JPAA:5294

Journal of Pure and Applied Algebra e e e (s e o o) o6 0—00 e

Journal of Pure and Applied Algebra

Contents lists available at ScienceDirect

www.elsevier.com/locate/jpaa

A new basis for the Homflypt skein module of the solid torus

loannis Diamantis, Sofia Lambropoulou *

Department of Mathematics, National Technical University of Athens, Zografou Campus,

GR-15780 Athens, Greece

ARTICLE INFO

ABSTRACT

Article history:

Received 10 December 2014
Received in revised form 13 May
2015

Available online xxxx
Communicated by C. Kassel

MSC:
57M27; 57M25; 57N10; 20F36; 20C08

In this paper we give a new basis, A, for the Homflypt skein module of the solid torus,
S(ST), which topologically is compatible with the handle sliding moves and which
was predicted by J.H. Przytycki. The basis A is different from the basis A’, discovered
independently by Hoste and Kidwell [1] and Turaev [2] with the use of diagrammatic
methods, and also different from the basis of Morton and Aiston [3]. For finding the
basis A we use the generalized Hecke algebra of type B, Hi ,, which is generated by
looping elements and braiding elements and which is isomorphic to the affine Hecke
algebra of type A [4]. More precisely, we start with the well-known basis A’ of S(ST)
and an appropriate linear basis 3, of the algebra Hy ,. We then convert elements in
A’ to sums of elements in X,,. Then, using conjugation and the stabilization moves,
we convert these elements to sums of elements in A by managing gaps in the indices,
by ordering the exponents of the looping elements and by eliminating braiding tails
in the words. Further, we define total orderings on the sets A’ and A and, using these
orderings, we relate the two sets via a block diagonal matrix, where each block is
an infinite lower triangular matrix with invertible elements in the diagonal. Using
this matrix we prove linear independence of the set A, thus A is a basis for S(ST).
S(ST) plays an important role in the study of Homflypt skein modules of arbitrary
c.c.o. 3-manifolds, since every c.c.o. 3-manifold can be obtained by integral surgery
along a framed link in S® with unknotted components. In particular, the new basis
of S(ST) is appropriate for computing the Homflypt skein module of the lens spaces.
In this paper we provide some basic algebraic tools for computing skein modules of
c.c.o. 3-manifolds via algebraic means.

© 2015 Published by Elsevier B.V.

1. Introduction

Let M be an oriented 3-manifold, R = Z[uil, zil], L the set of all oriented links in M up to ambient
isotopy in M and let S be the submodule of RL generated by the skein expressions u 'Ly —uL_ — zLg,
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Fig. 1. The links L, L_, Lo locally.

Fig. 2. A basic element of S(ST).

where L, L_ and Ly are oriented links that have identical diagrams, except in one crossing, where they
are as depicted in Fig. 1.

For convenience we allow the empty knot, @, and add the relation u='0) — uf) = 2T}, where T} denotes
the trivial knot. Then the Homflypt skein module of M is defined to be:

S(M) :S(M,Z [Uil,zil} ,U_1L+ —ul_ —ZL()) = RE/S

Unlike the Kauffman bracket skein module, the Homflypt skein module of a 3-manifold, also known as
Conway skein module and as third skein module, is very hard to compute (see [5] for the case of the product
of a surface and the interval).

Let ST denote the solid torus. In [2,1] the Homflypt skein module of the solid torus has been computed
using diagrammatic methods by means of the following theorem:

Theorem 1 (Turaev, Kidwell-Hoste). The skein module S(ST) is a free, infinitely generated Zu*t, z*1]-
module isomorphic to the symmetric tensor algebra SR7°, where 70 denotes the conjugacy classes of non-
trivial elements of w1 (ST).

A basic element of S(ST) in the context of [2,1], is illustrated in Fig. 2. In the diagrammatic setting of [2]
and [1], ST is considered as Annulus x Interval. The Homflypt skein module of ST is particularly important,
because any closed, connected, oriented (c.c.0.) 3-manifold can be obtained by surgery along a framed link
in S$% with unknotted components.

A different basis of S(ST), known as Young idempotent basis, is based on the work of Morton and Aiston
[3] and Blanchet [6].

In [4], S(ST) has been recovered using algebraic means. More precisely, the generalized Hecke algebra
of type B, Hj ,,(q), is introduced, which is related to the affine Hecke algebra of type A, ﬁ;(q) [4]. Then,
a unique Markov trace is constructed on the algebras Hj ,,(¢) leading to an invariant for links in ST, the
universal analogue of the Homflypt polynomial for ST. This trace gives distinct values on distinct elements
of the [2,1]-basis of S(ST). The link isotopy in ST, which is taken into account in the definition of the skein
module and which corresponds to conjugation and the stabilization moves on the braid level, is captured
by the conjugation property and the Markov property of the trace, while the defining relation of the skein
module is reflected into the quadratic relation of Hy ,,(g). In the algebraic language of [4] the basis of S(ST),
described in Theorem 1, is given in open braid form by the set A’ in Eq. (4). Fig. 8 illustrates the basic
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Fig. 3. An element of the new basis A.

element of Fig. 2 in braid notation. Note that in the setting of [4] ST is considered as the complement of
the unknot (the bold curve in the figure). The looping elements ¢; € H; ,,(¢) in the monomials of A’ are all
conjugates, so they are consistent with the trace property and they enable the definition of the trace via
simple inductive rules.

In this paper we give a new basis A for S(ST), which was predicted by J.H. Przytycki, using the algebraic
methods developed in [4] (see Fig. 3). The motivation of this work is the computation of S (L(p,q)) via
algebraic means. The new basic set is described in Eq. (1) in open braid form (see Fig. 9). The looping
elements ¢; are in the algebras Hy ,,(¢) and they are commuting. For a comparative illustration and for the
defining formulas of the ¢;’s and the t’s the reader is referred to Fig. 7 and Eq. (3) respectively. Moreover,
the ¢;’s are consistent with the handle sliding move or band move used in the link isotopy in L(p, ¢), in the
sense that a braid band move can be described naturally with the use of the ¢;’s (see for example [7] and
references therein).

Our main result is the following:

Theorem 2. The following set is a Zg*', 2*']-basis for S(ST):
A= {thothr ke ki e Z)\ {0}, ks > kip1 Vi, n e N} (1)
Our method for proving Theorem 2 is the following:

o We define total orderings in the sets A’ and A,

e we show that the two ordered sets are related via a lower triangular infinite matrix with invertible
elements on the diagonal, and

o using this matrix, we show that the set A is linearly independent.

More precisely, two analogous sets, ¥,, and ¥/, are given in [4] as linear bases for the algebra Hj ,,(q).
See Theorem 4 in this paper. The set |J,, ¥, includes A as a proper subset and the set |J,, 2], includes
A’ as a proper subset. The sets ¥,, come directly from the works of S. Ariki and K. Koike, and M. Broue
and G. Malle on the cyclotomic Hecke algebras of type B. See [4] and references therein. The second set
U,, X, includes A’ as a proper subset. The sets ¥/, appear naturally in the structure of the braid groups
of type B, Bi ,; however, it is very complicated to show that they are indeed basic sets for the algebras
Hi ,,(¢). The sets X,, play an intrinsic role in the proof of Theorem 2. Indeed, when trying to convert a
monomial A" in A’ into a linear combination of elements in A we pass by elements of the sets X,,. This means
that in the converted expression of A’ we have monomials in the ¢;’s with possible gaps in the indices and
possible non-ordered exponents, followed by monomials in the braiding generators g;. So, in order to reach
expressions in the set A we need:

e to manage the gaps in the indices of the ¢;’s,
e to order the exponents of the ¢;’s and
¢ to eliminate the braiding ‘tails’.
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Fig. 4. A mixed link in S3.

The paper is organized as follows. In Section 2 we recall the algebraic setting and the results needed
from [4]. In Section 3 we define the orderings in the two sets ¥,, and ¥/, which include the sets A and A’
as subsets, and we prove that these sets are totally ordered. In Section 4 we prove a series of lemmas for
converting elements in A’ to elements in the sets ¥,,. In Section 5 we convert elements in X,, to elements
in A using conjugation and the stabilization moves. Finally, in Section 6 we prove that the sets A’ and
A are related through a lower triangular infinite matrix mentioned above and that the set A is linearly
independent. A computer program converting elements in A’ to elements in X,, has been developed by
K. Karvounis and will be soon available on http://www.math.ntua.gr/~sofia.

The algebraic techniques developed here will serve as basis for computing Homflypt skein modules of
arbitrary c.c.o. 3-manifolds using the braid approach. The advantage of this approach is that we have
an already developed homogeneous theory of braid structures and braid equivalences for links in c.c.o.
3-manifolds [8,9,7]. In fact, these algebraic techniques are used and developed further in [10] for knots and
links in 3-manifolds represented by the 2-unlink.

The authors wish to express their gratitude for some critical comments of the Referee, which led to the
improvement of the presentation of the paper.

2. The algebraic settings
2.1. Mized links in S®

We now view ST as the complement of a solid torus in S3. An oriented link L in ST can be represented
by an oriented mized link in S® (see Fig. 4), that is a link in S® consisting of the unknotted fixed part T
representing the complementary solid torus in S® and the moving part L that links with 1.

A mized link diagram is a diagram TULof TUL on the plane of 1/'\, where this plane is equipped with
the top-to-bottom direction of 1.

Consider now an isotopy of an oriented link L in ST. As the link moves in ST, its corresponding mixed
link will change in S by a sequence of moves that keep the oriented T pointwise fixed. This sequence of
moves consists in isotopy in the S and the mized Reidemeister moves. In terms of diagrams we have the
following result for isotopy in ST:

The mixed link equivalence in S? includes the classical Reidemeister moves and the mixed Reidemeister
moves, which involve the fixed and the standard part of the mixed link, keeping T pointwise fixed.

2.2. Mized braids in S°

By the Alexander theorem for knots in solid torus, a mixed link diagram TULofTUL may be turned
into a mized braid I U 3 with isotopic closure (see Fig. 5). This is a braid in S where, without loss of
generality, its first strand represents :f, the fixed part, and the other strands, (3, represent the moving part
L. The subbraid § shall be called the moving part of I U .
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Fig. 5. The closure of a mixed braid to a mixed link.
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Fig. 6. The generators of By .

The sets of braids related to the ST form groups, which are in fact the Artin braid groups of type B,
denoted B ,, with presentation:

0'1tO'1t = t01t0'1

to; =o;t, 1>1
Bl,n: t>0'17~-~70-n71 . << ’
0i0i410; = 0i4+100i+1, 1<i<n—2

0,0 = 004, |i—j|>1

where the generators o; and ¢ are illustrated in Fig. 6.
Isotopy in ST is translated on the level of mixed braids by means of the following theorem.

Theorem 3. (See [11, Theorem 3].) Let L1, Lo be two oriented links in ST and let I U 31, I U Pa be two
corresponding mized braids in S®. Then Ly is isotopic to Lo in ST if and only if I U By is equivalent to

TUpBy in OL<J)1 By, by the following moves:
n=

(i)  Conjugation: a~ B lag, if a, 8 € Bip.
(i)  Stabilization moves: o ~ aort € By i1, if a € By,

2.3. The generalized Twahori-Hecke algebra of type B

It is well known that By ,, is the Artin group of the Coxeter group of type B, which is related to the Hecke
algebra of type B, H, (¢, Q) and to the cyclotomic Hecke algebras of type B. In [4] it has been established
that all these algebras form a tower of B-type algebras and are related to the knot theory of ST. The basic
one is H, (¢, Q), a presentation of which is obtained from the presentation of the Artin group B, by adding
the quadratic relations

g2 =(q—1)gi+q (2)

and the relation t? = (Q — 1)t + Q, where ¢,Q € C\{0} are seen as fixed variables. The middle B-type
algebras are the cyclotomic Hecke algebras of type B, H, (¢, d), whose presentations are obtained by the
quadratic relation (2) and t¢ = (t — u1)(t — ug2) ... (t — ug). The topmost Hecke-like algebra in the tower is
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Fig. 7. The elements ¢, and t;.

1 2 ... i+1 ...n 1 2 ... i+1 ...n

the generalized Iwahori-Hecke algebra of type B, Hy ,,(q), which, as observed by T. tom Dieck, is related to
the affine Hecke algebra of type A, H,(q) (cf. [4]). The algebra H; ,,(¢) has the following presentation:

gitgit = tgitgr
tgi =git, 1>1
Hin(q) = < 691, gn-1 | 9i9i+19i = Yi+19iGi+1, 1 <i1<n—2 > .
9i9; = 9i9i,» li—jl>1
g2=(@q—-1gi+q, i=1,....,n—1
That is:

Z [qil] Bl,n
(0?2 —(q—1oi—q)

Hl,n(Q) =

Note that in H; ,,(¢) the generator ¢ satisfies no polynomial relation, making the algebra Hy ,,(¢) infinite
dimensional. Also that in [4] the algebra H; ,,(q) is denoted as H,, (g, 00).
In [12] V.F.R. Jones gives the following linear basis for the Iwahori—-Hecke algebra of type A, H,,(¢):

S = {(gilgilfl .. 'gilfkl)(gizgizfl e 'gi‘z*k‘z) s (gipgip71 e 'gip*kp)} ’

for1<i;p <...<ip<n—-1

The basis S yields directly an inductive basis for H,,(¢q), which is used in the construction of the Ocneanu
trace, leading to the Homflypt or 2-variable Jones polynomial.

In H; ,,(¢) we define the elements:

ti = gigi—1---91tg1 ... gi—19; and t; := g;gi—1 .. .gltgl_1 .. .gi_}lgi_l7 (3)

as illustrated in Fig. 7.
In [4] the following result has been proved.

Theorem 4. (See [/, Proposition 1, Theorem 1].) The following sets form linear bases for Hy ,,(q):

(1) X, = {tklt@...tk”'-a, where 1 < iy < ...<i, <n-—1},

1 "2 r

() X, = {1 " o where 1 <iy < ... <i, <n},
where ki, ..., k. € Z and o is a basic element in H,(q).

Remark 1.

(i) The indices of the t/’s in the set X! are ordered but are not necessarily consecutive, neither do they
need to start from ¢.
(ii) A more straightforward proof that the sets ¥/, form bases for Hy ,,(¢) can be found in [13].
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In [4] the basis X, is used for constructing a Markov trace on |Jo—; Hy 5, (q).

Theorem 5. (See [/, Theorem 6].) Given z, sy, with k € 7 specified elements in R =7 [qil] , there exists a
unique linear Markov trace function

tr: U Hin(q) = R(z,51),k € Z
n=1

determined by the rules:

(1) tr(ab) = tr(ba) for a,b e Hyn(q)

(2) tr(1) =1 for all Hy ,,(q)

(3) tr(agn) = ztr(a)  fora € Hin(q)

(4) tr(atlk) = sptr(a) forac Hi,(q), k €Z.

Note that the use of the looping elements t; enables the trace tr to be defined by just extending the three
rules of the Ocneanu trace on the algebras H,(¢) [12] by rule (4). Using tr Lambropoulou constructed a
universal Homflypt-type invariant for oriented links in ST. Namely, let £ denote the set of oriented links in
ST. Then:

Theorem 6. (See [/, Definition 1].) The function X : L — R(z, sp)

— n-1 (&
Xo— [_ﬁ} (VA" (x (a0).

where \ := %1;‘1, « € By, is a word in the o;’s and t;’s, @ is the closure of «, e is the exponent sum of
the 0;’s in «, and w the canonical map of By, in Hy n(q), such that t — t and o, — g;, is an invariant of
oriented links in ST.

The invariant X satisfies a skein relation [4]. Theorems 4, 5 and 6 hold also for the algebras H,, (¢, Q)
and H, (g, d), giving rise to all possible Homflypt-type invariants for knots in ST. For the case of the Hecke
algebra of type B, H, (q, @), see also [11] and [14].

2.4. The basis of S(ST) in algebraic terms

Let us now see how S(ST) is described in the above algebraic language. We note first that an element « in
the basis of S(ST) described in Theorem 1 when ST is considered as Annulus x Interval, can be illustrated
equivalently as a mixed link in S® when ST is viewed as the complement of a solid torus in S3. So we
correspond the element a to the minimal mixed braid representation, which has decreasing order of twists
around the fixed strand. Fig. 8 illustrates an example of this correspondence. Denoting

A = {thog B F k€ 2\ {0}, ki > ki1 Vi, n € N}, (4)

we have that A’ is a subset of | J,, Hi . In particular A’ is a subset of |J,, 3/,.
Applying the inductive trace rules to a word w in |J,, 3/, will eventually give rise to linear combinations
of monomials in R(z, sg). In particular, for an element of A’ we have:

1 k1

k 1 knoa
tI‘(t Otl "'tn—l ) = Skyp_1 +++Sk1Sko-
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Fig. 8. An element in A’.

Fig. 9. An element of A.

Further, the elements of A’ are in bijective correspondence with decreasing n-tuples of integers,
(ko,k1,...,kn—1), n € N, and these are in bijective correspondence with monomials in Sg,, Sk, - -, Sk,_;-
(See Fig. 8.)

Remark 2. The invariant X recovers the Homflypt skein module of ST since it gives different values for
different elements of A’ by rule (4) of the trace.

3. An ordering in the sets A and A’

In this section we define an ordering relation in the sets ¥/ and X,,, which include A’ and A as subsets.
Before that, we will need the notion of the index of a word in A’ or in A.

Definition 1. The indez of a word w in A’ or in A, denoted ind(w), is defined to be the highest index of the
t!’s, resp. of the t;’s, in w. Similarly, the index of an element in ¥/, or in ¥,, is defined in the same way by
ignoring possible gaps in the indices of the looping generators and by ignoring the braiding part in H,(q).
Moreover, the index of a monomial in H,(¢q) is equal to 0.

For example, ind(t'*t)* . ¢/ ") = ind(t* .. t%) = n.

Definition 2. We define the following ordering in the sets X,.
Let w=¢, "¢/ %2 ¢ Fuand o = ¢, ¢, 22 ¢ ™ where ki, \s € Z, for all ¢, s. Then:
71 [ Ty J1 J2 Jv

(a) IEYE ki <37 o Ai, then w < 0.
(b) It Y ki = >0 o\, then:
(i) if ind(w) < ind(o), then w < o,
(ii) if ind(w) = ind(0), then:
(o) if iy = J1, 12 = o, .-y ls—1 = Js—1, bs < Js, then w > o,
(B) if iy =g Ytand ky, = Ay, kpm1 = Ap—1, -+ kipr = Ay, ki < A, then w < o,
(v) if iy = gy Vt and ky, = Ny, ko1 = Ap—1, .-, kig1 = Xig1, ki = || and k; > X, then w < o,
(0) if iy = j; Vt and k; = A;, Vi, then w = o.

Please cite this article in press as: I. Diamantis, S. Lambropoulou, A new basis for the Homflypt skein module of the solid
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(¢) Inthe general case where w = tglklt;;Q k2 .tgu Fu Brand o =t Alt;é S th Ao -Ba, where (1, 52 € Hy,(q),
the ordering is defined in the same way by ignoring the braiding parts 51, Bs.

The same ordering is defined on the set A’ by ignoring the braiding parts. Moreover, the same ordering
is defined on the sets 3, and A, where the t}’s are replaced by the corresponding t;’s.

Proposition 1. The set X!, equipped with the ordering given in Definition 2, is a totally ordered set.

Proof. In order to show that the set ¥/ is a totally ordered set when equipped with the ordering given
in Definition 2, we need to show that the ordering relation is antisymmetric, transitive and total. We only
show that the ordering relation is transitive. Antisymmetric property follows similarly. Totality follows from
Definition 2 since all possible cases have been considered. Let w, o,v € X,, such that:

k k k
w=t, "t Pt By,

i1 2 im
7 A1y Az /I An
J1 tjz "'tjn '62’

4l Bl M2 /M
'U—t¢1 t¢2 t¢p P '/83,

o=t

where (1, 2, 83 € Hy,(¢) and let w < o and o < v. Since w < o, one of the following holds:

(a) Either Y0"  k; < >_i”, A; and since o < v, we have that >_; A, < >°7_ pyandso v ki < Db s
Thus w < v.

(b) Either Y/"  k; = Y., A and ind(w) = m < n = ind(c). Then, since 0 < v we have that either
S < P i (same as in case (a)) or > A = >b_ p; and ind(o) < p = ind(v). Thus,
ind(w) =m < p = ind(v) and so we conclude that w < v.

(c) Either > ki = > | N\, ind(w) = ind(o) and i = ji1,...,0s—1 = js—1, is > Js. Then, since o < v,
we have that either:

o >N < 2P pi, same as in case (a), or
o Yt X =" i and ind(o) < ind(v), same as in case (b), or
o ind(c) = ind(v) and j1 = ¢1,...,Jp > ¢p. Then:
(7) if p = s we have that is > js > ¢, and we conclude that w < v,
(%) if p < s we have that i, = j, > ¢, and thus w < v and if s < p we have that i; > j; = @5 and
sow < v.
(d) Either 1" k; = >0 N, ind(w) = ind(c) and k, = Ay, ..., |kg| < |A\g|- Then, since ¢ < v, we have
that either:
o Yor N <P wi, same as in case (a), or
o Yt X =" i and ind(0) < ind(v), same as in case (b), or
o ind(o) = ind(v) and j1 = @1,...,jq > g, same as in case (c), or
o jn =n, forall mand p, = Ap, ..., fer1 = Aet1, e = |Ae] for some ¢, then:
(1) If |pe| > |Ac|, then:
(%) If ¢ > ¢ then |k.| = || < |pc] and thus w < v.
(%) If ¢ < g then |kq| < |Ag| = |1tg] and thus w < v.
(#7) If ¢ = g then |kq| < |Aq| < |1tg] and thus w < v.
(2) If |pe|] = |Ael, such that p. < A¢, then:
(%) If ¢ > g then |k.| = || = |pc| and k. = Ae > pe. Thus w < v.
(#) If ¢ < g then |kqg| < |Ag| = |pq| and thus w < v.

(e) Either Y7 ki = Y1 Niy ind(w) = ind(o) and k, = A, ..., |kg| = |\, such that k, > A,. Then,

since o < v, we have that either:

Please cite this article in press as: I. Diamantis, S. Lambropoulou, A new basis for the Homflypt skein module of the solid
torus, J. Pure Appl. Algebra (2015), http://dx.doi.org/10.1016/j.jpaa.2015.06.014




JPAA:5294

10 1. Diamantis, S. Lambropoulou / Journal of Pure and Applied Algebra o e e (e o e o) oo 0—0 0o

S A < 3P| i, same as in case (a), or
St A =>"_ pi and ind(o) < ind(v), same as in case (b), or
ind(o) = ind(v) and ji1 = ¢1,...,Jq > g, same as in case (c), or

o jn=n, forall nand p, = A\, ..., tietr1 = Aet1, [fe] = |Ae| for some ¢, then:
(1) If |pe| > |Ael, then:
(%) If ¢ > g then |k| = || < |pel, thus w < v.
(7@) If ¢ < g then |ky| = |Ay| = |1q| and kg > Ag = pg, thus w < v.
(2) If |pe| = |Ae| such that Ao > pe, then:
(7) If ¢ > ¢ then |k.| = |A¢| = |pe] and ke = Ae > pe, thus w < v.
(7)) If ¢ < q then |kq| = |Ag| = || and kg > Ng = pq, thus w < v.
(#7) If ¢ = q, then |ky| = |Ag| = |ug| and kg > Ay > g, thus w < v.

So, we conclude that the ordering relation is transitive. O
Remark 3. Proposition 1 also holds for the sets X,,, A’ and A.

Definition 3. We define the subset of level k, Ay, of A to be the set

Ag = {tRotf i | > ki =k, ki € Z\A{0}, ki > ki Vi)
=0

and similarly, the subset of level k of A’ to be

1 k1

= S ki =k, ks € 2\ {0}, Ky > kiga Vi)

=0

Remark 4. Let w € Ag be a monomial containing gaps in the indices and u € Ay, a monomial with consecutive
indices such that ind(w) = ind(u). Then, it follows from Definition 2 that w < u.

Proposition 2. The sets Ay are totally ordered and well-ordered for all k.

Proof. Since Ay C A, Vk, A inherits the property of being a totally ordered set from A. Moreover, t* is
the minimum element of Ay and so Ay is a well-ordered set. O

We also introduce the notion of homologous words as follows:

Definition 4. We shall say that two words w’ € A’ and w € A are homologous, denoted w’ ~ w, if w is
obtained from w’ by turning ¢ into ¢; for all 4.

With the above notion the proof of Theorem 2 is based on the following idea: Every element w’ € A’ can
be expressed as linear combinations of monomials w; € A with coefficients in C, such that:

(i) 3 j such that w; ~ w’,
(i) w; < w;, for all i # j,
(iii) the coefficient of wj; is an invertible element in C.
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4. From A’ to X,

In this section we prove a series of lemmas relating elements of the two different basic sets X, X! of
H; ,,(¢). In the proofs we underline expressions which are crucial for the next step. Since A’ is a subset
of X/ | all lemmas proved here apply also to A’ and will be used in the context of the bases of S(ST).

4.1. Some useful lemmas in Hy ,,(q)

We will need the following results from [4]. The first lemma gives some basic relations of the braiding
generators.

Lemma 1. (See [}, Lemma 1].) For € € {1} the following hold in Hy ,,(q):

(1) g = (™t =q" P4 A ED)" ) g (¢ =g (1) )
g™ =@ =g+ (D) ) gt
4 (qu _ qlfm et (_1)m71q71 + (_1)m)
(i) gi(grgity g™ = (gt g g, fork > >,

1 E1 il)

995 05 o gkl

= (gj 941 ~gki1)9i716, fork>1i>j,

where the sign of the 1 exponent is the same for all generators.

(i5)  Gigi—1---9j+19j9j+1---9i = GjGj+1---Gi-19iGi—1--- Gj+19;
gflgi__ll o -9j_+119j69j+1 <+ 9i = gj9j+1-- -gi—lgfgi_—ll = --9j_+119g‘71

(1) Gi - Gn-1Gn>Gn-1- - 9 = Sorrg T (" = DTG (g5 Gnr® - . 9i°),

where €, =1 if r <n—1i and €,—;41 = 0. Similarly,
(v) g 2@ i = o (¢° — 1) (9 - g2 Gri1 Griat - 6i°),
where e, =1 if r <i—1 and e¢; =0.
The next lemma comprises relations between the braiding generators and the looping generator .

Lemma 2. (Cf. [}, Lemmas 1, 4, 5].) For e € {£1}, i,k € N and X\ € Z the following hold in Hy ,,(q):

(i) gty = gitgit?
(“) tegletekgle — gletek:glete + (qe _ 1)tegletek + (1 _ qe)tekglete
tfegletekgle — gletekgletfe + (qe _ l)te(k71)916 + (1 _ qe)glete(kfl)
(i) t9gtF 1" = gitFgit + (¢ — 1) Xj_y it ) ¢
+ (1= ¢°) Yig te ) gigeli=d)
tfeigletekglé — gletekgletfei 4 (qe _ 1) Z;:l te(kfj)gitfe(ifj) 4
+ (1= %) Y5yt ggpeti=d)

The next lemma gives the interactions of the braiding generators and the loopings ¢;’s and t}’s.
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Lemma 3. (See [4, Lemmas 1 and 2].) The following relations hold in Hy ,,(q):

(1) gtk =trq; fork>i, k<i—1
giti = qti_1gi + (¢ — 1)t
giticr = ¢ g+ (= 1)ty = tigi !
gty = ati g+ (g — Dt
git; ' =g i g+ (¢ =Dt = g
(@) tygn =(q—1)2j S0 @Ot 4 th T gk gntn 1, ifkeN
thgn = (1—q)XiZg @th th7 + ¢hguth_, if k€ Z—N
(iid) t*t;* =t MF fori#j and kA EZ
() git)" =1t g fork>i, k<i—1
giti" =t + (@ D"+ (1 — )t
giti " = ti°gi
(v) t;k Gi-..qitfgr™ .. g7t fork € Z.

Using now Lemmas 1, 2 and 3 we prove the following relations, which we will use for converting elements
in A’ to elements in 3,,. Note that whenever a generator is overlined, this means that the specific generator
is omitted from the word.

Lemma 4. The following relations hold in Hy ,,(q) for k € N:

(i) gmeath, =q ® Dt gt ST B (g = e S (see Fig. 10),
.. _ k
(i) gohatnl = a* VR g + T g (g - Dt 0,

Proof. We prove relation (i) by induction on k. Relation (ii) follows similarly. For k¥ = 1 we have that
Im+1tm = tm+1 g;lﬂ_l, which holds from Lemma 3(i). Suppose that the relation holds for & — 1. Then, for k

we have:
Gmt1tl, = gmarth 1, sieo g~ =2tk 119m+1t +
+ g D (g Dt
k
— ql kgm+1tm+q2 k(q 71)t tf‘n+11+2] 1q (k—2— J)( 1)t,]+1tm+11J

(k- - koo
=4q (k 1)tm+lgm£,-1 + Zj:l q (k—1- j)(q - 1)t¥nt7n+1 |
Lemma 5. In H; ,,(q) the following relations hold:

(i) For the expression A = (grgr—1...9r—s) - tx the following hold for the different values of k € N:

=tk (gr-.-grs) fork>rork<r—s—1
—tT(g;I...g;_ls) fork=r—s—1
=qtr—1(gr---gr—s) + (¢ = Dtr(gr—1...9r—s) fork=r

= qtr—s1(gr-gres) + (=Dt (9719, 4 yy) fork=r—s
=tm-1(9r---9r—s) + (¢ —Dt, (9;1-”97;}4-1) (Gm—1---gr—s)
fork=me{r—s+1,...,r—1}.

~ o~ o~ —~
=W N
= I D = —
BN N
|

Ut
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T . mm+Im+2 ... n 1 ... mm+Im+2 ... n 1 ... mm+Im+2 ... n

2 -1 -1 2 -1

gm-%-'l m - m+1gm+‘l m - a tm-Hgm-H

Fig. 10. Illustrating Lemma 4(i) for k = 2.

.n T ... rs ..rr+l ...n

=i

(1”1

-1 -1 -
(9 rg -1 'gr-s) tr-s tr—s—1 (grgH R ) 9rs

Fig. 11. Illustrating Lemma 5(ii) for k = r — s.

(ii) For the expression A = (grGr—1---Gr—s) ~t;1 the following hold for the different values of k € N:

(1) A=t"(gr- - gr-s) fork>rork<r—s—1
2) A=t"'_, (9r---Grost19, ) fork=r—s (see Fig. 11)
(3) A=1t,"1(99—1 - Gm+19m Gm—1 - Gh—s)
fork=me{r—s+1,...,r}
1) A=t (g grs) + (@)X I
AGr - Grejr2Gr—j - Gr—s) fork=r—s—1.

Proof. We only prove relation (ii) for K = r — s — 1 by induction on s (case (4)). All other relations follow
from Lemma 3(i).
For s =1 we have:

grgr—lt;_lg = 9r [qt;_llgr—l + (q - l)t;_lg] = qgrt;_llgr—l + (q - 1)grt;_12
= qlgt; g + (¢ — Dt gr—1 + (g — 1)t L o9r
= ¢t (gr9r—1) + (¢ — 1) [at; t g1 + Ot 000],

and so the relation holds for s = 1. Suppose that the relation holds for s = n. We will show that it holds
for s = n + 1. Indeed we have:

(Gr - Gr—n-1t g = (Gr - Gren) (Gron—1t; o) =

(Gr - Gr—n) [at; 1 Gr—n—1+ (@ — Dt 1, 5] =

=q(gr - Grntr ) Gr—n—1+ (@ = 1)(gr - grn)t; s
=q"Pt g Gron—1) +

+ (- D)X 2 (g GrmjaaGr—j - Gr—ne1) +

+ (=Dt 5(gr - grn) = PN gr o gron1) F

+ (¢—1) Z?ilg g (g G 2O Grme1)- O
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Before proceeding with the next lemma we introduce the notion of length of w € H,,(g). For convenience
we set O r 1= grgk—1---gr+19- for kK > r and by convention we set oy 1 := gi.

Definition 5. We define the length of §x , € H,(q) to be the number of braiding generators, that is, I(dx) =
k —r + 1 and since every element of the Iwahori-Hecke algebra of type A can be written as H?:_ll Ok 7y SO
that k; < kj+1 Vj, we define the length of an element w € H,(q) as:

n—1

n—1
Hw) = L) = ki—ri+1
i=1 i=1
Note that I(gx) = l(ak-,k) =k—-k+1=1

Lemma 6. For k > r the following relations hold in Hy ,,(q):

k—r

tedr = D ' (a4 = D0y =i i + @O0 st
=0

where 0y, g= . = GkGk—1 - - - Gk—i+1Gk—i—1 - Gr = Gk - - - Jh—i - - - Gr-

Proof. We prove relations by induction on k. For kK = 1 we have that ;91 = (¢ — 1)t; + gg1t, which holds.
Suppose that the relation holds for (k — 1), then for k& we have:

tOk,r = tegk - Ok—1,r = (¢ — D)trOp—1,» + qgrtr—10k—1, =
— bl
= (q = 1)0k—1,tr + qgs Zi:ol "q (g =10y i th-1-i
+ ql(6k7l’r)+1gk6k71,rtr71 =

= Zf;or ¢'(q =)0y i ote—1-i + q' ) Sy ity O
Lemma 7. In Hy ,,(q) the following relations hold:

(i) For the expression A = (grGri1 ... Gris) - Lt the following hold for the different values of k € N:

(1) A=t(gr---Grys) fork>r+s+lork<r—1

(2) A=tpn (gr e gkg/:.&1gk+2 e 9r+s)
forr—1<k<r+s

(3) A= (q - 1) Z::j qr+87iti (gr .. E s ngrs) + qs+1tr71 (gT s ngrs)
fork=r+s

(ii) For the expression A = (grgri1...Grys) Ly " the following hold for the different values of k € N:

(1) A:tgl(grgrﬂ...gprs) fork>r+s+lork<r—1

2) A=qt i (grgres)+ @@= 62 (07" 95 " Grrz - Gris)
forr—1<k<r+s

(3) A:t;ll(gfl...g;:s) fork=r+s

Proof. We prove relation (i) for » + s = k by induction on k (case (3)). All other relations follow from

Lemmas 1 and 3.
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= ¥L]+ U +§

-1 -1 -1 2
(999)t = (@Nt(ggg9)+ agntg, + q't

Fig. 12. Illustrating Lemma 8(i) for ¢ = 2.

For k =1 we have: g1t; = ﬁtgl = qtg1 + (¢ — 1)t1. Suppose that the relation holds for k& = n. Then, for

k =n + 1 we have that:
ind. st
Gr - Gntitnt1 = q(gr - Gntn)gn+1 + (@ = 1)(gr-- - gn)tni1 e

q [(q - 1) Z?:r qn_ztz(gr R 97 e gn) + qn_r+1tr71(g'r LRI gn)] In+1 +
+(q = Dtngr(gr---gn) =
= ( a—1> 0 " (g Gi o GnGntr) + (@ — Dt (gr - gn)) +
q = T+1t (gr .- ~gngn+1) =
= (- DX (g G gn) T T (g gng1). O

+

Lemma 8. The following relations hold in Hy ,(q) for k € N:

(i)  (91---9i-1929i-1...91) -t =

(@= D)@ "tk (91 geo197 05ty -1 ) +q't (see Fig. 12)
(i) (!f1 99 20 et t‘l =

(¢ *1)216 1 R (gt g gkgk—1 1) Tt
(iii) (95" .-.95" 97 92 "'gk_l)'tk =

(¢! —1)21 ) q"“t (96 9291942 gk) + 0t
(iv) (91: Y 91 92 e )~t,§1 =

I (e 1)gk_1...gl_1...gk_1 +

k—1 1 — — —1 -2 -1 -1 —1
+> ot q k+i(g 1—1)gk 01 Y Ui+
[ e = )2 gt et +
+ g (@ — g+ 1))

Proof. We prove relation (i) by induction on i. All other relations follow similarly. For ¢ = 1 we have:
git = glgltglgfl = gltlgfl = (¢ — l)tlgfl + gt. Suppose that the relation holds for ¢ = n. Then, for

i =n+ 1 we have:

(91 9nGhiign---01) -t = (@=1) (91 Gns1Gn---91) -t +
+ q(gl...gn_lg%gn_l...gl) -t =
= (=191 gntns19nis 97 + a0 0" g~ Dt
(91 gr—rg; - gr ') + ¢ tt =
= (@=Dtngr (91 gngnir - 97) + Shey TR (g— Ditg
( k19 97"+ =

Zil R g =Dty (g1 gr—195 o970 ) @t O
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4.2. Converting elements in A’ to elements in 3,

We are now in the position to prove a set of relations converting monomials of ¢;’s to expressions containing
the ¢;’s. In [13] we provide lemmas converting monomials of ¢;’s to monomials of ¢;’s in the context of giving
a simple proof that the sets X}, form bases of Hy ,,(q).

Lemma 9. The following relations hold in Hy ,(q) for k € N:

. —k — k —j — =k —
(@) "= qkt1lc + Zj:l "I (g -1t '9117
. k _ ko (k—g) (o — k41— —
(i) " =g MF + Y F (g = T g

Proof. We prove relation (i) by induction on k. Relation (i) follows similarly. For k = 1 we have: #; " =

gt gt =gt g @-D T g =gty o+ (@- Dt g
Suppose that the relation holds for k£ — 1. Then, for k we have:

t,lfk _ t,f(k 1)t,71 ::p qk’ltf(k_l)t'fl n

+ Sm T - e g =

_ kt k+qk 14— 1t (k—1) _1+Z] 1qk 1— ](qil)t jtJ (k=1),— 1g—1
_ kt k+qk 1(q—1)t_1t1 (k—1) 171 +

+ Zf llqk 1— j(q_l)t—j—lt{*(kfl)gfl _

e TR SRR L VRS § U e =
Lemma 10. The following relations hold in Hy ,,(q) for k € N:

k-1
-1 - P _ _ _
="t (=1 Dt (e ge—1 - giv2 93y - G G )
i=0
Proof. We prove the relations by induction on k. For k = 1 we have:

—1 _ _ _ _ _ _ _ _ _ _
=ttt =gt g+ (- Dt =gt + (g-D) g

Suppose that the relations hold for k = n. Then, for k = n + 1 we have that:

1 1 md._step

= On+1 t gn+1
= guni[d"t;! + (q—l)Z Lq 1(gn- Git29i31 - 9n )] gnt =
_ -1 -1 -1,—1 _
= ¢" g1ty Gty F (q—l) S @ gnsrty  (Gn - Giv203h - 90 gntn) =
— 1 —

- qn[qtn-ll—lgn-i-l + q ]gn+1 + q_l) Z:l 0 Zt t

(9n+1 gi+29;+11 gnh) =

— —1 ;o

= n+1tn+1 + q (q_l)tn gn-ll-l + (q_l) Z?:O qzti t

(gn+1 gi+29¢+1 cee g;il) =
_ o on+l no i,—1 —1 -1
= dq tn+1 + (q*I)Zizoqti (9n+1~-- 9i+29¢+1-~-9n+1)- |

!
tn+1

Lemma 11. The following relations hold in Hy ,,(q) for k € Z\{0}:
L Zfz )t w; + Zgl AR T

where w;, u; € Hing1(q), Vi, YoimoAi =k and \; >0, Vi, if k >0 and \; <0, Vi, if k <O0.
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T Ti<T
L = T + +

A>T ~T x,5T: <T, Vi
’ ’ ~ / n 1 b
A'ST AST ~T e Hing 1w e Hunlg Vi

Fig. 13. Illustrating Theorem 7.

Proof. We prove relations by induction on m. The case m = 1 is Lemma 9. Suppose now that the relations
hold for m — 1. Then, for m we have:

k

k _ d. _(py_
Gty Fgml S g m=Dkg gk gl S Fi(@) gt wigt +

st ep _—
Am—2 Am-1 (L. 4)

+ Zgl( )tAOtAI . tm ng m— 1ulg:n1

q (m l)k —(k l)tk ng + Z q (k 1— j)(q _1)tzn_1t§n_J9;L1 —
>\”7L'

R+ > fila tE w; + Zigi(q)txoti‘l o tm . O

tm

Using now Lemma 11 we have that every element u € A’ can be expressed to linear combinations of
elements v; € ¥, where 3 j : v; ~ u. More precisely:

Theorem 7. The following relations hold in Hy n(q) for k € Z:

tkOtllkl B 't;nan = q >m o nkn tkotlfl » 't’llg’bm + ZZ fz(Q) .tkotllfl . tknz w; +

+ Z 9i (@) - vy,
where w;, uj; € Hyi1(q), Vi, 7j € X, such that 7; < thoth* . thm i (See Fig. 13.)
Proof. We prove relations by induction on m. Let k1 € N, then for m = 1 we have:

L. 9 . _ .
thogg it G2 gmhghogh g SR m(hm) (g1 pyphotim1gi gL
g kot 4 q—’“(q —Dtfotgr! +
+ Zkl — (k1 g)( 1)tko+j—1t’1€1+1*]g;1.

On the right hand side we obtain a term which is the homologous word of tk"t’lkl with scalar ¢~*1 € C,
the homologous word again followed by g; % € Ha(q) and with scalar ¢~*1=1(g~! — 1) € C and the terms
tk°+j_1t]f‘+1_j, which are of less order than the homologous word tk(’tlfl, since k1 > ki1 + 1 — j, for all
Jj€4{2,3,...,k1}. So the statement holds for m = 1 and k1 € N. The case m =1 and k; € Z\N is similar.
Suppose now that the relations hold for m — 1. Then, for m we have:
ind m—1

k km - km km
tkotll 1 t;n St:cp q ne1 Mkn . tko S 11 t' .

K — o
+ 30 filg) thoth et -t
km
+ >, 95(@)T vy -t
Now, since w;, u; € Hy,(q), Vi we have that w;t], "™ = ¢/ "

tl k7n _ t/ km
- "m
Lemma 11 to t;nk we obtain the requested relation. O

w; and u;t,, wu;, Vi. Applying now
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=
N
_

Fig. 14. Conjugating t; by gfl e g;l.

Example 1. We convert the monomial tt/lt/2_2 € A’ to linear combination of elements in 3,. We have that:

th =q M + (¢ = Dtigyt (Lemma 9),
=% + - D e+ Pla— Dty gy et +

+ (- Dt + ala— D)2 97 et 4+ (@ — 1Dt 29297 Tgo ' (Lemma 10),

and so:

it = Pttty 4 gt (g = 1)ttty 2 Tt 1wt

7 (=D —q+1) g5 — (@ 1)% 919297 '95 ") +
+ttyt (Pg—1) g +alg—1)% g7 —qlg—1)? - gagi 195 ") +
+ ity (alg—1) - gagr 'gs —alg—1)% gy g ) +

+ it (=g —1) 9209195 —a g - 1) g1 g3 Y)

where u = (¢ — 1% "9, — (¢ = 1% 02 —a (g —1)%0g1 02" a7 (= 1)%g5

We obtain the homologous word w = ttt5 2, the homologous word again followed by the braiding gener-
ator gfl and terms in X, of less order than w, since either their index is less that ind(w) (the terms ttfl,
1 and t~';), either they contain gaps in the indices (the terms tt;* and t,t;*).

5. From X,, to A

In order to prove Theorem 2 we need to show that the set A is a spanning set of S(ST) and also that
it is linearly independent. In this section we show that every element in A’ can be expressed in terms of
elements in the set A. Linear independence of the set A is shown in the next section.

Before proceeding we need to discuss the following situation. According to Lemma 9, for a word w’ =
tkt'l_/\ € A, where k,\ € N and k < A we have that:

A

w' = tF TN = v M ey 4R M 0y + L+

+ 19 AMEay 4+ T AR g+ MRy,

where «; € H,,(q), Vi. We observe that in this particular case, in the right hand side there are terms which
do not belong to the set A. These are the terms of the form ¢4}, where p > ¢ and the term t7". So these
elements cannot be compared with the highest order term w ~ w’. The point now is that these terms are
elements in the basis ¥,, on the Hecke algebra level, but, when we are working in S(ST), such elements must
be considered up to conjugation by any braiding generator and up to stabilization moves. Topologically,
conjugation corresponds to closing the braiding part of a mixed braid. Conjugating ¢; by g; * we obtain tg?
(view Fig. 14) and similarly conjugating 7" by gfl we obtain tg?tg? ...tg?. Then, applying Lemma 3 we
tmk

obtain the expression ZZ;I th vk, where vy € H,,(q), for all k, that is, we obtain now elements with

consecutive indices but not necessarily with ordered exponents.

Please cite this article in press as: I. Diamantis, S. Lambropoulou, A new basis for the Homflypt skein module of the solid
torus, J. Pure Appl. Algebra (2015), http://dx.doi.org/10.1016/j.jpaa.2015.06.014




JPAA:5294

1. Diamantis, S. Lambropoulou / Journal of Pure and Applied Algebra e e e (e o e o) oo 0—0 0o 19

We shall first deal with elements where the looping generators do not have consecutive indices, and then
with elements where the exponents are not in decreasing order. For the expressions that we obtain after
appropriate conjugations we shall use the notation =.

5.1. Managing the gaps

We will call gaps in monomials of the ¢;’s, gaps occurring in the indices and size of the gap tff‘t? the
number s; ; =j —4 € N.

Lemma 12. For ko, k1 ...k € Z, e =1 or e = —1 and s;; > 1 the following relation holds in Hy ,,(q):

ko 4k ki1 ,k; ~ Lkok ki—1,k; 2
EOR L G = O (gz+2 95195 951 - -gf+2) :
Proof. We have that t§ = (g]€ ) e (95, g;) and so:
o4k ki1 k; k ki—1,k;
thotyt t5 = thoty (g5 -- gf+2) tiyr (Giga---95) =

k ki1 ,k;
= (gje gz6+2) tkot b t lt z+1(gz+2 gje)
= tho . t/ 11t t1+1(91+2 gjflgj 9j71 - ~9§+2)- d

IR

In order to pass to a general way for managing gaps in monomials of ¢;’s we first deal with gaps of size
one. For this we have the following.

Lemma 13. For k € N, e=1 ore = —1 and o € Hy ,,(q) the following relations hold:

€ =~ e(u— € eu 4e(k—u € €
i a2 Y g V(e - DT (ag) + g VR (gfag).

Proof. We prove the relations by induction on k. For k = 1 we have t$ - o = ¢ft§_19f - o = t5_165 - a - g§.
Suppose that the assumption holds for £k — 1 > 1. Then for k£ we have:

~ - tia = - ~

tfk-a -~ t:(k 1)(t§~a) ( o B) t;(k 1) -~

ind. step

= tja)

= YR (g T (Bgg) + g 06D (gepgr)
ST (gt = Dt 5T T e (ags) + g B (gstcags) =
Zﬁ;? qe(u—l)(qe_1)tgvilt§(k7u)(agf) + qe(k 2) E(k 1)tFOégl 4

+ qe(kq)t;(_kl—lﬂ)(

gitiagy) =
k=1 _e(u—1) —1)pew tﬁ(k*“) € s(k—l)tek €€
> u1d (¢° — Dtiyt; (agf) + ¢ 21 (g5 gs). O

We now introduce the following notation.

Notation 1. We set 7; Zﬁn = tF tljjll . tlj;’f, where m € N and k; # 0 for all j and

P {gigi+1 cgim1gy i<y 5 - {glgz+1 Gk—19k+1---g5-19; H i<
Y gigir gy 0> T L gigia s geage - gieagy 10>

We also set w; ; an element in H;14(q) where the minimum index in w is 4.
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Using now the notation introduced above, we apply Lemma 13 s; j-times to 1-gap monomials of the form
T(I; o tfj and we obtain monomials with no gaps in the indices, followed by words in H,(q).

Example 2. For s, ; > 1 and « € H,(¢) we have:

(’L) T(liz tj a = T(])Cfl -ti+1 . 5i+2,j « 5j,i+2
(it) T(’iz t? ‘o = T&- A3 Oiga;  bjipe + T(iii “tiy1tive - B, where
B = [(q - 1) ZS H_Qq 5i+3,56i+2,s—15s+1,j « 5j,i+255,i+3}
(ii7) T(]ff oo = [q7~ (+2)+1] 7'0 3 i 0o +
Ty tige B Th tiatiy Y +
+ Técfi “tit1titotits - 1, where
v = qj_(H?’)H(q —1)8;43,j0i42,5—10s41,j @ 0420513, and
b= s i+2 Zr s+1 q¥ 7 (g — 1)25i+4m5i+2,57155+1,r715r+17j :

J s 2j—r— 2
@ 0j,i4205,i4300 044 + Demiiodrmips a0 (@ —1)
Oi+a,r0i43,r—10r4+1,60i42,6—10541,5 & 0j 1205 i43.

Applying Lemma 13 to the one gap word T(li o where k; € Z\{0} and o € H,,(¢) we obtain:

.]7

ko7 it1 Nitky o
Kou ok~ ) 2aaTou lipl -ty o ik <si

T o=
0,7 7 k s
0,i g Nit1 el ; . .
doaTod tinn -8B if kj > s, 4,

where o/, 3" € Hy,(q), 30,7 Ay = kj, Ay >0, Y and if A, = 0, then A, = 0, Yo > u.

More precisely:

Lemma 14. For the 1-gap word A = Té“; ‘ tfj -, where o € H,(q) we have:

—1yj—(i+1) 1 kol

1%}

(@) If |kj| < sij, then: A Uty Givag @ djipn +

)

ko.: kiy1, itk

+ Z (q)TO(’)L z+1 i+k; 60&ﬁ/.

~ ko,: lc

= ( 1)] (z+1)7. o, iy Sivoj @ 8jiva +
W

ko, i
q)TOC')L . 7,+J{1jJ ﬁ 67

(ZZ) ]f |k‘J| > Si,55 then: A
+ 2k,

kl K2 .
where B and ' are of the form w;y1,; € Hjt11(q), ij f(q, )T§27 H_J{llﬁk’ means a sum of elements in X,

such that in each one of them, the sum of the exponents of the looping generators tiy1, ..., tiyk; is equal to
k;, and such that |kiy1| < |kj|. Moreover, if k, = 0, for some index u, then ks =0 for all s > p.

Proof. We prove the relations by induction on k;. Let 0 < k; < j — 4.

For k; = 1 we have A = [q(l_l)]r(iﬂ) 53 “ti+10i42,; @ 0ji4+2 (Lemma 12). Suppose that the relation

holds for k; — 1 > 1. Then for k; we have:

koi Lkj—1 ~ k;—213=(+1) ko k=1
A=15;"1t; (tj @) ind_ step [ } Toi “tit1r Oit2 bt @ 5o +

B

i H»k —1
+ Z f( )TOl z+11 z+k-—1ﬂ tj B,'

Kiyith;—1

C
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We now consider B and C separately and apply Lemma 4 to both expressions:

L. 4
B L
k J—(+1) ko Lk;j—1
= [¢"7?] Tog “titi -
{( 1) Zk+z+2 @Mt ito k10415 + qj_(i+2)+1ti+15i+2,j} adjive

_973—(i+1) ko, J i—k
k=2 = D705 tiv1 D i @ VtkOito k—10k41,j00 42 +
k;—119—(i+1) ko i,k
I ] T " tip10i+2,j005it2.

We now do conjugation on the (j — (7 4+ 3))-one gap words that occur and since ¢ -8 = ti12-0i+3k B Okit3

we obtain:
= kj—1 —(i+1) ko Lkj
B = [¢% ] Toq ' “tit10ite,y @ 0jita +
k i 7
+ 7'03 ti+1ti+2 Zk:Hg f(% Z)6i+3,k5i+2,k—15k+1,ja5j,i+25k,i+3 =

kv—l] —(i+1) ko Lkj

ki
= [q Toyi *tit10it2,5 & 0jiva + Toitipitive - B,

where 1 € Hj;1(q).

k _ »
Moreover, C' = >, f(q )T(I)CT . 1:{1;:;7116 t; 8" and since f = wiqk; 1,5, we have that: g-t; "=
ko,i U1+1 itk

Zi:wkj—l ts - s, where vs € Hjy1(q) and so: C' = Zu,, flq )7'0 i Tik itk - B2, where 5 € H;y1(q).
This concludes the proof. O

We now pass to the general case of one-gap words.

Proposition 3. For the 1-gap word B = Téc‘ll it

G o, where o € Hy(q) we have:

_ ko kjjsm
B = [0, (qheemt)i= () proipingtm
[T Bipmro—sjts) - @ [Toeo(@tsitmia—s) +

+ 2. f( )7'0@ ( Zl-s-llmz-s-m)‘al
where o € Hy,(q), > ui,m = kj such that uy < k;j and if u, =0, then us =0, Vs > pu.

Proof. The proof follows from Lemma 14. The idea is to apply Lemma 14 on the expression 7‘0 i t I p1,

. ko ,k; k
and obtain the terms 75" - ;7 - p2 and 7'0 Cer it p2 and follow the same

— k1+113+m
where py = T i

Jj+1,j+m
procedure until there is no gap in the word. O

We are now ready to deal with the general case, that is, words with more than one gap in the indices of
the generators.

Theorem 8. For the ¢-gap word:

C ko, Kitsq,itsy+p1 Kitsq itso+us Kitsgy itsgytug

- TO 7 Ti+51,i+sl+/_tl Tz’+52,i+52+,u2 s Ti+s¢,i+s¢+#¢ s Q@

where k; € Z\{0} for alli, o € Hy(q), sj,pt; €N, such that s; > 1 and s; > sj_1 + pj_1 for all j we have:

Nl
= [ kits,—1 S5;—J Z;n:1 Hp ) 01+¢+Zp 1 Hp ( ) o
C = Hj:l (q J ) Ol+¢'+zp i Hp Oa¢ p «Q
(Hﬁ:1 0‘;) + >, folg )7’0 W wy, where
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. I
(i) 5 = 1IN =0 0itji1e3d_ wny, itsytm—ry 4 = {12, 0},
(i) O‘;' H)\]_o i1+ ,uk+)\7, its;4A;0 i =1{L2,...,6},

u

(iii) T 0it o+ gy pp — ka 1—[ Kiys; e bng

0 Z+¢+Zp 1 Hp
0 ’L+¢+Zp 1 Hp

0,3 +¢+Ep:1

(iv) Tg;?)” <T

Tt 0Y it i+ 1

, for all v,

(v) wy of the form wiy2ivs,tpy € Hitsyrus+1(q), for all v,

(vi) the scalars f,

Proof. We prove the relations by induction on the number of gaps. For the 1-gap word Téc(; Titeitotp

(q) are expressions of g € C for all v.

where o € H,,(q), we have:

~ Iz Kivosr—1)5—1 ko,i Kitsitstn n
A= [HAZO (¢Firemrt) } “Toi ' Tistitian Lo Oitotu—nitstu—x -

[z Gittpnitsin + 2, fol@) To" - wo,

which holds from Proposition 3.

Suppose that the relation holds for (¢ — 1)-gap words. Then for a ¢-gap word we have:

ko Kitsy,itsy
(TO %

i+s81,i+81+p1 Ti+827i+52+u2 t Ti+5¢717i+8¢71+u¢71

4u1 | Kidag itantug Fitegvitegrtng1) Kitegitegtuy
Titsgitsstig

R )

Z fola) - To?;v'
H¢ ll(qms )
(

Zv fv q) 7(1)“1))1) :

¢—1 kiys, —1\77
= (o)

Kits,, i+§¢+u¢

RN S Gl T BEORE i Sy TP

W Ky —1\s—1 ko,i _kitsitst w w
[ Ao (P T) ] Tou *Tittisian =0 Oit2tp—nitstu—x @ [[5_g Gitotptnivstr +

> fola) -7

—J =41 e T“Oiw 1+Zk_11 te I -2 ’%+a¢,1+s¢+u¢
0,i+p— 1+Zk 1Mk k=0 Yo—1—-k " z+9¢,1+9¢+/t¢
k1+s¢ itsgtug 5¢>S¢—_1+N¢ 1
1+S¢> 7,+S¢+H¢> -

11

ind. step

a-I1

=1
k=1 Y%

—J =41 e Yoite—1457 ’C+ syt
k= 1 M itsgitsgtug
. . (0% [0 CM
01+¢ 1+Zk 1” z+s¢,l+s¢+,u¢ Hk 0 Xp—1-Fk * Hk 1 k
Kits gy itsytug (Prop. 3)
z+s¢ i+Sgtig -
—§=3427 p

p=0

TS _
0,i+¢—1+3 021 ne

Kits gy itsytug

c Wy O

All results are best demonstrated in the following example on a word with two gaps.

Example 3. For the 2-gap word tkot’fltgtgtgl € Y, we have:

thotiitstity ! = thot]gstagstity ' = gst™oti tatdty s = ottt gy =

= t’“Ot’ftht_k;tstglgi = tkotlflt2g5g4t39495t5t519§ =

= g5g4tk0t’f1t2t3g4g5t5tglg§ = tkotlflt2t3g495t5t51932,9594 =

= thoti i tots [qPts9495 + alq — 1)tags + (g — 1)ts94] tg 939594 =

Pt tot3gugsts ' 93gs00 + alq — )Rt tatstagsts 939591 +

+ (g

+ (¢-

— Dt otstsgaty 939500 = PRt at3ts 9495939594 +

Dot tatatsty 94939590 + alq — Dt t tatstats 95939594

ot tatdgs g5 Mt 95 196 ' 9495959591 +

o~

JPAA:5294

Kits,itstu

_|_

Hk: 0 a¢ 1-k " Hk: 1 ak + ZU fﬂ(q) ! ,,_é"(ll)wv : Ti+s¢,i+s¢+u¢ sw

(Prcg). 3)
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+ qlg — Dt* ot} totstags 't g5 95939594 + (q — D)™t} totsgstagsts ' -

- (92939591) = @*95 g5 "tV tat3t, Y05 06 ' 9495939594 +

+ q(qg — 1)gg ' thot totstats g5 95959594 +
+ (g — 1)gst™ 1} tatstats ' g5 gag3gsgs =

= PRt o3ty Yos ' 949593959496 195 +

+ q(q — V)Pt totstats ' g5 ' 959395919 - + (a— 1)tk°tlf1t2t3t4£95 :
- (9493959495) = @*t™t\ 213t 95 95 1949593959495 ' 95 1 +

+ qq — Dt*t tatstats " 95 ' 9593959495 ' +

+ (g — D)t™ i} totstags 15 95 ' 959493959495 =

= PRt a3t 95 95 949593959495 1951 +

+ q(q — V)t*ot totstats "5 9595959295 - +

+ (g — DMt totatats " 95 5949395949595 -
5.2. Ordering the exponents

We now deal with elements in ¥,,, where the looping generators have consecutive indices but their
exponents are not in decreasing order. More precisely, we will show that these elements can be expressed as
sums of elements in the (J,, H,(g)-module A, namely, as sums of elements in A followed by a braiding tail.

We will need the following lemma.

Lemma 15. The following relations hold in Hy ,(q) for A € N:
k  4k+X ~ j 1Vj
t; 'tirl = Zt?t:il Wy,
J

where w; +v; =2k + X, u; > v; and w; € Hy(q), Vj.

Proof. We have that

ko 4ktX 4k 4k o4x L.13
tiotiyn = totintia =

_ A—2 j+1,A—1—j
= tf't§+1 ) (q)\ Ygivit}giv1 + ijo ¢(¢—1)t] tiv1 ]) =

_ AZ2 ki1, kA A—1—j
= Mt gt} g + >0 @ (a— 1)t A tii_l 7

We obtained the term tf . tf e gi+1tf‘gi+1, terms where the exponent of ¢; is greater than the exponent of
ti+1 and terms of the form ¢'#1%,, where k < p; > pa < k4 A\. We apply Lemma 13 on the terms of the
last form and repeat the same procedure until there are only elements of the form ¢;*t{'?,, u1 > ug left in
each sum. Note that each time Lemma 13 is performed, a term of the form ¢{** - ¢\ - g;11t;"*g;11 appears.

For these elements we have:

L.3 ma—1  ad .
mi mi ma L2 ymy 1 J4mi—7 m my m2
Gt - gii "gin = 4 ((q -1 P 4 aM gt ) b " git1

_ mi—1 4, mi+mot+j ymi—j m mi1+m

= (q - 1) Zj:o q]ti ti+1 gi+1 + qmlti ! - git+1t; T g
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We have obtained now elements where the exponent of ¢; is greater than the exponent of ¢;1; and the term

L. 4
it giy1 =

= t;’ll-ﬁ-mz . (qim1+1tﬁllg7r‘r11 + Zj:l q7m1+1*j(q71 1)tzt:111 J)

m mi+m ~ gmi+m
ity T g =8

and this concludes the proof. 0O

,m

Remark 5. Let Tko ™ € ¥, such that k; < k;41. Applying Lemma 15 on 7'5€ we obtain a sum of elements

Tj € Xp, such that 7; < T, Vj, since the exponent of the generator t;,; in 7; is less than k;y; for all j (see
Definition 2).

Example 4. Consider the element tt3t3 € 3,, and apply Lemma 15 on the first “bad” exponent occurring in
the word, starting from right to left.

t@ = fi(g) - tits - w1 + fa(q) - ttits - wo.

The terms obtained are still in 3,, but they have one “bad” exponent less. We apply Lemma 15 again and
obtain:

tit3 = f3(q) - t3tat5 - wy + falq) - 71345 - w
ttity = fs(q) - t*tata - ws + fo(q) - t3tTta - we

All terms obtained now are in the J,, H, (¢)-module A except from the element t3¢;¢3. We apply Lemma 15
again and obtain:

ity = f7(q) - P 1Tty - wr.
So:
365 = 91(q) - t*63ta - ur + ga(q) - 615 - ug + g3(q) - thtats - ug
where uq,...,us € Hy(q) and ¢1(q), ..., g5(¢) € C.

Theorem 9. Applying conjugation on an element in %,, we have that:

ko,m ~ /\OJ
Tom W= g Ty - wjy,

where 7'5\3] € A and w,w; € Hy(q), Vj.

Proof. We prove the statement by induction on the order of ’7'0 -w € Y,, where order of an element in
Y., denotes the position of this element in ¥,, with respect to total-ordering.
The base of the induction is Lemma 15 for 4 = 0. Suppose that the relation holds for all 7; - u; € 3,, of

0,m

k
-w. Then, for 75"

0,m

k
less order than 7, -w we have:

Let kg > k1 > ... > k; < k;11. Applying Lemma 15 on Tém -w we obtain:

ko,m . gkotk1 ki1 km, _ ko 1k1 Uj km
Tomm W = ot ARt = ottt byt g,

where u; > v; < kjy1, Vj, that is, a sum of lower order terms than T(})Cm -w (see Remark 5). So, by the
induction hypothesis, the relation holds. O
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5.3. Eliminating the tails

So far we have seen how to convert elements in the basis A’ to sums of elements in 3, and then, using
conjugation, how these elements are expressed as sums of elements in the J, H,(¢)-module A. We will
show now that using conjugation and stabilization moves all these elements of the | J,, Hy(q)-module A are
expressed to sums of elements in the set A with scalars in the field C. We will use the symbol ~ when a
stabilization move is performed and = when both stabilization moves and conjugation are performed.

Let us consider a generic word in Hj ,,41(¢). This is of the form 7'52;"  Wp41, where w41 € Hyy1(q).
Without loss of generality we consider the exponent of the braiding generator with the highest index to be
(—1) when the exponent of the corresponding loop generator is in N and (41) when the exponent of the
corresponding loop generator is in Z\N. We then apply Lemmas 3 and 4 in order to interact t%k" with gt
and obtain words of the following form:

(1) Tg\;p -v, where 7'0>‘ < 7'00 " and v € H,,11(q) of any length, or

(2) Tg‘;" -u, where Té‘q" < TOO" and u € H,(¢) such that I(u) < l(w).

In the first case we obtain monomials of ¢;’s of less order than the initial monomial, followed by a word
in Hy,4+1(¢) of any length. After at most (k, + 1)-interactions of ¢, with g,, the exponent of ¢,, will become
zero and so by applying a stabilization move we obtain monomials of ¢;’s of less index, and thus of less order
(Definition 2), followed by a word in Hy(q).

In the second case, we have monomials of ¢;’s of less order than the initial monomial followed by words
u € H,(¢) such that I(u) < I(w). We interact the generator with the maximum index of u, g,, with the
corresponding loop generator until the exponent of ¢,, becomes zero. A gap in the indices of the monomials
of the t;’s occurs and we apply Theorem 8. This leads to monomials of ¢;’s of less order followed by words
of the braiding generators of any length. We then apply stabilization moves and repeat the same procedure
until the braiding ‘tails’ are eliminated.

Theorem 10. Applying conjugation and stabilization moves on a word in the |J  Hy(q)-module, A we have
that:

ko g, & TS’O uj ’
~ E L
J

such that ) vou; = Y kom and 7'0 u < TO ", forall j.

The logic for the induction hypothesis is explained above. We shall now proceed with the proof of the
theorem.

Proof of Theorem 10. We prove the statement by double induction on the length of w,, € H, (¢) and on the

O m 0,m 0,m

order of 7" € A, where order of Téﬂ denotes the position of Téc in A with respect to total-ordering.

For {(w) = 0, that is for w = e we have that Tk" " Tg(;nm and there’s nothing to show. Moreover, the
minimal element in the set A is t* and for any word w € H,(¢) we have that t* - w ~ f(q,z)-t*, by the

quadratic relation and stabilization moves.

ugp

-, where TO"” <7 3,{" and I(w') = I, and for all Tg”‘q -w,

Suppose that the relation holds for all T,
where To)q“ < 7'0’ o and [(w) =1+1. We Wlll show that it holds for 7'0 -w. Let the exponent of ¢,, k. € N

m

and let w € H,41(g). Then, w can be written as w’- g, ! - §,_1,4, where v’ € H,.(¢q) and d < r. We have that:
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kO m _ kO r—14k,.—1 kr+1 m / —1 _
Toom W = To,r— 1t Trelm "W - trg, 57“—1765 =

ko,r—1 4k, —1 kr+1m / L.6
To sl b T W grtr 10 1d =

ko,r—1,k,—1 k1+1m /
TO?" lt Tr41m "W " gr

1-d =
(Z;:o (g =10,y ;== atr—1-5 + ql(érim)&'_l’dtdq) B
—~ —1-d ko,r —1_krt1,m
= 25:0 ¢ (q— 1)7'0(7)" FR r—s-J{lm 1w 'grarfl,rfljjﬁd +

1(8,— ko,r—1 4k, —1, _Kr+1,
+ q ( Ld)TO,T’il tT‘ TT‘-T—LTYT . td—l CWw.

We have that (Técgrlltk -1 ff{ln’f ~tr,1,j) < (tko’”), for all j € {1,2,...,7 — 1 — d} and
I\w g, Tfijj_d) l and (Toorrlltk 1 TkHlm" td,l) < (tgon;"). So, by the induction hypothesis,
the relation holds. O

Example 5. In this example we demonstrate how to eliminate the braiding ‘tail’ in a word in ¥,,.

M g = Tty g = it gt Sty g = 6 g =
= (q— Dty + qt3'git = (¢ — D)ty g + qtty'gr =
= (¢— Dty g5 'g3gs " + atti'gy 'grgs !

‘We have that:

93 019" = ¢ 2q10200 + Mg = Dgagr + ¢ g = Dgrga +
+ (¢ =1)%g1,

959395 = a2 (q—Vgrgegn — (¢ = 120201 — (07" —1)%q192 +
+@-D@=1%qn + ql¢t =g + 1,

and so

10

(q—Dtt ' gy ' gt = ((a—1)+q g —1)3) -ttt —q 3 (g7 = 1)%2% - 1+

+3¢73g-1D)*%2-1-¢ M g-1)%2-1-¢3(g—-1)"-1,
qttflgglglggl =z ttfl +q gt =122 1+ 2 —1)%2- 1+
+qlg =131,

6. The basis A of S(ST)
In this section we show that the set A is linearly independent. This is done in two steps:

o We first relate the two sets A and A’ via an infinite lower triangular matrix with invertible elements in

the diagonal.
e Then, using the matrix mentioned above, we prove that the set A is linearly independent.

6.1. The infinite matriz

With the orderings given in Definition 2 we shall show that the infinite matrix converting elements of the
basis A’ to elements of the set A is a block diagonal matrix, where each block is an infinite lower triangular
matrix with invertible elements in the diagonal. Note that applying conjugation and stabilization moves
on an element of some Ay followed by a braiding part won’t alter the sum of the exponents of the loop
generators and thus, the resulted terms will belong to the set of the same level Aj. Fixing the level k of a
subset of A’) the proof of Theorem 2 is equivalent to proving the following claims:
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Thm.
N TET - + X filgr) Towi + X gile?)Tmiow
Ast ~ 7 A>T ~ ! .31 < 1,V
¢ € C fi(g,2) € C¥ gi(e,2) € CWV
w; € Hyp(q),Vi u; € Hy(q),Vi
| |
Thm.10 Thm.8
4 i
Thm.10
¥ fie2)-T; =Y 4i(e2) Ty
(A N e
¥.3T; < 1,95 Y315 < T,Vj
fj(Q1Z) € C’VJ gj(q7z) € C’VJ

uj € Hqn(q),Vj
|
Thm.9
i
Y hilgz)Tjev;
— —
A>T; < T,Vj

U5 € Hn(q),vj
hj(g,z) € C,Vj

Thm.10 : Thm.9
4
Ei -7:3'('17 z) : )\i
e —
Ash < 1,Vi
Fi(g,z) € C, Vi

Fig. 15. From A’ to A.

(1) A monomial w’ € A}, C A’ can be expressed as linear combinations of elements in Ay, C A, v;, followed
by monomials in H,,(g), with scalars in C such that 3 j:v; = w ~ w'.

(2) Applying conjugation and stabilization moves on all v;’s results in obtaining elements in Ay, u;’s, such
that u; < v; for all .

(3) The coefficient of w is an invertible element in C.

(4) Ayd>w<u€ Ay,

Indeed we have the following: Let w’ € A} C A’. Then, by Theorem 7 the monomial w’ is expressed
as a sum of elements in X,,, where the only term that isn’t followed by a braiding part is the homologous
monomial w € Ay C A. Other terms in the sum involve lower order terms than w (with possible gaps in
the indices and possible non-ordered exponents) followed by a braiding part and words of the form w - 3,
where 8 € H,,(q). Then, by Theorem 8 elements in ¥, are expressed to linear combinations of elements in
Y, with no gaps in the indices of the looping generators (regularizing elements with gaps) and obtaining
words which are of less order than the initial word w. Then, by Theorem 9 we express these elements
to linear combinations of elements in the H, (¢)-module A, again of less order than w. In Theorem 10 all
elements that are followed by a braiding part are expressed as sums of monomials in ¢;’s with coefficients
in C. It is essential to mention that when applying Theorem 10 to a word of the form w - 5 one obtains
monomials in ¢;’s that are less ordered than w. Some of these monomials in ¢;’s are in A and some have their
exponents in non-decreasing order, but all monomials are of less order than w. We apply again Theorem 9
on these monomials 7 that don’t belong in the set A and obtain words of less order than 7, followed by a
braiding part. We only consider now the monomials not in A and perform Theorem 9. We obtain elements
in the H,,(g)-module A of less order than the initial monomials, followed by a braiding part. Eventually this
procedure stops at the lower order term of Ay, t*. So we have obtained elements in A of lower order terms
than the initial element w, and thus, we obtain a lower triangular matrix with entries in the diagonal of
the form ¢=# (see Theorem 7), which are invertible elements in C. The fourth claim follows directly from
Definition 2. (See Fig. 15.)

If we denote as [Ax] the block matrix converting elements in A}, to elements in Ay for some k, then the
change of basis matrix will be of the form:

Please cite this article in press as: I. Diamantis, S. Lambropoulou, A new basis for the Homflypt skein module of the solid
torus, J. Pure Appl. Algebra (2015), http://dx.doi.org/10.1016/j.jpaa.2015.06.014




JPAA:5294

28 1. Diamantis, S. Lambropoulou / Journal of Pure and Applied Algebra o e o (o o e e) o0 0—00e

0 0 0 0 0
[Ak—2] 0 0 0 0
0 [Ag-1] O 0 0
S = 0 0 [As] 0 0
0 0 0 [Apea] O

0 0 0 0 [Awgo]

I 0 0 0 0 0 |

The infinite block diagonal matrix

6.2. Linear independence of A

Theorem 11. The set A is linearly independent.

Proof. Consider an arbitrary subset of A with finite many elements 71, 73, . .., 7x. Without loss of generality
we consider 71 < 1o < ... < T according to Definition 2. We convert now each element 7; € A to linear
combination of elements in A’ according to the infinite matrix. We have that

= / !
T = AT+ E AjTj ,
J

where 7/ ~ 7;, A; € C\ {0}, 7} <t and A; € C, Vj.
So, we have that:

=~ / !/
T1 2A17—1+ZjA1j7_1j

S ’ ’
To X A2T2 + Zj AQjTZj

Ap1Th 1+ 225 A1) T(h-1);
ATy, + Zj Aij,’ﬁj

Tk—1

1

Tk

Note that each 7/ can occur as an element in the sum Zj ApjT;)j for p > i. We consider now the equation
Z;C:l Ai-1i = 0, A\ € C, Vi and we show that this holds only when \; = 0, Vi. Indeed, we have:

. Kk
Z)\i'Ti =0« )‘kAle/c + ZZ/\iAijTi/j =0
i=1 =1

where 73 > 7, Vi, j. So we conclude that A\;, = 0. Using the same argument we have that:
k k-1 k-1
Z)\l -, = 0 & Z)\Z -, = 0 & /\k—lAk—lT];_l + ZZ/\iAijTi/j = 0,
i=1 i=1 i=1 j

where 7, > 7/

;> Vi, 5. S0, Ag—1 = 0. Retrospectively we get:

k
Z/\i'” =0 N\ = 0, Vi,

i=1

and so an arbitrary finite subset of A is linearly independent. Thus, the set A is linearly independent. O
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6.3. The proof of the main result

By Theorems 7, 8, 9 and 10 the set A is a spanning set of S(ST). By Theorem 11 the set A is also linearly
independent. Thus, it forms a basis for S(ST) and the proof of Theorem 2 is now concluded.

7. Conclusions

In this paper we gave a new basis A for S(ST), different from the Turaev—Hoste-Kidwell basis and the
Morton—Aiston basis. The new basis is appropriate for describing the handle sliding moves, whilst the old
basis A’ is consistent with the trace rules [4]. In a sequel paper we use the bases A’ and A of S(ST) and the
change of basis matrix in order to compute the Homflypt skein module of the lens spaces L(p,1).
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