labelling is minimum.

Case b: Both leaders ci and cj are oriented away
of corner A (see left of Figure 7). When both leaders
are oriented away of corner A, rerouting results in
higher reduction of the total leader length, compared
to Case (a) where only one leader was oriented away
of corner A. The rerouting of the leaders is shown in
Figure 7.
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Having eliminated the cases (a) and (b) where one
or both crossing leaders are oriented away of corner
A, the only case left is the one where both leaders are
oriented towards corner A (see an example in Fig-
ure 8).

Case c: Leaders ci and cj , that are oriented to-
wards the same corner, say A, can be rerouted (see
Figure 8) so that they do not cross each other and the
sum of their leader lengths remains unchanged. Parti-
tion the first segment of each leader ci and cj into two
sub-segments in their crossing point. Then obtain the
new leaders c′i and c′j by a sliding the (sub)segments
of leaders ci and cj , leaving their sum unchanged.
To complete the proof of the lemma, we note that
whenever we perform a rerouting, we never change
the position of a label or site port. So, since the used
port would also be available in the case where the
fixed-port model is used, the lemma applies to fixed
(label) ports, as stated.

If we had a reduction of the total leader length, by
taking as site or label ports other points, this would
be a contradiction since we assumed that the total
leader length of the labelling is minimum.

tu
We proceed by showing that given a labelling

of minimum total leader length which may contain
crossings, we can efficiently construct a crossing free
labelling of identical total leader length, by first iden-
tifying such a crossing and then eliminating the cross-
ing (with the help of Lemma 1.ii).

Theorem 3 Step D of Algorithm 1 produces a cross-
ing free labelling M ′ of minimum total leader length
in O(n log n) time.

Proof: We can resolve all crossings (as in (Bekos,
Kaufmann, Potika & Symvonis 2005)) in O(nlogn)
additional time and keep the total leader length un-
changed. We show how to eliminate all crossings in
labelling M by rerouting the crossing leaders. Our
method performs two passes over the sites, one in the
west-to-east and one in the east-to-west direction.

Consider first the west-to-east pass. In the west-
to-east pass of labelling M , we consider all sites with
labels on the east side of the rectangle. We examine
the sites from west-to-east and we are interested only
on those who have crossing leaders. Let pi be the

i
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west-most such site and let ci be the leader that con-
nects it with its corresponding label on the east side of
the rectangle (see Figure 9). Lemma 1(i) implies that
leader ci intersects only with leaders that are con-
nected with labels on the north and south sides of rec-
tangle R. Without loss of generality, assume that ci is
oriented towards the east-south corner of the rectan-
gle, say A. Then all leaders that intersect ci have their
labels on the south side of R and are also oriented to-
wards A (by Lemma 1(ii)). Let ck be the west-most
leader that intersects ci, and let pk be its incident site.
According to Lemma 1(ii), we can reroute leaders ci
and ck so that the total leader length remains un-
changed (Figure 10). The total number of crossings
is reduced and the next west-most site with intersect-
ing leader and connected to a label on the east side of
the rectangle is located to the east of site pi. Finally,
all west-to-east crossings are eliminated. It is also im-
possible to introduce a east-to-west crossing when the
west-to-east pass is executed, as an example see lead-
ers c′i and c in Figure 11. Both leaders c′i and c must
be oriented towards corner B (by Lemma 1(i)), a con-
tradiction since leader c′i is oriented away of corner B
(and towards corner A).

After the west-to-east and the east-to-west pass,
we obtain a labelling M ′ without any crossings and
of total leader length equal to that of M , that is,
minimum.

By employing a dynamic priority search tree based
on half-balanced trees [7, pp. 209] we can answer
question of the form: ‘given a point p return the seg-
ment that intersects line yp and is the nearest in the
east site of p’, insert and delete operations in O(log n)
time. Thus, identifying the (at most n) pairs of lead-
ers to be rerouted during the west-to-east pass takes
only O(n log n) time, resulting to a total time com-
plexity of O(n log n) for the production of the crossing
free boundary labelling M ′.

tu
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Theorem 4 Algorithm 1 solves problem Boundary
Labelling(NEWS, UnifSize, SlidPort, FixedPos, opo,
gc-polygon, TLLM) in O(n2 log3 n) time.

Proof: Let L be the set of the n labels (we assume
that the number of labels is equal to the number
of sites). We assume that all labels are around the
boundary of the rectangle. We construct a complete
bipartite graph between all sites pi ∈ P and all labels
lj ∈ L, with edge weights to be the Manhattan length
dij of the corresponding leaders computed with the
help of Algorithm 2 (or Algorithm 3). This step costs
O(n(k +n) log(k +n)) time, where k is the maximum
number of corners that a site of type gc-polygon
can have (Theorem 1). Or O(n(n + k)) time (Theo-
rem 2).

In Step B we proceed by applying the Vaidya’s
algorithm (Vaidya 1989) for minimum-cost bipartite
matching for points in the plane under the Manhat-
tan metric. It runs in O(n2log3n) time and finds a
matching between sites and labels that minimizes the
total Manhattan distance of the matched pairs.

The leaders in the produced solution might cross.
However, in Step D based on Theorem 3 we can obtain
a crossing free solution in O(n log n) additional time.

tu
Since a rectangle is a gc-polygon with only four

corners and a line-segment of two corners, we have:

Corollary 2 Problem Boundary Labelling(NEWS,
UnifSize, SlidPort, FixedPos, opo, rectangle/line,
TLLM) can be solved in O(n2log3n) time.

Remark Notice that Algorithm 1 works for any
kind of polygon. We choose the special kind of gc-

polygons because these polygons offer better visual-
ization and because one can easily find an alternative
leader, in the case of overlapping leaders.

3.3 Sample Labelling of type-opo Leaders

Figures 12 and 13 depict the regions of Germany and a
boundary labelling on opposite sides (east and west)
of R with type- opo leaders. Figure 12 is produced
by the algorithm for boundary labelling points and
provides an optimal solution. The labelling of Fig-
ure 12 is visually improved in Figure 13 by replacing
the points with rectangles within each region. The
labelling of Figure 13 is optimal, with the use of less
total leader length (37% less pixels) than Figure 12.
Note that we achieved to reduce the number of leader
bends to 5 (in Figure 13) from 8 (in Figure 12), just
by the use of rectangle sites instead of points.

Figure 12: A regional map of Germany; a point is the
representative of each region.

Figure 13: A visually improved map; a rectangle is
the representative of each region.

4 Two-side Labelling of gc-polygon sites with
type-po Leaders

We adopt the same scenario as in Section 3, assum-
ing type-po leaders and 2-side labelling. According
to the notation of Section 2, we examine the Bound-
ary Labelling(EW, UnifSize, SlidPort, FixedPos, po,
gc-polygon, TLLM) Problem. We suppose that we
have fixed labels of uniform size placed on two op-
posite sides of rectangle R, sliding ports and type-po



leaders. Again, our objective is to minimize the total
leader length.

To deal with this problem, we use the (matching
based) Algorithm 1 for the case of type-opo leaders to
get a label placement of minimum total leader length.
As already mentioned, this can be done in O(n2log3n)
time (Theorem 4). Instead of placing type-opo leaders
we use type-po leaders. Note that connecting a site to
its label with a type-opo or a type-po leader requires
the same leader length under the Manhattan metric,
assuming that we keep the same ports. Therefore, the
returned solution remains optimal, but might contain
crossings.

Crossings of leaders oriented towards the same side
can occur, however, they can be resolved following a
similar strategy as in (Bekos, Kaufmann, Symvonis &
Wolff 2005), without changing the total leader length.
This can be done in O(n2) additional time. Crossings
of leaders to opposites sides cannot occur, since swap-
ping the labels of the sites that have crossing leaders,
would result in a solution with smaller total leader
length. This is a contradiction, because we assumed
that the original solution minimizes the total leader
length.

The same strategy can be applied when labels are
placed in only one side of rectangle R or when the
sites are line segments. However, this strategy does
not result in a crossing free solution, in the case where
labels are placed on all four sides of rectangle R, since
a crossing between two leaders that are oriented to-
wards two adjacent sides of the enclosing rectangle
can not always be eliminated. We conclude:

Corollary 3 Problem Boundary Labelling(EW ,
UnifSize, SlidPort, FixedPos, po, rectangle/line,
TLLM) can be solved in O(n2log3n) time.

4.1 Sample Labelling of type-po Leaders

Figures 14 and 15 depict labelling of the regions of
France with type- po leaders. Restricting the sites
to by rectangles leads to labelling with reduced total
leader length than the use of points (10.73% less pix-
els). The order of the labels is the same as the order
of the correspondent sites in Figure 15, in contrast to
Figure 14. Note also that we achieved to reduce the
number of leader bends to 1 (in Figure 15) from 14
(in Figure 14).

5 Open Problems and Future Work

We have presented results for boundary labelling of
gc-polygons, rectangle or lines instead of points
with the objective of minimizing the total leader
length. It is interesting to see the visual result of the
labelling if we choose another objective as the one of
minimizing of the number of bends of the leaders.

Another future research is to find efficient ways of
determine for each region of a map a representative
gc-polygon site that has less than k corners.

References

Bekos, M. A., Kaufmann, M., Potika, K. & Symvo-
nis, A. (2005), Boundary labelling of optimal
total leader length., in P. Bozanis & E. N.
Houstis, eds, ‘Panhellenic Conference on Infor-
matics’, Vol. 3746 of Lecture Notes in Computer
Science, Springer, pp. 80–89.

Bekos, M. A., Kaufmann, M., Symvonis, A. &
Wolff, A. (2005), Boundary labeling: Models
and efficient algorithms for rectangular maps,
in J. Pach, ed., ‘Proc. 12th Int. Symposium on

Figure 14: A regional map of France; a point is the
representative of each region.

Figure 15: A visually improved map; a rectangle is
the representative of each region.

Graph Drawing (GD’04)’, Lecture Notes in Com-
puter Science, pp. 49–59.

Bekos, M. A. & Symvonis, A. (2005), Bler: A bound-
ary labeller for technical drawings., in ‘Graph
Drawing, LNCS’.

Formann, M. & Wagner, F. (1991), A packing prob-
lem with applications to lettering of maps, in
‘Proc. 7th Annuual ACM Symposium on Com-
putational Geometry (SoCG’91)’, pp. 281–288.

Lee, D. T. (1980), ‘Two-dimensional voronoi dia-
grams in the lp-metric’, J. ACM 27(4), 604–618.

Strijk, T. & van Kreveld, M. (1999), ‘Labeling a
rectilinear map more efficiently’.
*citeseer.ifi.unizh.ch/article/strijk99labeling.html

Vaidya, P. M. (1989), ‘Geometry helps in matching’,
SIAM Journal on Computing 18, 1201–1225.

Wolff, A. & Strijk, T. (1996), ‘The Map-Labeling
Bibliography’, http://i11www.ira.uka.de/
map-labeling/bibliography/.
*http://i11www.ira.uka.de/map-
labeling/bibliography/


