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In this paper we give a new basis, Λ, for the Homflypt skein module of the solid torus, 
S(ST), which topologically is compatible with the handle sliding moves and which 
was predicted by J.H. Przytycki. The basis Λ is different from the basis Λ′, discovered 
independently by Hoste and Kidwell [1] and Turaev [2] with the use of diagrammatic 
methods, and also different from the basis of Morton and Aiston [3]. For finding the 
basis Λ we use the generalized Hecke algebra of type B, H1,n, which is generated by 
looping elements and braiding elements and which is isomorphic to the affine Hecke 
algebra of type A [4]. More precisely, we start with the well-known basis Λ′ of S(ST)
and an appropriate linear basis Σn of the algebra H1,n. We then convert elements in 
Λ′ to sums of elements in Σn. Then, using conjugation and the stabilization moves, 
we convert these elements to sums of elements in Λ by managing gaps in the indices, 
by ordering the exponents of the looping elements and by eliminating braiding tails 
in the words. Further, we define total orderings on the sets Λ′ and Λ and, using these 
orderings, we relate the two sets via a block diagonal matrix, where each block is 
an infinite lower triangular matrix with invertible elements in the diagonal. Using 
this matrix we prove linear independence of the set Λ, thus Λ is a basis for S(ST).
S(ST) plays an important role in the study of Homflypt skein modules of arbitrary 
c.c.o. 3-manifolds, since every c.c.o. 3-manifold can be obtained by integral surgery 
along a framed link in S3 with unknotted components. In particular, the new basis 
of S(ST) is appropriate for computing the Homflypt skein module of the lens spaces. 
In this paper we provide some basic algebraic tools for computing skein modules of 
c.c.o. 3-manifolds via algebraic means.

© 2015 Published by Elsevier B.V.

1. Introduction

Let M be an oriented 3-manifold, R = Z[u±1, z±1], L the set of all oriented links in M up to ambient 
isotopy in M and let S be the submodule of RL generated by the skein expressions u−1L+ − uL− − zL0, 
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Fig. 1. The links L+, L−, L0 locally.

Fig. 2. A basic element of S(ST).

where L+, L− and L0 are oriented links that have identical diagrams, except in one crossing, where they 
are as depicted in Fig. 1.

For convenience we allow the empty knot, ∅, and add the relation u−1∅ − u∅ = zT1, where T1 denotes 
the trivial knot. Then the Homflypt skein module of M is defined to be:

S (M) = S
(
M ;Z

[
u±1, z±1] , u−1L+ − uL− − zL0

)
= RL/

S.

Unlike the Kauffman bracket skein module, the Homflypt skein module of a 3-manifold, also known as 
Conway skein module and as third skein module, is very hard to compute (see [5] for the case of the product 
of a surface and the interval).

Let ST denote the solid torus. In [2,1] the Homflypt skein module of the solid torus has been computed 
using diagrammatic methods by means of the following theorem:

Theorem 1 (Turaev, Kidwell–Hoste). The skein module S(ST) is a free, infinitely generated Z[u±1, z±1]-
module isomorphic to the symmetric tensor algebra SRπ̂0, where π̂0 denotes the conjugacy classes of non-
trivial elements of π1(ST).

A basic element of S(ST) in the context of [2,1], is illustrated in Fig. 2. In the diagrammatic setting of [2]
and [1], ST is considered as Annulus× Interval. The Homflypt skein module of ST is particularly important, 
because any closed, connected, oriented (c.c.o.) 3-manifold can be obtained by surgery along a framed link 
in S3 with unknotted components.

A different basis of S(ST), known as Young idempotent basis, is based on the work of Morton and Aiston 
[3] and Blanchet [6].

In [4], S(ST) has been recovered using algebraic means. More precisely, the generalized Hecke algebra 
of type B, H1,n(q), is introduced, which is related to the affine Hecke algebra of type A, H̃n(q) [4]. Then, 
a unique Markov trace is constructed on the algebras H1,n(q) leading to an invariant for links in ST, the 
universal analogue of the Homflypt polynomial for ST. This trace gives distinct values on distinct elements 
of the [2,1]-basis of S(ST). The link isotopy in ST, which is taken into account in the definition of the skein 
module and which corresponds to conjugation and the stabilization moves on the braid level, is captured 
by the conjugation property and the Markov property of the trace, while the defining relation of the skein 
module is reflected into the quadratic relation of H1,n(q). In the algebraic language of [4] the basis of S(ST), 
described in Theorem 1, is given in open braid form by the set Λ′ in Eq. (4). Fig. 8 illustrates the basic 



JID:JPAA AID:5294 /FLA [m3L; v1.159; Prn:3/09/2015; 7:22] P.3 (1-29)
I. Diamantis, S. Lambropoulou / Journal of Pure and Applied Algebra ••• (••••) •••–••• 3
Fig. 3. An element of the new basis Λ.

element of Fig. 2 in braid notation. Note that in the setting of [4] ST is considered as the complement of 
the unknot (the bold curve in the figure). The looping elements t′i ∈ H1,n(q) in the monomials of Λ′ are all 
conjugates, so they are consistent with the trace property and they enable the definition of the trace via 
simple inductive rules.

In this paper we give a new basis Λ for S(ST), which was predicted by J.H. Przytycki, using the algebraic 
methods developed in [4] (see Fig. 3). The motivation of this work is the computation of S (L(p, q)) via 
algebraic means. The new basic set is described in Eq. (1) in open braid form (see Fig. 9). The looping 
elements ti are in the algebras H1,n(q) and they are commuting. For a comparative illustration and for the 
defining formulas of the ti’s and the t′i’s the reader is referred to Fig. 7 and Eq. (3) respectively. Moreover, 
the ti’s are consistent with the handle sliding move or band move used in the link isotopy in L(p, q), in the 
sense that a braid band move can be described naturally with the use of the ti’s (see for example [7] and 
references therein).

Our main result is the following:

Theorem 2. The following set is a Z[q±1, z±1]-basis for S(ST):

Λ = {tk0tk1
1 . . . tkn

n , ki ∈ Z \ {0}, ki ≥ ki+1 ∀i, n ∈ N}. (1)

Our method for proving Theorem 2 is the following:

• We define total orderings in the sets Λ′ and Λ,
• we show that the two ordered sets are related via a lower triangular infinite matrix with invertible 

elements on the diagonal, and
• using this matrix, we show that the set Λ is linearly independent.

More precisely, two analogous sets, Σn and Σ′
n, are given in [4] as linear bases for the algebra H1,n(q). 

See Theorem 4 in this paper. The set 
⋃

n Σn includes Λ as a proper subset and the set 
⋃

n Σ′
n includes 

Λ′ as a proper subset. The sets Σn come directly from the works of S. Ariki and K. Koike, and M. Brouè 
and G. Malle on the cyclotomic Hecke algebras of type B. See [4] and references therein. The second set ⋃

n Σ′
n includes Λ′ as a proper subset. The sets Σ′

n appear naturally in the structure of the braid groups 
of type B, B1,n; however, it is very complicated to show that they are indeed basic sets for the algebras 
H1,n(q). The sets Σn play an intrinsic role in the proof of Theorem 2. Indeed, when trying to convert a 
monomial λ′ in Λ′ into a linear combination of elements in Λ we pass by elements of the sets Σn. This means 
that in the converted expression of λ′ we have monomials in the ti’s with possible gaps in the indices and 
possible non-ordered exponents, followed by monomials in the braiding generators gi. So, in order to reach 
expressions in the set Λ we need:

• to manage the gaps in the indices of the ti’s,
• to order the exponents of the ti’s and
• to eliminate the braiding ‘tails’.
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Fig. 4. A mixed link in S3.

The paper is organized as follows. In Section 2 we recall the algebraic setting and the results needed 
from [4]. In Section 3 we define the orderings in the two sets Σn and Σ′

n, which include the sets Λ and Λ′

as subsets, and we prove that these sets are totally ordered. In Section 4 we prove a series of lemmas for 
converting elements in Λ′ to elements in the sets Σn. In Section 5 we convert elements in Σn to elements 
in Λ using conjugation and the stabilization moves. Finally, in Section 6 we prove that the sets Λ′ and 
Λ are related through a lower triangular infinite matrix mentioned above and that the set Λ is linearly 
independent. A computer program converting elements in Λ′ to elements in Σn has been developed by 
K. Karvounis and will be soon available on http://www.math.ntua.gr/~sofia.

The algebraic techniques developed here will serve as basis for computing Homflypt skein modules of 
arbitrary c.c.o. 3-manifolds using the braid approach. The advantage of this approach is that we have 
an already developed homogeneous theory of braid structures and braid equivalences for links in c.c.o. 
3-manifolds [8,9,7]. In fact, these algebraic techniques are used and developed further in [10] for knots and 
links in 3-manifolds represented by the 2-unlink.

The authors wish to express their gratitude for some critical comments of the Referee, which led to the 
improvement of the presentation of the paper.

2. The algebraic settings

2.1. Mixed links in S3

We now view ST as the complement of a solid torus in S3. An oriented link L in ST can be represented 
by an oriented mixed link in S3 (see Fig. 4), that is a link in S3 consisting of the unknotted fixed part Î
representing the complementary solid torus in S3 and the moving part L that links with Î.

A mixed link diagram is a diagram Î ∪ L̃ of Î ∪ L on the plane of Î, where this plane is equipped with 
the top-to-bottom direction of I.

Consider now an isotopy of an oriented link L in ST. As the link moves in ST, its corresponding mixed 
link will change in S3 by a sequence of moves that keep the oriented Î pointwise fixed. This sequence of 
moves consists in isotopy in the S3 and the mixed Reidemeister moves. In terms of diagrams we have the 
following result for isotopy in ST:

The mixed link equivalence in S3 includes the classical Reidemeister moves and the mixed Reidemeister 
moves, which involve the fixed and the standard part of the mixed link, keeping Î pointwise fixed.

2.2. Mixed braids in S3

By the Alexander theorem for knots in solid torus, a mixed link diagram Î ∪ L̃ of Î ∪ L may be turned 
into a mixed braid I ∪ β with isotopic closure (see Fig. 5). This is a braid in S3 where, without loss of 
generality, its first strand represents Î, the fixed part, and the other strands, β, represent the moving part 
L. The subbraid β shall be called the moving part of I ∪ β.

http://www.math.ntua.gr/~sofia
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Fig. 5. The closure of a mixed braid to a mixed link.

Fig. 6. The generators of B1,n.

The sets of braids related to the ST form groups, which are in fact the Artin braid groups of type B, 
denoted B1,n, with presentation:

B1,n =
〈

t, σ1, . . . , σn−1

∣∣∣∣∣∣∣∣∣
σ1tσ1t = tσ1tσ1
tσi = σit, i > 1
σiσi+1σi = σi+1σiσi+1, 1 ≤ i ≤ n− 2
σiσj = σjσi, |i− j| > 1

〉
,

where the generators σi and t are illustrated in Fig. 6.
Isotopy in ST is translated on the level of mixed braids by means of the following theorem.

Theorem 3. (See [11, Theorem 3].) Let L1, L2 be two oriented links in ST and let I ∪ β1, I ∪ β2 be two 
corresponding mixed braids in S3. Then L1 is isotopic to L2 in ST if and only if I ∪ β1 is equivalent to 

I ∪ β2 in 
∞
∪

n=1
B1,n by the following moves:

(i) Conjugation: α ∼ β−1αβ, if α, β ∈ B1,n.

(ii) Stabilization moves: α ∼ ασ±1
n ∈ B1,n+1, if α ∈ B1,n.

2.3. The generalized Iwahori–Hecke algebra of type B

It is well known that B1,n is the Artin group of the Coxeter group of type B, which is related to the Hecke 
algebra of type B, Hn(q,Q) and to the cyclotomic Hecke algebras of type B. In [4] it has been established 
that all these algebras form a tower of B-type algebras and are related to the knot theory of ST. The basic 
one is Hn(q,Q), a presentation of which is obtained from the presentation of the Artin group B1,n by adding 
the quadratic relations

g2
i = (q − 1)gi + q (2)

and the relation t2 = (Q− 1) t + Q, where q, Q ∈ C\{0} are seen as fixed variables. The middle B-type 
algebras are the cyclotomic Hecke algebras of type B, Hn(q, d), whose presentations are obtained by the 
quadratic relation (2) and td = (t − u1)(t − u2) . . . (t − ud). The topmost Hecke-like algebra in the tower is 
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Fig. 7. The elements t′i and ti.

the generalized Iwahori–Hecke algebra of type B, H1,n(q), which, as observed by T. tom Dieck, is related to 
the affine Hecke algebra of type A, H̃n(q) (cf. [4]). The algebra H1,n(q) has the following presentation:

H1,n(q) =
〈

t, g1, . . . , gn−1

∣∣∣∣∣∣∣∣∣∣∣

g1tg1t = tg1tg1
tgi = git, i > 1
gigi+1gi = gi+1gigi+1, 1 ≤ i ≤ n− 2
gigj = gjgi, |i− j| > 1
gi

2 = (q − 1)gi + q, i = 1, . . . , n− 1

〉
.

That is:

H1,n(q) =
Z
[
q±1]B1,n

〈σ2
i − (q − 1)σi − q〉 .

Note that in H1,n(q) the generator t satisfies no polynomial relation, making the algebra H1,n(q) infinite 
dimensional. Also that in [4] the algebra H1,n(q) is denoted as Hn(q, ∞).

In [12] V.F.R. Jones gives the following linear basis for the Iwahori–Hecke algebra of type A, Hn(q):

S =
{
(gi1gi1−1 . . . gi1−k1)(gi2gi2−1 . . . gi2−k2) . . . (gipgip−1 . . . gip−kp

)
}
,

for 1 ≤ i1 < . . . < ip ≤ n − 1.
The basis S yields directly an inductive basis for Hn(q), which is used in the construction of the Ocneanu 

trace, leading to the Homflypt or 2-variable Jones polynomial.
In H1,n(q) we define the elements:

ti := gigi−1 . . . g1tg1 . . . gi−1gi and t′i := gigi−1 . . . g1tg
−1
1 . . . g−1

i−1g
−1
i , (3)

as illustrated in Fig. 7.
In [4] the following result has been proved.

Theorem 4. (See [4, Proposition 1, Theorem 1].) The following sets form linear bases for H1,n(q):

(i) Σn = {tk1
i1
tk2
i2

. . . tkr
ir

· σ, where 1 ≤ i1 < . . . < ir ≤ n− 1},
(ii) Σ′

n = {t′i1
k1t′i2

k2 . . . t′ir
kr · σ, where 1 ≤ i1 < . . . < ir ≤ n},

where k1, . . . , kr ∈ Z and σ is a basic element in Hn(q).

Remark 1.

(i) The indices of the t′i’s in the set Σ′
n are ordered but are not necessarily consecutive, neither do they 

need to start from t.
(ii) A more straightforward proof that the sets Σ′

n form bases for H1,n(q) can be found in [13].
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In [4] the basis Σ′
n is used for constructing a Markov trace on 

⋃∞
n=1 H1,n(q).

Theorem 5. (See [4, Theorem 6].) Given z, sk, with k ∈ Z specified elements in R = Z 
[
q±1], there exists a 

unique linear Markov trace function

tr :
∞⋃

n=1
H1,n(q) → R (z, sk) , k ∈ Z

determined by the rules:

(1) tr(ab) = tr(ba) for a, b ∈ H1,n(q)
(2) tr(1) = 1 for all H1,n(q)
(3) tr(agn) = z tr(a) for a ∈ H1,n(q)
(4) tr(at′n

k) = sk tr(a) for a ∈ H1,n(q), k ∈ Z.

Note that the use of the looping elements t′i enables the trace tr to be defined by just extending the three 
rules of the Ocneanu trace on the algebras Hn(q) [12] by rule (4). Using tr Lambropoulou constructed a 
universal Homflypt-type invariant for oriented links in ST. Namely, let L denote the set of oriented links in 
ST. Then:

Theorem 6. (See [4, Definition 1].) The function X : L → R(z, sk)

Xα̂ =
[
− 1 − λq√

λ (1 − q)

]n−1 (√
λ
)e

tr (π (α)) ,

where λ := z+1−q
qz , α ∈ B1,n is a word in the σi’s and t′i’s, α̂ is the closure of α, e is the exponent sum of 

the σi’s in α, and π the canonical map of B1,n in H1,n(q), such that t �→ t and σi �→ gi, is an invariant of 
oriented links in ST.

The invariant X satisfies a skein relation [4]. Theorems 4, 5 and 6 hold also for the algebras Hn(q, Q)
and Hn(q, d), giving rise to all possible Homflypt-type invariants for knots in ST. For the case of the Hecke 
algebra of type B, Hn(q, Q), see also [11] and [14].

2.4. The basis of S(ST) in algebraic terms

Let us now see how S(ST) is described in the above algebraic language. We note first that an element α in 
the basis of S(ST) described in Theorem 1 when ST is considered as Annulus× Interval, can be illustrated 
equivalently as a mixed link in S3 when ST is viewed as the complement of a solid torus in S3. So we 
correspond the element α to the minimal mixed braid representation, which has decreasing order of twists 
around the fixed strand. Fig. 8 illustrates an example of this correspondence. Denoting

Λ′ = {tk0t′1
k1t′2

k2 . . . t′n
kn , ki ∈ Z \ {0}, ki ≥ ki+1 ∀i, n ∈ N}, (4)

we have that Λ′ is a subset of 
⋃

n H1,n. In particular Λ′ is a subset of 
⋃

n Σ′
n.

Applying the inductive trace rules to a word w in 
⋃

n Σ′
n will eventually give rise to linear combinations 

of monomials in R(z, sk). In particular, for an element of Λ′ we have:

tr(tk0t′1
k1 . . . t′n−1

kn−1) = skn−1 . . . sk1sk0 .
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Fig. 8. An element in Λ′.

Fig. 9. An element of Λ.

Further, the elements of Λ′ are in bijective correspondence with decreasing n-tuples of integers, 
(k0, k1, . . . , kn−1), n ∈ N, and these are in bijective correspondence with monomials in sk0 , sk1 , . . . , skn−1 . 
(See Fig. 8.)

Remark 2. The invariant X recovers the Homflypt skein module of ST since it gives different values for 
different elements of Λ′ by rule (4) of the trace.

3. An ordering in the sets Λ and Λ′

In this section we define an ordering relation in the sets Σ′
n and Σn, which include Λ′ and Λ as subsets. 

Before that, we will need the notion of the index of a word in Λ′ or in Λ.

Definition 1. The index of a word w in Λ′ or in Λ, denoted ind(w), is defined to be the highest index of the 
t′i’s, resp. of the ti’s, in w. Similarly, the index of an element in Σ′

n or in Σn is defined in the same way by 
ignoring possible gaps in the indices of the looping generators and by ignoring the braiding part in Hn(q). 
Moreover, the index of a monomial in Hn(q) is equal to 0.

For example, ind(t′k0t′1
k1 . . . t′n

kn) = ind(tu0 . . . tun
n ) = n.

Definition 2. We define the following ordering in the sets Σ′
n.

Let w = t′i1
k1t′i2

k2 . . . t′iμ
kμ and σ = t′j1

λ1t′j2
λ2 . . . t′jν

λν , where kt, λs ∈ Z, for all t, s. Then:

(a) If 
∑μ

i=0 ki <
∑ν

i=0 λi, then w < σ.
(b) If 

∑μ
i=0 ki =

∑ν
i=0 λi, then:

(i) if ind(w) < ind(σ), then w < σ,
(ii) if ind(w) = ind(σ), then:

(α) if i1 = j1, i2 = j2, . . . , is−1 = js−1, is < js, then w > σ,
(β) if it = jt ∀t and kμ = λμ, kμ−1 = λμ−1, . . . , ki+1 = λi+1, |ki| < |λi|, then w < σ,
(γ) if it = jt ∀t and kμ = λμ, kμ−1 = λμ−1, . . . , ki+1 = λi+1, |ki| = |λi| and ki > λi, then w < σ,
(δ) if it = jt ∀t and ki = λi, ∀i, then w = σ.
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(c) In the general case where w = t′i1
k1t′i2

k2 . . . t′iμ
kμ ·β1 and σ = t′j1

λ1t′j2
λ2 . . . t′jν

λν ·β2, where β1, β2 ∈ Hn(q), 
the ordering is defined in the same way by ignoring the braiding parts β1, β2.

The same ordering is defined on the set Λ′ by ignoring the braiding parts. Moreover, the same ordering 
is defined on the sets Σn and Λ, where the t′i’s are replaced by the corresponding ti’s.

Proposition 1. The set Σ′
n equipped with the ordering given in Definition 2, is a totally ordered set.

Proof. In order to show that the set Σ′
n is a totally ordered set when equipped with the ordering given 

in Definition 2, we need to show that the ordering relation is antisymmetric, transitive and total. We only 
show that the ordering relation is transitive. Antisymmetric property follows similarly. Totality follows from 
Definition 2 since all possible cases have been considered. Let w, σ, v ∈ Σn such that:

w = t′i1
k1t′i2

k2 . . . t′im
km · β1,

σ = t′j1
λ1t′j2

λ2 . . . t′jn
λn · β2,

v = t′φ1

μ1t′φ2

μ2 . . . t′φp

μp · β3,

where β1, β2, β3 ∈ Hn(q) and let w < σ and σ < v. Since w < σ, one of the following holds:

(a) Either 
∑m

i=1 ki <
∑n

i=1 λi and since σ < v, we have that 
∑n

i=1 λi ≤
∑p

i=1 μi and so 
∑m

i=1 ki <
∑p

i=1 μi. 
Thus w < v.

(b) Either 
∑m

i=1 ki =
∑n

i=1 λi and ind(w) = m < n = ind(σ). Then, since σ < v we have that either ∑n
i=1 λi <

∑p
i=1 μi (same as in case (a)) or 

∑n
i=1 λi =

∑p
i=1 μi and ind(σ) ≤ p = ind(v). Thus, 

ind(w) = m < p = ind(v) and so we conclude that w < v.
(c) Either 

∑m
i=1 ki =

∑n
i=1 λi, ind(w) = ind(σ) and i1 = j1, . . . , is−1 = js−1, is > js. Then, since σ < v, 

we have that either:
•

∑n
i=1 λi <

∑p
i=1 μi, same as in case (a), or

•
∑n

i=1 λi =
∑p

i=1 μi and ind(σ) < ind(v), same as in case (b), or
• ind(σ) = ind(v) and j1 = ϕ1, . . . , jp > ϕp. Then:

(i) if p = s we have that is > js > ϕs and we conclude that w < v,
(ii) if p < s we have that ip = jp > ϕp and thus w < v and if s < p we have that is > js = ϕs and 

so w < v.
(d) Either 

∑m
i=1 ki =

∑n
i=1 λi, ind(w) = ind(σ) and kn = λn, . . . , |kq| < |λq|. Then, since σ < v, we have 

that either:
•

∑n
i=1 λi <

∑p
i=1 μi, same as in case (a), or

•
∑n

i=1 λi =
∑p

i=1 μi and ind(σ) < ind(v), same as in case (b), or
• ind(σ) = ind(v) and j1 = ϕ1, . . . , jq > ϕq, same as in case (c), or
• jn = ϕn, for all n and μn = λn, . . . , μc+1 = λc+1, |μc| ≥ |λc| for some c, then:

(1) If |μc| > |λc|, then:
(i) If c > q then |kc| = |λc| < |μc| and thus w < v.
(ii) If c < q then |kq| < |λq| = |μq| and thus w < v.
(iii) If c = q then |kq| < |λq| < |μq| and thus w < v.

(2) If |μc| = |λc|, such that μc < λc, then:
(i) If c > q then |kc| = |λc| = |μc| and kc = λc > μc. Thus w < v.
(ii) If c ≤ q then |kq| < |λq| = |μq| and thus w < v.

(e) Either 
∑m

i=1 ki =
∑n

i=1 λi, ind(w) = ind(σ) and kn = λn, . . . , |kq| = |λq|, such that kq > λq. Then, 
since σ < v, we have that either:
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•
∑n

i=1 λi <
∑p

i=1 μi, same as in case (a), or
•

∑n
i=1 λi =

∑p
i=1 μi and ind(σ) < ind(v), same as in case (b), or

• ind(σ) = ind(v) and j1 = ϕ1, . . . , jq > ϕq, same as in case (c), or
• jn = ϕn, for all n and μn = λn, . . . , μc+1 = λc+1, |μc| ≥ |λc| for some c, then:

(1) If |μc| > |λc|, then:
(i) If c > q then |kc| = |λc| < |μc|, thus w < v.
(ii) If c ≤ q then |kq| = |λq| = |μq| and kq > λq = μq, thus w < v.

(2) If |μc| = |λc| such that λc > μc, then:
(i) If c > q then |kc| = |λc| = |μc| and kc = λc > μc, thus w < v.
(ii) If c < q then |kq| = |λq| = |μq| and kq > λq = μq, thus w < v.
(iii) If c = q, then |kq| = |λq| = |μq| and kq > λq > μq, thus w < v.

So, we conclude that the ordering relation is transitive. �
Remark 3. Proposition 1 also holds for the sets Σn, Λ′ and Λ.

Definition 3. We define the subset of level k, Λk, of Λ to be the set

Λk := {tk0tk1
1 . . . tkm

m |
m∑
i=0

ki = k, ki ∈ Z \ {0}, ki ≥ ki+1 ∀i}

and similarly, the subset of level k of Λ′ to be

Λ′
k := {tk0t′1

k1 . . . t′m
km |

m∑
i=0

ki = k, ki ∈ Z \ {0}, ki ≥ ki+1 ∀i}.

Remark 4. Let w ∈ Λk be a monomial containing gaps in the indices and u ∈ Λk a monomial with consecutive 
indices such that ind(w) = ind(u). Then, it follows from Definition 2 that w < u.

Proposition 2. The sets Λk are totally ordered and well-ordered for all k.

Proof. Since Λk ⊆ Λ, ∀k, Λk inherits the property of being a totally ordered set from Λ. Moreover, tk is 
the minimum element of Λk and so Λk is a well-ordered set. �

We also introduce the notion of homologous words as follows:

Definition 4. We shall say that two words w′ ∈ Λ′ and w ∈ Λ are homologous, denoted w′ ∼ w, if w is 
obtained from w′ by turning t′i into ti for all i.

With the above notion the proof of Theorem 2 is based on the following idea: Every element w′ ∈ Λ′ can 
be expressed as linear combinations of monomials wi ∈ Λ with coefficients in C, such that:

(i) ∃ j such that wj ∼ w′,
(ii) wj < wi, for all i �= j,
(iii) the coefficient of wj is an invertible element in C.
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4. From Λ′ to Σn

In this section we prove a series of lemmas relating elements of the two different basic sets Σn, Σ′
n of 

H1,n(q). In the proofs we underline expressions which are crucial for the next step. Since Λ′ is a subset 
of Σ′

n, all lemmas proved here apply also to Λ′ and will be used in the context of the bases of S(ST).

4.1. Some useful lemmas in H1,n(q)

We will need the following results from [4]. The first lemma gives some basic relations of the braiding 
generators.

Lemma 1. (See [4, Lemma 1].) For ε ∈ {±1} the following hold in H1,n(q):

(i) gmi =
(
qm−1 − qm−2 + . . . + (−1)m−1) gi +

(
qm−1 − qm−2 + · · · + (−1)m−2q

)
g−m
i =

(
q−m − q1−m + . . . + (−1)m−1q−1) gi +

+
(
q−m − q1−m + · · · + (−1)m−1q−1 + (−1)m

)
(ii) gi

ε(gk±1g±1
k−1 . . . gj

±1) = (gk±1g±1
k−1 . . . gj

±1)gi+1
ε, for k > i ≥ j,

gi
ε(gj±1g±1

j+1 . . . gk
±1) = (gj±1g±1

j+1 . . . gk
±1)gi−1

ε, for k ≥ i > j,

where the sign of the ±1 exponent is the same for all generators.

(iii) gigi−1 . . . gj+1gjgj+1 . . . gi = gjgj+1 . . . gi−1gigi−1 . . . gj+1gj

gi
−1g−1

i−1 . . . g
−1
j+1gj

εgj+1 . . . gi = gjgj+1 . . . gi−1gi
εg−1

i−1 . . . g
−1
j+1gj

−1

(iv) gi
ε . . . gn−1

εgn
2εgn−1

ε . . . gi
ε =

∑n−i+1
r=0 (qε − 1)εrqεr (giε . . . gn−r

ε . . . gi
ε),

where εr = 1 if r ≤ n − i and εn−i+1 = 0. Similarly,

(v) gi
ε . . . g2

εg1
2εg2

ε . . . gi
ε =

∑i
r=0 (qε − 1)εrqεr (giε . . . gr+2

εgr+1
εgr+2

ε . . . gi
ε),

where εr = 1 if r ≤ i − 1 and εi = 0.

The next lemma comprises relations between the braiding generators and the looping generator t.

Lemma 2. (Cf. [4, Lemmas 1, 4, 5].) For ε ∈ {±1}, i, k ∈ N and λ ∈ Z the following hold in H1,n(q):

(i) tλg1tg1 = g1tg1t
λ

(ii) tεg1
εtεkg1

ε = g1
εtεkg1

εtε + (qε − 1)tεg1
εtεk + (1 − qε)tεkg1

εtε

t−εg1
εtεkg1

ε = g1
εtεkg1

εt−ε + (qε − 1)tε(k−1)g1
ε + (1 − qε)g1

εtε(k−1)

(iii) tεig1
εtεkg1

ε = gε1t
εkgε1t

εi + (qε − 1)
∑i

j=1 t
εjgε1t

ε(k+i−j) +
+ (1 − qε)

∑i−1
j=0 t

ε(k+j)gε1t
ε(i−j)

t−εig1
εtεkg1

ε = g1
εtεkg1

εt−εi + (qε − 1)
∑i

j=1 t
ε(k−j)gε1t

−ε(i−j) +
+ (1 − qε)

∑i
j=1 t

ε(i−j)gε1t
ε(k−j)

The next lemma gives the interactions of the braiding generators and the loopings ti’s and t′i’s.
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Lemma 3. (See [4, Lemmas 1 and 2].) The following relations hold in H1,n(q):

(i) gitk
ε = tk

εgi for k > i, k < i− 1
giti = qti−1gi + (q − 1)ti
giti−1 = q−1tigi + (q−1 − 1)ti = tig

−1
i

git
−1
i−1 = qti

−1gi + (q − 1)ti−1
−1

git
−1
i = q−1ti−1

−1gi + (q−1 − 1)ti−1
−1 = t−1

i−1g
−1
i

(ii) tkngn = (q − 1)
∑k−1

j=0 qjtjn−1t
k−j
n + qkgnt

k
n−1, if k ∈ N

tkngn = (1 − q)
∑k−1

j=0 qjtjn−1t
k−j
n + qkgnt

k
n−1, if k ∈ Z− N

(iii) ti
ktj

λ = tj
λti

k for i �= j and k, λ ∈ Z

(iv) git
′
k
ε = t′k

ε
gi for k > i, k < i− 1

git
′
i
ε = t′i−1

ε
gi + (q − 1)t′i

ε + (1 − q)t′i−1
ε

git
′
i−1

ε = t′i
ε
gi

(v) t′i
k = gi . . . g1t

kg1
−1 . . . gi

−1 for k ∈ Z.

Using now Lemmas 1, 2 and 3 we prove the following relations, which we will use for converting elements 
in Λ′ to elements in Σn. Note that whenever a generator is overlined, this means that the specific generator 
is omitted from the word.

Lemma 4. The following relations hold in H1,n(q) for k ∈ N:

(i) gm+1t
k
m = q−(k−1)tkm+1g

−1
m+1 +

∑k−1
j=1 q−(k−1−j)(q−1 − 1)tjmtk−j

m+1 (see Fig. 10),

(ii) g−1
m+1t

−k
m = q(k−1)t−k

m+1gm+1 +
∑k−1

j=1 q(k−1−j)(q − 1)t−j
m t

−(k−j)
m+1 .

Proof. We prove relation (i) by induction on k. Relation (ii) follows similarly. For k = 1 we have that 
gm+1tm = tm+1g

−1
m+1, which holds from Lemma 3(i). Suppose that the relation holds for k − 1. Then, for k

we have:

gm+1t
k
m = gm+1t

k−1
m tm

ind.=
step

q−(k−2)tk−1
m+1g

−1
m+1tm +

+
∑k−2

j=1 q−(k−2−j)(q−1 − 1)tjmtk−1−j
m+1 tm =

= q1−kgm+1tm + q2−k(q−1 − 1)tmtk−1
m+1 +

∑k−2
j=1 q−(k−2−j)(q−1 − 1)tj+1

m tk−1−j
m+1

= q−(k−1)tm+1g
−1
m+1 +

∑k
j=1 q

−(k−1−j)(q−1 − 1)tjmtk−j
m+1. �

Lemma 5. In H1,n(q) the following relations hold:

(i) For the expression A = (grgr−1 . . . gr−s) · tk the following hold for the different values of k ∈ N:

(1) A = tk (gr . . . gr−s) for k > r or k < r − s− 1
(2) A = tr

(
g−1
r . . . g−1

r−s

)
for k = r − s− 1

(3) A = qtr−1 (gr . . . gr−s) + (q − 1)tr(gr−1 . . . gr−s) for k = r

(4) A = qtr−s−1 (gr . . . gr−s) + (q − 1)tr
(
g−1
r . . . g−1

r−s+1
)

for k = r − s

(5) A = tm−1 (gr . . . gr−s) + (q − 1)tr
(
g−1
r . . . g−1

m+1
)
(gm−1 . . . gr−s)

for k = m ∈ {r − s + 1, . . . , r − 1}.
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Fig. 10. Illustrating Lemma 4(i) for k = 2.

Fig. 11. Illustrating Lemma 5(ii) for k = r − s.

(ii) For the expression A = (grgr−1 . . . gr−s) · t−1
k the following hold for the different values of k ∈ N:

(1) A = t−1
k (gr . . . gr−s) for k > r or k < r − s− 1

(2) A = t−1
r−s−1

(
gr . . . gr−s+1g

−1
r−s

)
for k = r − s (see Fig. 11)

(3) A = t−1
m−1

(
grgr−1 . . . gm+1g

−1
m gm−1 . . . gk−s

)
for k = m ∈ {r − s + 1, . . . , r}

(4) A = qs+1t−1
r (gr . . . gr−s) + (q − 1)

∑s+1
j=1 q

s−j+1t−1
r−j ·

· (gr . . . gr−j+2gr−j . . . gr−s) for k = r − s− 1.

Proof. We only prove relation (ii) for k = r − s − 1 by induction on s (case (4)). All other relations follow 
from Lemma 3(i).

For s = 1 we have:

grgr−1t
−1
r−2 = gr[qt−1

r−1gr−1 + (q − 1)t−1
r−2] = qgrt

−1
r−1gr−1 + (q − 1)grt−1

r−2

= q[qt−1
r gr + (q − 1)t−1

r−1]gr−1 + (q − 1)t−1
r−2gr

= q2t−1
r (grgr−1) + (q − 1)

[
qt−1

r−1gr−1 + q0t−1
r−2gr

]
,

and so the relation holds for s = 1. Suppose that the relation holds for s = n. We will show that it holds 
for s = n + 1. Indeed we have:

(gr . . . gr−n−1)t−1
r−n−2 = (gr . . . gr−n)(gr−n−1t

−1
r−n−2) =

(gr . . . gr−n)
[
qt−1

r−n−1gr−n−1 + (q − 1)t−1
r−n−2

]
=

= q(gr . . . gr−nt
−1
r−n−1)gr−n−1 + (q − 1)(gr . . . gr−n)t−1

r−n−2
ind. step=

= qn+2t−1
r (gr . . . gr−n−1) +

+ (q − 1)
∑n+1

j=1 qn−j+2t−1
r−j(gr . . . gr−j+2gr−j . . . gr−n−1) +

+ (q − 1)t−1
r−n−2(gr . . . gr−n) = qn+2t−1

r (gr . . . gr−n−1) +
+ (q − 1)

∑n+2
q(n+1)−j+1t−1 (g . . . g g . . . g ). �
j=1 r−j r r−j+2 r−j r−n−1
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Before proceeding with the next lemma we introduce the notion of length of w ∈ Hn(q). For convenience 
we set δk,r := gkgk−1 . . . gr+1gr for k > r and by convention we set δk,k := gk.

Definition 5. We define the length of δk,r ∈ Hn(q) to be the number of braiding generators, that is, l(δk,r) :=
k − r + 1 and since every element of the Iwahori–Hecke algebra of type A can be written as 

∏n−1
i=1 δki,ri so 

that kj < kj+1 ∀j, we define the length of an element w ∈ Hn(q) as:

l(w) :=
n−1∑
i=1

li(δki,ri) =
n−1∑
i=1

ki − ri + 1.

Note that l(gk) = l(δk,k) = k − k + 1 = 1.

Lemma 6. For k > r the following relations hold in H1,n(q):

tkδk,r =
k−r∑
i=0

qi(q − 1)δk,k−i,rtk−i + ql(δk,r)δk,rtr−1,

where δk,k−i,r := gkgk−1 . . . gk−i+1gk−i−1 . . . gr := gk . . . gk−i . . . gr.

Proof. We prove relations by induction on k. For k = 1 we have that t1g1 = (q− 1)t1 + qg1t, which holds. 
Suppose that the relation holds for (k − 1), then for k we have:

tkδk,r = tkgk · δk−1,r = (q − 1)tkδk−1,r + qgktk−1δk−1,r =
= (q − 1)δk−1,rtk + qgk

∑k−1−r
i=0 qi(q − 1)δk−1,k−1−i,rtk−1−i +

+ ql(δk−1,r)+1gkδk−1,rtr−1 =
=

∑k−r
i=0 qi(q − 1)δk,k−1−i,rtk−1−i + ql(δk,r)δk,rtr−1. �

Lemma 7. In H1,n(q) the following relations hold:

(i) For the expression A = (grgr+1 . . . gr+s) · tk the following hold for the different values of k ∈ N:

(1) A = tk (gr . . . gr+s) for k ≥ r + s + 1 or k < r − 1
(2) A = tk+1

(
gr . . . gkg

−1
k+1gk+2 . . . gr+s

)
for r − 1 ≤ k < r + s

(3) A = (q − 1)
∑r+s

i=r q
r+s−iti (gr . . . gi . . . gr+s) + qs+1tr−1 (gr . . . gr+s)

for k = r + s

(ii) For the expression A = (grgr+1 . . . gr+s) · t−1
k the following hold for the different values of k ∈ N:

(1) A = t−1
k (grgr+1 . . . gr+s) for k ≥ r + s + 1 or k < r − 1

(2) A = q t−1
k+1 (gr . . . gr+s) + (q − 1) t−1

r−1
(
g−1
r . . . g−1

k gk+2 . . . gr+s

)
for r − 1 ≤ k < r + s

(3) A = t−1
r−1

(
g−1
r . . . g−1

r+s

)
for k = r + s

Proof. We prove relation (i) for r + s = k by induction on k (case (3)). All other relations follow from 
Lemmas 1 and 3.
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Fig. 12. Illustrating Lemma 8(i) for i = 2.

For k = 1 we have: g1t1 = g2
1tg1 = qtg1 + (q − 1)t1. Suppose that the relation holds for k = n. Then, for 

k = n + 1 we have that:

gr . . . gn+1tn+1 = q(gr . . . gntn)gn+1 + (q − 1)(gr . . . gn)tn+1
ind. step=

= q
[
(q − 1)

∑n
i=r q

n−iti(gr . . . gi . . . gn) + qn−r+1tr−1(gr . . . gn)
]
gn+1 +

+ (q − 1)tn+1(gr . . . gn) =
=

(
(q − 1)

∑n
i=r q

n−i+1ti(gr . . . gi . . . gngn+1) + (q − 1)tn+1(gr . . . gn)
)
+

+ qn+1−r+1tr−1(gr . . . gngn+1) =
= (q − 1)

∑n+1
i=r qn+1−iti(gr . . . gi . . . gn+1) + qn+1−r+1tr−1(gr . . . gn+1). �

Lemma 8. The following relations hold in H1,n(q) for k ∈ N:

(i)
(
g1 . . . gi−1g

2
i gi−1 . . . g1

)
· t =

(q − 1)
∑i

k=1 q
i−ktk

(
g1 . . . gk−1g

−1
k g−1

k−1 . . . g
−1
1

)
+ qit (see Fig. 12)

(ii)
(
g−1
1 . . . g−1

i−1g
−2
i g−1

i−1 . . . g
−1
1

)
· t−1 =

(q−1 − 1)
∑i

k=1 q
−(i−k)t−1

k

(
g−1
1 . . . g−1

k−1gkgk−1 . . . g1
)

+ q−i t−1

(iii)
(
g−1
k . . . g−1

2 g−2
1 g−1

2 . . . g−1
k

)
· tk =

(q−1 − 1)
∑k−1

i=1 q−kti
(
g−1
k . . . g−1

i+2gi+1gi+2 . . . gk
)

+ q−ktk

(iv)
(
g−1
k . . . g−1

2 g−2
1 g−1

2 . . . g−1
k

)
· t−1

k =
t−1q−k(q−1 − 1)g−1

k . . . g−1
1 . . . g−1

k +
+

∑k−1
i=0 t−1

i q−k+i(q−1 − 1)g−1
k . . . g−2

1 . . . g−1
i g−1

i+2 . . . g
−1
k +

+ t−1
k

[∑k
i=2 q

−k+i(q−1 − 1)2g−1
i−1 . . . g

−1
2 g−2

1 g−1
2 . . . g−1

i−1 +
+ q−(k+1)(q2 − q + 1)

]
.

Proof. We prove relation (i) by induction on i. All other relations follow similarly. For i = 1 we have: 
g2
1t = g1g1tg1g

−1
1 = g1t1g

−1
1 = (q − 1)t1g−1

1 + qt. Suppose that the relation holds for i = n. Then, for 
i = n + 1 we have: (

g1 . . . gng
2
n+1gn . . . g1

)
· t = (q − 1) (g1 . . . gn+1gn . . . g1) · t +

+ q
(
g1 . . . gn−1g

2
ngn−1 . . . g1

)
· t =

= (q − 1)g1 . . . gntn+1g
−1
n+1 . . . g

−1
1 + q

∑n
k=1 q

n−k(q − 1)tk ·(
g1 . . . gk−1g

−1
k . . . g−1

1
)

+ qn+1t =
= (q − 1)tn+1

(
g1 . . . gng

−1
n+1 . . . g

−1
1

)
+

∑n
k=1 q

n+1−k(q − 1)tk ·(
g1 . . . gk−1g

−1
k . . . g−1

1
)

+ qn+1t =
=

∑n+1
k=1 q

n+1−k(q − 1)tk
(
g1 . . . gk−1g

−1
k . . . g−1

1
)

+ qn+1t. �
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4.2. Converting elements in Λ′ to elements in Σn

We are now in the position to prove a set of relations converting monomials of t′i’s to expressions containing 
the ti’s. In [13] we provide lemmas converting monomials of ti’s to monomials of t′i’s in the context of giving 
a simple proof that the sets Σ′

n form bases of H1,n(q).

Lemma 9. The following relations hold in H1,n(q) for k ∈ N:

(i) t′1
−k = qkt−k

1 +
∑k

j=1 q
k−j(q − 1)t−jtj−k

1 · g−1
1 ,

(ii) t′1
k = q−ktk1 +

∑k
j=1 q

−(k−j)(q−1 − 1)tj−1tk+1−j
1 · g−1

1 .

Proof. We prove relation (i) by induction on k. Relation (ii) follows similarly. For k = 1 we have: t′1
−1 =

g1 t−1 g−1
1 = q g−1

1 t−1 g−1
1 + (q − 1) t−1 g−1

1 = q t−1
1 + (q − 1) t−1 g−1

1 .
Suppose that the relation holds for k − 1. Then, for k we have:

t′1
−k = t′1

−(k−1)
t′1

−1 ind.=
step

qk−1t
−(k−1)
1 t′1

−1 +

+
∑k−1

j=1 qk−1−j(q − 1)t−jt
j−(k−1)
1 g−1

1 t′1
−1 =

= qkt−k
1 + qk−1t−1t

−(k−1)
1 g−1

1 +
∑k−1

j=1 qk−1−j(q − 1)t−jt
j−(k−1)
1 t−1g−1

1

= qkt−k
1 + qk−1(q − 1)t−1t

−(k−1)
1 g−1

1 +
+

∑k−1
j=1 qk−1−j(q − 1)t−j−1t

j−(k−1)
1 g−1

1 =
= qkt−k

1 +
∑k

j=1 q
k−j(q − 1)t−jtj−k

1 g−1
1 . �

Lemma 10. The following relations hold in H1,n(q) for k ∈ N:

t′k
−1 = qk t−1

k + (q − 1)
k−1∑
i=0

qi t−1
i ( gk gk−1 . . . gi+2 g−1

i+1 . . . g−1
k−1 g−1

k ).

Proof. We prove the relations by induction on k. For k = 1 we have:

t′1
−1 = g1 t−1 g−1

1 = q g−1
1 t−1 g−1

1 + (q − 1) t−1 g−1
1 = q t−1

1 + (q − 1) t−1 g−1
1 .

Suppose that the relations hold for k = n. Then, for k = n + 1 we have that:

t′n+1
−1 = gn+1 t′n

−1
g−1
n+1

ind. step=
= gn+1

[
qnt−1

n + (q − 1)
∑n−1

i=0 qi t−1
i (gn . . . gi+2g

−1
i+1 . . . g

−1
n )

]
g−1
n+1 =

= qn gn+1 t−1
n g−1

n+1 + (q − 1)
∑n−1

i=0 qign+1t
−1
i (gn . . . gi+2g

−1
i+1 . . . g

−1
n g−1

n+1) =
= qn

[
qt−1

n+1gn+1 + (q − 1)t−1
n

]
g−1
n+1 + (q − 1)

∑n−1
i=0 qit−1

i ·
(gn+1 . . . gi+2g

−1
i+1 . . . g

−1
n+1) =

= qn+1t−1
n+1 + qn(q − 1)t−1

n g−1
n+1 + (q − 1)

∑n−1
i=0 qit−1

i ·
(gn+1 . . . gi+2g

−1
i+1 . . . g

−1
n+1) =

= qn+1t−1
n+1 + (q − 1)

∑n
i=0 q

it−1
i (gn+1 . . . gi+2g

−1
i+1 . . . g

−1
n+1). �

Lemma 11. The following relations hold in H1,n(q) for k ∈ Z\{0}:

t′m
k = q−mktkm +

∑
i

fi(q)tkmwi +
∑
i

gi(q)tλ0tλ1
1 . . . tλm

m ui,

where wi, ui ∈ Hm+1(q), ∀i, 
∑m

λi = k and λi ≥ 0, ∀i, if k > 0 and λi ≤ 0, ∀i, if k < 0.
i=0
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Fig. 13. Illustrating Theorem 7.

Proof. We prove relations by induction on m. The case m = 1 is Lemma 9. Suppose now that the relations 
hold for m − 1. Then, for m we have:

t′m
k = gmt′m−1

k
g−1
m

ind.=
step

q−(m−1)kgmtkm−1g
−1
m +

∑
i fi(q)gmtkm−1wig

−1
m +

+
∑

i gi(q)tλ0tλ1
1 . . . t

λm−2
m−2 gmt

λm−1
m−1 uig

−1
m

(L. 4)=
= q−(m−1)kq−(k−1)tkmg−2

m +
∑k−1

j=1 q−(k−1−j)(q−1 − 1)tjm−1t
k−j
m g−1

m =
= q−mktkm +

∑
i fi(q)tkmwi +

∑
i gi(q)tλ0tλ1

1 . . . t
λmi
m ui. �

Using now Lemma 11 we have that every element u ∈ Λ′ can be expressed to linear combinations of 
elements vi ∈ Σn, where ∃ j : vj ∼ u. More precisely:

Theorem 7. The following relations hold in H1,n(q) for k ∈ Z:

tk0t′1
k1 . . . t′m

km = q−
∑m

n=1 nkn · tk0tk1
1 . . . tkm

m +
∑

i fi(q) · tk0tk1
1 . . . tkm

m · wi +
+

∑
j gj(q)τj · uj ,

where wi, uj ∈ Hm+1(q), ∀i, τj ∈ Σn, such that τj < tk0tk1
1 . . . tkm

m , ∀j. (See Fig. 13.)

Proof. We prove relations by induction on m. Let k1 ∈ N, then for m = 1 we have:

tk0t′1
k1 (L. 9)= q−k1tk0tk1

1 +
∑k1

j=1 q
−(k1−j)(q−1 − 1)tk0+j−1tk1+1−j

1 g−1
1 =

= q−k1tk0tk1
1 + q−k1(q−1 − 1)tk0tk1

1 g−1
1 +

+
∑k1

j=2 q
−(k1−j)(q−1 − 1)tk0+j−1tk1+1−j

1 g−1
1 .

On the right hand side we obtain a term which is the homologous word of tk0t′1
k1 with scalar q−k1 ∈ C, 

the homologous word again followed by g−2
1 ∈ H2(q) and with scalar q−(k1−1)(q−1 − 1) ∈ C and the terms 

tk0+j−1tk1+1−j
1 , which are of less order than the homologous word tk0tk1

1 , since k1 > k1 + 1 − j, for all 
j ∈ {2, 3, . . . , k1}. So the statement holds for m = 1 and k1 ∈ N. The case m = 1 and k1 ∈ Z\N is similar.

Suppose now that the relations hold for m − 1. Then, for m we have:

tk0t′1
k1 . . . t′m

km ind.=
step

q−
∑m−1

n=1 nkn · tk0 . . . t
km−1
m−1 · t′m

km +

+
∑

i fi(q) · tk0tk1
1 . . . t

km−1
m−1 · wi · t′m

km

+
∑

j gj(q)τj · uj · t′m
km .

Now, since wi, ui ∈ Hm(q), ∀i we have that wit
′
m

km = t′m
kmwi and uit

′
m

km = t′m
kmui, ∀i. Applying now 

Lemma 11 to t′m
k we obtain the requested relation. �
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Fig. 14. Conjugating ti by g−1
1 . . . g−1

i .

Example 1. We convert the monomial tt′1t′2
−2 ∈ Λ′ to linear combination of elements in Σn. We have that:

t′1 = q−1t1 + (q−1 − 1)t1g−1
1 (Lemma 9),

t′2
−2 = q4t−2

2 + q3(q − 1)t−1
1 t−1

2 g−1
2 + q2(q − 1)t−1t−1

2 g2g
−1
1 g−1

2 +
+ q2(q − 1)t−2

1 g−1
2 + q(q − 1)2t−1t−1

1 g−1
1 g−1

2 + (q − 1)t−2g2g
−1
1 g−1

2 (Lemma 10),

and so:

tt′1t
′
2
−2 = q3 · tt1t−2

2 + q4(q−1 − 1) · tt1t−2
2 · g−1

1 + 1 · u+
+ tt−1

1 ·
(
(q − 1)(q2 − q + 1) · g−1

2 − (q − 1)2 · g1g2g
−1
1 g−1

2
)
+

+ tt−1
2 ·

(
q2(q − 1) · g−1

2 + q(q − 1)3 · g−1
2 − q(q − 1)2 · g2g

−1
1 g−1

2
)
+

+ t1t
−1
2 ·

(
q(q − 1) · g2g

−1
1 g−1

2 − q(q − 1)2 · g−1
1 g−1

2
)
+

+ t−1t1 ·
(
−(q − 1) · g2g

−1
1 g−1

2 − q−1(q − 1)2 · g−1
1 g−1

2
)

where u = (q − 1)2g−1
1 g−1

2 − (q − 1)3g−2
1 g−1

2 − q−1(q − 1)3g2g
−1
1 g−1

2 + q−1(q − 1)3g−1
2 .

We obtain the homologous word w = tt1t
−2
2 , the homologous word again followed by the braiding gener-

ator g−1
1 and terms in Σn of less order than w, since either their index is less that ind(w) (the terms tt−1

1 , 
1 and t−1t1), either they contain gaps in the indices (the terms tt−1

2 and t1t
−1
2 ).

5. From Σn to Λ

In order to prove Theorem 2 we need to show that the set Λ is a spanning set of S(ST) and also that 
it is linearly independent. In this section we show that every element in Λ′ can be expressed in terms of 
elements in the set Λ. Linear independence of the set Λ is shown in the next section.

Before proceeding we need to discuss the following situation. According to Lemma 9, for a word w′ =
tkt′1

−λ ∈ Λ′, where k, λ ∈ N and k < λ we have that:

w′ = tkt′1
−λ = tk−1t1

−λ+1α1 + tk−2t1
−λ+2α2 + . . . +

+ t0t1
−λ+kαk + t−1t1

−λ+k+1αk+1 + . . . + t−λ+kαλ,

where αi ∈ Hn(q), ∀i. We observe that in this particular case, in the right hand side there are terms which 
do not belong to the set Λ. These are the terms of the form tqtp1, where p > q and the term tm1 . So these 
elements cannot be compared with the highest order term w ∼ w′. The point now is that these terms are 
elements in the basis Σn on the Hecke algebra level, but, when we are working in S(ST), such elements must 
be considered up to conjugation by any braiding generator and up to stabilization moves. Topologically, 
conjugation corresponds to closing the braiding part of a mixed braid. Conjugating t1 by g−1

1 we obtain tg2
1

(view Fig. 14) and similarly conjugating tm1 by g−1
1 we obtain tg2

1tg
2
1 . . . tg

2
1 . Then, applying Lemma 3 we 

obtain the expression 
∑m−1

k=1 tktm−k
1 vk, where vk ∈ Hn(q), for all k, that is, we obtain now elements with 

consecutive indices but not necessarily with ordered exponents.
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We shall first deal with elements where the looping generators do not have consecutive indices, and then 
with elements where the exponents are not in decreasing order. For the expressions that we obtain after 
appropriate conjugations we shall use the notation =̂.

5.1. Managing the gaps

We will call gaps in monomials of the ti’s, gaps occurring in the indices and size of the gap tki
i t

kj

j the 
number si,j = j − i ∈ N.

Lemma 12. For k0, k1 . . . ki ∈ Z, ε = 1 or ε = −1 and si,j > 1 the following relation holds in H1,n(q):

tk0tk1
1 . . . t

ki−1
i−1 tki

i · tεj =̂ tk0tk1
1 . . . t

ki−1
i−1 tki

i · tεi+1
(
gεi+2 . . . g

ε
j−1g

2ε
j gεj−1 . . . g

ε
i+2

)
.

Proof. We have that tεj =
(
gεj . . . g

ε
i+2

)
tεi+1

(
gεi+2 . . . g

ε
j

)
and so:

tk0tk1
1 . . . t

ki−1
i−1 tki

i tεj = tk0tk1
1 . . . t

ki−1
i−1 tki

i (gεj . . . gεi+2) tεi+1 (gεi+2 . . . g
ε
j) =

= (gεj . . . gεi+2) tk0tk1
1 . . . t

ki−1
i−1 tki

i tεi+1(gεi+2 . . . g
ε
j) =̂

=̂ tk0 . . . t
ki−1
i−1 tki

i tεi+1(gεi+2 . . . g
ε
j−1g

2ε
j gεj−1 . . . g

ε
i+2). �

In order to pass to a general way for managing gaps in monomials of ti’s we first deal with gaps of size 
one. For this we have the following.

Lemma 13. For k ∈ N, ε = 1 or ε = −1 and α ∈ H1,n(q) the following relations hold:

tεki · α =̂
k−1∑
u=1

qε(u−1)(qε − 1)tεui−1t
ε(k−u)
i (αgεi ) + qε(k−1)tεki−1(gεiαgεi ).

Proof. We prove the relations by induction on k. For k = 1 we have tεi · α =̂ gεi t
ε
i−1g

ε
i · α =̂ tεi−1g

ε
i · α · gεi . 

Suppose that the assumption holds for k − 1 > 1. Then for k we have:

tεki · α =̂ t
ε(k−1)
i (tεi · α)

(tεi ·α = β)
= t

ε(k−1)
i · β =̂

ind. step

=
∑k−2

u=1 q
ε(u−1)(qε − 1)tεui−1t

ε(k−1−u)
i (βgεi ) + qε(k−2)t

ε(k−1)
i−1 (gεiβgεi )

(β = tεi ·α)
=

=
∑k−2

u=1 q
ε(u−1)(qε − 1)tεui−1t

ε(k−1−u)
i tεi(αgεi ) + qε(k−2)t

ε(k−1)
i−1 (gεi tεiαgεi ) =

=
∑k−2

u=1 q
ε(u−1)(qε − 1)tεui−1t

ε(k−u)
i (αgεi ) + qε(k−2)t

ε(k−1)
i−1 tεiαg

ε
i +

+ qε(k−1)t
ε(k−1+1)
i−1 (gεi tεiαgεi ) =

=
∑k−1

u=1 q
ε(u−1)(qε − 1)tεui−1t

ε(k−u)
i (αgεi ) + qε(k−1)tεki−1(gεiαgεi ). �

We now introduce the following notation.

Notation 1. We set τki,i+m

i,i+m := tki
i t

ki+1
i+1 . . . t

ki+m

i+m , where m ∈ N and kj �= 0 for all j and

δi,j :=
{
gigi+1 . . . gj−1gj if i < j

gigi−1 . . . gj+1gj if i > j,
δi,k̂,j :=

{
gigi+1 . . . gk−1gk+1 . . . gj−1gj if i < j

gigi−1 . . . gk+1gk−1 . . . gj+1gj if i > j

We also set wi,j an element in Hj+1(q) where the minimum index in w is i.
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Using now the notation introduced above, we apply Lemma 13 si,j-times to 1-gap monomials of the form 
τ
k0,i
0,i · tkj

j and we obtain monomials with no gaps in the indices, followed by words in Hn(q).

Example 2. For si,j > 1 and α ∈ Hn(q) we have:

(i) τki
0,i · tj · α =̂ τki

0,i · ti+1 · δi+2,j α δj,i+2

(ii) τki
0,i · t2j · α =̂ τki

0,i · t2i+1 · δi+2,j α δj,i+2 + τki
0,i · ti+1ti+2 · β, where

β =
[
(q − 1)

∑j
s=i+2 q

j−sδi+3,sδi+2,s−1δs+1,j α δj,i+2δs,i+3

]
(iii) τki

0,i · t3j · α =̂
[
qj−(i+2)+1]2 τki

0,i · t3i+1 · δi+2,j α δj,i+2 +
+ τki

0,i · t2i+1ti+2 · β + τki
0,i · ti+1t

2
i+2 · γ +

+ τki
0,i · ti+1ti+2ti+3 · μ, where

γ = qj−(i+3)+1(q − 1)δi+3,jδi+2,s−1δs+1,j α δj,i+2δs,i+3, and
μ =

∑j
s=i+2

∑j
r=s+1 q

2j−r−s (q − 1)2δi+4,rδi+2,s−1δs+1,r−1δr+1,j ·
α δj,i+2δs,i+3δr,i+4 +

∑j
s=i+2

∑s
r=i+3 q

2j−r−s (q − 1)2 ·
δi+4,rδi+3,r−1δr+1,sδi+2,s−1δs+1,j α δj,i+2δs,i+3.

Applying Lemma 13 to the one gap word τk0,i
0,i · tkj

j , where kj ∈ Z\{0} and α ∈ Hn(q) we obtain:

τ
k0,i
0,i · tkj

j α=̂

⎧⎨⎩
∑

λ τ
k0,i
0,i t

λi+1
i+1 . . . t

λi+kj

i+kj
α′ if kj < si,j∑

λ τ
k0,i
0,i t

λi+1
i+1 . . . t

λj

j β′ if kj ≥ si,j ,

where α′, β′ ∈ Hn(q), 
∑i+kj

μ=i+1 λμ = kj , λμ ≥ 0, ∀μ and if λu = 0, then λv = 0, ∀v ≥ u.
More precisely:

Lemma 14. For the 1-gap word A = τ
k0,i
0,i · tkj

j · α, where α ∈ Hn(q) we have:

(i) If |kj | < si,j , then: A =̂ (qkj−1)j−(i+1)τ
k0,i
0,i · tkj

i+1 δi+2,j α δj,i+2 +

+
∑

kj
f(q)τk0,i

0,i τ
ki+1,i+kj

i+1,i+kj
· βαβ′.

(ii) If |kj | ≥ si,j , then: A =̂ (qkj−1)j−(i+1)τ
k0,i
0,i · tkj

i+1 δi+2,j α δj,i+2 +
+

∑
kj

f(q)τk0,i
0,i · τki+1,j

i+1,j · βαβ′,

where β and β′ are of the form wi+1,j ∈ Hj+1(q), 
∑

kj
f(q, z)τk0,i

0,i τ
ki+1,i+kj

i+1,i+kj
means a sum of elements in Σn, 

such that in each one of them, the sum of the exponents of the looping generators ti+1, . . . , ti+kj
is equal to 

kj, and such that |ki+1| < |kj |. Moreover, if kμ = 0, for some index μ, then ks = 0 for all s > μ.

Proof. We prove the relations by induction on kj. Let 0 < kj < j − i.
For kj = 1 we have A =̂

[
q(1−1)]j−(i+1)

τ
k0,i
0,i · ti+1δi+2,j α δj,i+2 (Lemma 12). Suppose that the relation 

holds for kj − 1 > 1. Then for kj we have:

A = τ
k0,i
0,i · tkj−1

j · (tj α) =̂
ind. step

[
qkj−2]j−(i+1)

τ
k0,i
0,i · tkj−1

i+1 δi+2,j tj α δj,i+2︸ ︷︷ ︸
B

+

+
∑

ki1,i+kj−1

f(q)τk0,i
0,i · τki1,i+kj−1

i+1,i+kj−1β tj β′

︸ ︷︷ ︸
.

C
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We now consider B and C separately and apply Lemma 4 to both expressions:

B
(L. 4)=

=
[
qkj−2]j−(i+1)

τ
k0,i
0,i · tkj−1

i+1 ·[
(q − 1)

∑j
k+i+2 q

j−ktkδi+2,k−1δk+1,j + qj−(i+2)+1ti+1δi+2,j

]
αδj,i+2

=
[
qkj−2]j−(i+1) (q − 1)τk0,i

0,i ti+1 ·
∑j

k+i+2 q
j−ktkδi+2,k−1δk+1,jαδj,i+2 +

+
[
qkj−1]j−(i+1)

τ
k0,i
0,i · tkj

i+1δi+2,jαδj,i+2.

We now do conjugation on the (j − (i + 3))-one gap words that occur and since tk ·β =̂ ti+2 · δi+3,k β δk,i+3
we obtain:

B =̂
[
qkj−1]j−(i+1)

τ
k0,i
0,i · tkj

i+1δi+2,j α δj,i+2 +
+ τ

k0,i
0,i ti+1ti+2

∑j
k=i+2 f(q, z)δi+3,kδi+2,k−1δk+1,jαδj,i+2δk,i+3 =

=
[
qkj−1]j−(i+1)

τ
k0,i
0,i · tkj

i+1δi+2,j α δj,i+2 + τki
0,iti+1ti+2 · β1,

where β1 ∈ Hj+1(q).
Moreover, C =

∑
kr

f(q)τk0,i
0,i · τki+1,i+kj−1

i+1,i+kj−1β tj β′ and since β = wi+kj−1,j , we have that: β · tj
(L. 4)=∑j

s=i+kj−1 ts · γs, where γs ∈ Hj+1(q) and so: C =̂
∑

vr
f(q)τk0,i

0,i · τvi+1,i+kj

i+1,i+kj
· β2, where β2 ∈ Hj+1(q).

This concludes the proof. �
We now pass to the general case of one-gap words.

Proposition 3. For the 1-gap word B = τ
k0,i
0,i · τkj,j+m

j,j+m · α, where α ∈ Hn(q) we have:

B =̂
∏m

s=0 (qkj+s−1)j−(i+1) · τk0,i
0,i τ

kj,j+m

i+1,i+m

·
∏m

s=0(δi+m+2−s,j+s) · α ·
∏m

s=0(δj+s,i+m+2−s) +
+

∑
ur

f(q)τk0,i
0,i · (τu1,m

i+1,i+m) · α′

where α′ ∈ Hn(q), 
∑

u1,m = kj such that u1 < kj and if uμ = 0, then us = 0, ∀s > μ.

Proof. The proof follows from Lemma 14. The idea is to apply Lemma 14 on the expression τk0,i
0,i · tkj

j · ρ1, 

where ρ1 = τ
kj+1,j+m

j+1,j+m and obtain the terms τk0,i
0,i · tkj

i+1 · ρ2 and τk0,i
0,i · τki+1,i+q

i+1,i+q · ρ2 and follow the same 
procedure until there is no gap in the word. �

We are now ready to deal with the general case, that is, words with more than one gap in the indices of 
the generators.

Theorem 8. For the φ-gap word:

C = τ
k0,i
0,i · τki+s1,i+s1+μ1

i+s1,i+s1+μ1
· τki+s2,i+s2+μ2

i+s2,i+s2+μ2
. . . τ

ki+sφ,i+sφ+μφ

i+sφ,i+sφ+μφ
· α,

where ki ∈ Z\{0} for all i, α ∈ Hn(q), sj , μj ∈ N, such that s1 > 1 and sj > sj−1 + μj−1 for all j we have:

C =̂
∏φ

j=1

(
qki+sj

−1
)sj−j−

∑j−1
p=1 μp

· τ
u

0,i+φ+
∑φ

p=1 μp

0,i+φ+
∑φ

p=1 μp
·
(∏φ−1

p=0 αφ−p

)
· α ·(∏φ

p=1 α
′
p

)
+

∑
v fv(q)τ

k0,v
0,v · wv, where
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(i) αj =
∏μj

λj=0 δi+j+1+
∑j

k=1 μk−λj , i+sj+μj−λj
, j = {1, 2, . . . , φ},

(ii) α′
j =

∏μj

λj=0 δi+j+1+
∑j−1

k=1 μk+λj , i+sj+λj
, j = {1, 2, . . . , φ},

(iii) τ
u

0,i+φ+
∑φ

p=1 μp

0,i+φ+
∑φ

p=1 μp
= τ

k0,i
0,i ·

∏φ
j=1 τ

ki+sj,i+sj+μj

i+j+
∑j−1

p=1 μp,i+j+
∑j

p=1 μp
,

(iv) τ
u0,v
0,v < τ

u
0,i+φ+

∑φ
p=1 μp

0,i+φ+
∑φ

p=1 μp
, for all v,

(v) wv of the form wi+2,i+sφ+μφ
∈ Hi+sφ+μφ+1(q), for all v,

(vi) the scalars fv(q) are expressions of q ∈ C for all v.

Proof. We prove the relations by induction on the number of gaps. For the 1-gap word τk0,i
0,i · τki+s,i+s+μ

i+s,i+s+μ ·α, 
where α ∈ Hn(q), we have:

A =̂
[∏μ

λ=0
(
qki+s+λ−1)s−1

]
· τk0,i

0,i · τki+s,i+s+μ

i+1,i+1+μ ·
∏μ

λ=0 δi+2+μ−λ,i+s+μ−λ · α ·∏μ
λ=0 δi+2+μ+λ,i+s+λ +

∑
v fv(q) · τ

u0,v
0,v · wv,

which holds from Proposition 3.
Suppose that the relation holds for (φ − 1)-gap words. Then for a φ-gap word we have:(
τ
k0,i
0,i · τki+s1,i+s1+μ1

i+s1,i+s1+μ1
· τki+s2,i+s2+μ2

i+s2,i+s2+μ2
. . . τ

ki+sφ−1,i+sφ−1+μφ−1
i+sφ−1,i+sφ−1+μφ−1

)
· τki+sφ,i+sφ+μφ

i+sφ,i+sφ+μφ
· α =̂

ind. step∏φ−1
j=1

(
qki+sj

−1
)sj−j−

∑j−1
k=1 μk

· τ
u

0,i+φ−1+
∑φ−1

k=1 μk

0,i+φ−1+
∑φ−1

k=1 μk
·
∏φ−2

k=0 αφ−1−k · τki+sφ,i+sφ+μφ

i+sφ,i+sφ+μφ
· α ·

∏φ−1
k=1 α

′
k +∑

v fv(q) · τ
u0,v
0,v · w · τki+sφ,i+sφ+μφ

i+sφ,i+sφ+μφ

sφ>sφ−1+μφ−1=∏φ−1
j=1

(
qki+sj

−1
)sj−j−

∑j−1
k=1 μk

· τ
u

0,i+φ−1+
∑φ−1

k=1 μk

0,i+φ−1+
∑φ−1

k=1 μk
· τki+sφ,i+sφ+μφ

i+sφ,i+sφ+μφ
·
∏φ−2

k=0 αφ−1−k · α ·
∏φ−1

k=1 α
′
k +∑

v fv(q) · τ
u0,v
0,v · τki+sφ,i+sφ+μφ

i+sφ,i+sφ+μφ
· w (Prop. 3)=∏φ−1

j=1

(
qki+sj

−1
)sj−j−

∑j−1
k=1 μk

·
∏μφ

p=0

(
qki+sφ+p−1

)sφ−φ−
∑φ−1

k=1 μk

τ
u

0,i+φ−1+
∑φ−1

k=1 μk

0,i+φ−1+
∑φ−1

k=1 μk
·

τ
ki+sφ,i+sφ+μφ

i+φ+
∑φ−1

k=1 μk,i+φ+
∑φ−1

k=1 μk+μφ
·
∏φ−1

k=0 αφ−1−k · α ·
∏φ−1

k=1 α
′
k +

∑
v fv(q) · τ

u0,v
0,v · τki+sφ,i+sφ+μφ

i+sφ,i+sφ+μφ
· w (Prop. 3)=[∏μ

λ=0
(
qki+s+λ−1)s−1

]
· τk0,i

0,i · τki+s,i+s+μ

i+1,i+1+μ ·
∏μ

λ=0 δi+2+μ−λ,i+s+μ−λ · α ·
∏μ

λ=0 δi+2+μ+λ,i+s+λ +∑
v fv(q) · τ

u0,v
0,v · wv. �

All results are best demonstrated in the following example on a word with two gaps.

Example 3. For the 2-gap word tk0tk1
1 t3t

2
5t

−1
6 ∈ Σn we have:

tk0tk1
1 t3t

2
5t

−1
6 = tk0tk1

1 g3t2g3t
2
5t

−1
6 = g3t

k0tk1
1 t2t

2
5t

−1
6 g3 =̂ tk0tk1

1 t2t
2
5t

−1
6 g2

3 =

= tk0tk1
1 t2t5t5t

−1
6 g2

3 = tk0tk1
1 t2g5g4t3g4g5t5t

−1
6 g2

3 =

= g5g4t
k0tk1

1 t2t3g4g5t5t
−1
6 g2

3 =̂ tk0tk1
1 t2t3g4g5t5t

−1
6 g2

3g5g4 =

= tk0tk1
1 t2t3

[
q2t3g4g5 + q(q − 1)t4g5 + (q − 1)t5g4

]
t−1
6 g2

3g5g4 =

= q2tk0tk1
1 t2t

2
3g4g5t

−1
6 g2

3g5g4 + q(q − 1)tk0tk1
1 t2t3t4g5t

−1
6 g2

3g5g4 +

+ (q − 1)tk0tk1
1 t2t3t5g4t

−1
6 g2

3g5g4 = q2tk0tk1
1 t2t

2
3t

−1
6 g4g5g

2
3g5g4 +

+ (q − 1)tk0tk1
1 t2t3t5t

−1
6 g4g

2
3g5g4 + q(q − 1)tk0tk1

1 t2t3t4t
−1
6 g5g

2
3g5g4 =̂

=̂ q2tk0tk1
1 t2t

2
3g

−1
6 g−1

5 t−1
4 g−1

5 g−1
6 g4g5g

2
3g5g4 +
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+ q(q − 1)tk0tk1
1 t2t3t4g

−1
6 t−1

5 g−1
6 g5g

2
3g5g4 + (q − 1)tk0tk1

1 t2t3g5t4g5t
−1
6 ·

· (g4g
2
3g5g4) = q2g−1

6 g−1
5 tk0tk1

1 t2t
2
3t

−1
4 g−1

5 g−1
6 g4g5g

2
3g5g4 +

+ q(q − 1)g−1
6 tk0tk1

1 t2t3t4t
−1
5 g−1

6 g5g
2
3g5g4 +

+ (q − 1)g5t
k0tk1

1 t2t3t4t
−1
6 g5g4g

2
3g5g4 =̂

=̂ q2tk0tk1
1 t2t

2
3t

−1
4 g−1

5 g−1
6 g4g5g

2
3g5g4g

−1
6 g−1

5 +

+ q(q − 1)tk0tk1
1 t2t3t4t

−1
5 g−1

6 g5g
2
3g5g4g

−1
6 + (q − 1)tk0tk1

1 t2t3t4t
−1
6 g5 ·

· (g4g
2
3g5g4g5) = q2tk0tk1

1 t2t
2
3t

−1
4 g−1

5 g−1
6 g4g5g

2
3g5g4g

−1
6 g−1

5 +

+ q(q − 1)tk0tk1
1 t2t3t4t

−1
5 g−1

6 g5g
2
3g5g4g

−1
6 +

+ (q − 1)tk0tk1
1 t2t3t4g

−1
6 t−1

5 g−1
6 g5g4g

2
3g5g4g5 =̂

=̂ q2tk0tk1
1 t2t

2
3t

−1
4 g−1

5 g−1
6 g4g5g

2
3g5g4g

−1
6 g−1

5 +

+ q(q − 1)tk0tk1
1 t2t3t4t

−1
5 g−1

6 g5g
2
3g5g4g

−1
6 +

+ (q − 1)tk0tk1
1 t2t3t4t

−1
5 g−1

6 g5g4g
2
3g5g4g5g

−1
6 .

5.2. Ordering the exponents

We now deal with elements in Σn, where the looping generators have consecutive indices but their 
exponents are not in decreasing order. More precisely, we will show that these elements can be expressed as 
sums of elements in the 

⋃
n Hn(q)-module Λ, namely, as sums of elements in Λ followed by a braiding tail.

We will need the following lemma.

Lemma 15. The following relations hold in H1,n(q) for λ ∈ N:

tki · tk+λ
i+1 =̂

∑
j

t
uj

i t
vj
i+1 · wj ,

where uj + vj = 2k + λ, uj ≥ vj and wj ∈ Hn(q), ∀j.

Proof. We have that

tki · tk+λ
i+1 = tki · tki+1t

λ
i+1

L. 13=

= tki · tki+1 ·
(
qλ−1gi+1t

λ
i gi+1 +

∑λ−2
j=0 qj(q − 1)tj+1

i tλ−1−j
i+1

)
=

= qλ−1tki · tki+1 · gi+1t
λ
i gi+1 +

∑λ−2
j=0 qj(q − 1)tk+j+1

i tk+λ−1−j
i+1 .

We obtained the term tki · tki+1 · gi+1t
λ
i gi+1, terms where the exponent of ti is greater than the exponent of 

ti+1 and terms of the form tp1
i tp2

i+1, where k < p1 > p2 < k + λ. We apply Lemma 13 on the terms of the 
last form and repeat the same procedure until there are only elements of the form tu1

i tu2
i+1, u1 > u2 left in 

each sum. Note that each time Lemma 13 is performed, a term of the form tm1
i · tm1

i+1 · gi+1t
m2
i gi+1 appears. 

For these elements we have:

tm1
i · tm1

i+1 · gi+1t
m2
i gi+1

L. 3= tm1
i ·

(
(q − 1)

∑m1−1
j=0 qjtji t

m1−j
i+1 + qm1gi+1t

m1
i

)
· tm2

i gi+1

= (q − 1)
∑m1−1

qjtm1+m2+jtm1−jg + qm1tm1 · g tm1+m2 · g .
j=0 i i+1 i+1 i i+1 i i+1
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We have obtained now elements where the exponent of ti is greater than the exponent of ti+1 and the term

tm1
i · gi+1t

m1+m2
i · gi+1 =̂ tm1+m2

i · gi+1t
m1
i gi+1

L. 4=

= tm1+m2
i ·

(
q−m1+1tm1

i+1g
−1
i+1 +

∑m1−1
j=1 q−m1+1−j(q−1 − 1)tji t

m1−j
i+1

)
and this concludes the proof. �
Remark 5. Let τk0,m

0,m ∈ Σn such that ki < ki+1. Applying Lemma 15 on τk0,m
0,m we obtain a sum of elements 

τj ∈ Σn, such that τj < τ, ∀j, since the exponent of the generator ti+1 in τj is less than ki+1 for all j (see 
Definition 2).

Example 4. Consider the element tt21t32 ∈ Σn and apply Lemma 15 on the first “bad” exponent occurring in 
the word, starting from right to left.

tt21t
3
2 =̂ f1(q) · tt31t22 · w1 + f2(q) · tt41t2 · w2.

The terms obtained are still in Σn but they have one “bad” exponent less. We apply Lemma 15 again and 
obtain:

tt31t
2
2 =̂ f3(q) · t3t1t22 · w3 + f4(q) · t2t21t22 · w4

tt41t2 =̂ f5(q) · t4t1t2 · w5 + f6(q) · t3t21t2 · w6

All terms obtained now are in the 
⋃

n Hn(q)-module Λ except from the element t3t1t22. We apply Lemma 15
again and obtain:

t3t1t
2
2 =̂ f7(q) · t3t21t2 · w7.

So:

tt21t
3
2 =̂ g1(q) · t3t21t2 · u1 + g2(q) · t2t21t22 · u2 + g3(q) · t4t1t2 · u3

where u1, . . . , u5 ∈ Hn(q) and g1(q), . . . , g5(q) ∈ C.

Theorem 9. Applying conjugation on an element in Σn we have that:

τ
k0,m
0,m · w =̂

∑
j

τ
λ0,j
0,j · wj ,

where τλ0,j
0,j ∈ Λ and w, wj ∈ Hn(q), ∀j.

Proof. We prove the statement by induction on the order of τk0,m
0,m · w ∈ Σn, where order of an element in 

Σn denotes the position of this element in Σn with respect to total-ordering.
The base of the induction is Lemma 15 for i = 0. Suppose that the relation holds for all τj · uj ∈ Σn of 

less order than τk0,m
0,m · w. Then, for τk0,m

0,m · w we have:
Let k0 > k1 > . . . > ki < ki+1. Applying Lemma 15 on τk0,m

0,m · w we obtain:

τ
k0,m
0,m · w := tk0

0 tk1
1 . . . tki

i t
ki+1
i+1 . . . tkm

m · w =
∑

j t
k0
0 tk1

1 . . . t
uj

i t
vj
i+1 . . . t

km
m · wj ,

where uj > vj < ki+1, ∀j, that is, a sum of lower order terms than τk0,m
0,m · w (see Remark 5). So, by the 

induction hypothesis, the relation holds. �
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5.3. Eliminating the tails

So far we have seen how to convert elements in the basis Λ′ to sums of elements in Σn and then, using 
conjugation, how these elements are expressed as sums of elements in the 

⋃
n Hn(q)-module Λ. We will 

show now that using conjugation and stabilization moves all these elements of the 
⋃

n Hn(q)-module Λ are 
expressed to sums of elements in the set Λ with scalars in the field C. We will use the symbol � when a 
stabilization move is performed and �̂ when both stabilization moves and conjugation are performed.

Let us consider a generic word in H1,n+1(q). This is of the form τk0,n
0,n · wn+1, where wn+1 ∈ Hn+1(q). 

Without loss of generality we consider the exponent of the braiding generator with the highest index to be 
(−1) when the exponent of the corresponding loop generator is in N and (+1) when the exponent of the 
corresponding loop generator is in Z\N. We then apply Lemmas 3 and 4 in order to interact t±kn

n with g∓1
n

and obtain words of the following form:

(1) τ
λ0,p
0,p · v, where τ

λ0,p
0,p < τ

k0,n
0,n and v ∈ Hn+1(q) of any length, or

(2) τ
k0,q
0,q · u, where τ

λ0,q
0,q < τ

k0,n
0,n and u ∈ Hn(q) such that l(u) < l(w).

In the first case we obtain monomials of ti’s of less order than the initial monomial, followed by a word 
in Hn+1(q) of any length. After at most (kn + 1)-interactions of tn with gn, the exponent of tn will become 
zero and so by applying a stabilization move we obtain monomials of ti’s of less index, and thus of less order 
(Definition 2), followed by a word in Hn(q).

In the second case, we have monomials of ti’s of less order than the initial monomial followed by words 
u ∈ Hn(q) such that l(u) < l(w). We interact the generator with the maximum index of u, gm with the 
corresponding loop generator until the exponent of tm becomes zero. A gap in the indices of the monomials 
of the ti’s occurs and we apply Theorem 8. This leads to monomials of ti’s of less order followed by words 
of the braiding generators of any length. We then apply stabilization moves and repeat the same procedure 
until the braiding ‘tails’ are eliminated.

Theorem 10. Applying conjugation and stabilization moves on a word in the 
⋃

∞ Hn(q)-module, Λ we have 
that:

τ
k0,m
0,m · wn �̂

∑
j

fj(q, z) · τ
v0,uj

0,uj
,

such that 
∑

v0,uj
=

∑
k0,m and τ

v0,uj

0,uj
< τ

k0,m
0,m , for all j.

The logic for the induction hypothesis is explained above. We shall now proceed with the proof of the 
theorem.

Proof of Theorem 10. We prove the statement by double induction on the length of wn ∈ Hn(q) and on the 
order of τk0,m

0,m ∈ Λ, where order of τk0,m
0,m denotes the position of τk0,m

0,m in Λ with respect to total-ordering.
For l(w) = 0, that is for w = e we have that τk0,m

0,m �̂ τ
k0,m
0,m and there’s nothing to show. Moreover, the 

minimal element in the set Λ is tk and for any word w ∈ Hn(q) we have that tk · w � f(q, z) · tk, by the 
quadratic relation and stabilization moves.

Suppose that the relation holds for all τu0,p
0,p · w′, where τu0,p

0,p ≤ τ
k0,m
0,m and l(w′) = l, and for all τv0,q

0,q · w, 
where τv0,q

0,q < τ
k0,m
0,m and l(w) = l+1. We will show that it holds for τk0,m

0,m ·w. Let the exponent of tr, kr ∈ N

and let w ∈ Hr+1(q). Then, w can be written as w′ · g−1
r · δr−1,d, where w′ ∈ Hr(q) and d < r. We have that:
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τ
k0,m
0,m · w = τ

k0,r−1
0,r−1 tkr−1

r τ
kr+1,m
r+1,m · w′ · trg−1

r δr−1,d =

= τ
k0,r−1
0,r−1 tkr−1

r τ
kr+1,m
r+1,m · w′ · grtr−1δr−1,d

L. 6=
= τ

k0,r−1
0,r−1 tkr−1

r τ
kr+1,m
r+1,m · w′ · gr

·
(∑r−1−d

j=0 qj(q − 1)δ
r−1, ̂r−1−j,d

tr−1−j + ql(δr−1,d)δr−1,dtd−1

)
=̂

=̂
∑r−1−d

j=0 qj(q − 1)τk0,r−1
0,r−1 tkr−1

r τ
kr+1,m
r+1,m · tr−1−j · w′ · grδr−1, ̂r−1−j,d

+
+ ql(δr−1,d)τ

k0,r−1
0,r−1 tkr−1

r τ
kr+1,m
r+1,m · td−1 · w.

We have that 
(
τ
k0,r−1
0,r−1 tkr−1

r τ
kr+1,m
r+1,m · tr−1−j

)
<

(
t
k0,m
0,m

)
, for all j ∈ {1, 2, . . . , r − 1 − d} and

l
(
w′ · grδr−1, ̂r−1−j,d

)
= l and 

(
τ
k0,r−1
0,r−1 tkr−1

r τ
kr+1,m
r+1,m · td−1

)
<

(
t
k0,m
0,m

)
. So, by the induction hypothesis, 

the relation holds. �
Example 5. In this example we demonstrate how to eliminate the braiding ‘tail’ in a word in Σn.

t−1t21t
−1
2 g−1

1 = t−1t1t
−1
2 t1g

−1
1 = t−1t1t

−1
2 g1t =̂ t1t

−1
2 g1 = t−1

2 t1g1 =
= (q − 1)t1t−1

2 + qt−1
2 g1t =̂ (q − 1)tt−1

2 g2
1 + qtt−1

2 g1 =
= (q − 1)tt−1

1 g−1
2 g2

1g
−1
2 + qtt−1

1 g−1
2 g1g

−1
2 .

We have that:

g−1
2 g1g

−1
2 = q−2g1g2g1 + q−1(q−1 − 1)g2g1 + q−1(q−1 − 1)g1g2 +

+ (q−1 − 1)2g1,

g−1
2 g2

1g
−1
2 = q−2(q − 1)g1g2g1 − (q−1 − 1)2g2g1 − (q−1 − 1)2g1g2 +

+ (q − 1)(q−1 − 1)2g1 + q(q−1 − 1)g−1
2 + 1,

and so

(q − 1)tt−1
1 g−1

2 g2
1g

−1
2 �̂

(
(q − 1) + q−1(q − 1)3

)
· tt−1

1 − q−3(q−1 − 1)3z2 · 1 +
+ 3q−3(q − 1)4z · 1 − q−1(q − 1)2z · 1 − q−3(q − 1)5 · 1,

qtt−1
1 g−1

2 g1g
−1
2 �̂ z · tt−1

1 + q−1(q−1 − 1)z2 · 1 + 2(q−1 − 1)2z · 1 +
+ q(q−1 − 1)3 · 1.

6. The basis Λ of S(ST)

In this section we show that the set Λ is linearly independent. This is done in two steps:

• We first relate the two sets Λ and Λ′ via an infinite lower triangular matrix with invertible elements in 
the diagonal.

• Then, using the matrix mentioned above, we prove that the set Λ is linearly independent.

6.1. The infinite matrix

With the orderings given in Definition 2 we shall show that the infinite matrix converting elements of the 
basis Λ′ to elements of the set Λ is a block diagonal matrix, where each block is an infinite lower triangular 
matrix with invertible elements in the diagonal. Note that applying conjugation and stabilization moves 
on an element of some Λk followed by a braiding part won’t alter the sum of the exponents of the loop 
generators and thus, the resulted terms will belong to the set of the same level Λk. Fixing the level k of a 
subset of Λ′, the proof of Theorem 2 is equivalent to proving the following claims:
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Fig. 15. From Λ′ to Λ.

(1) A monomial w′ ∈ Λ′
k ⊆ Λ′ can be expressed as linear combinations of elements in Λk ⊆ Λ, vi, followed 

by monomials in Hn(q), with scalars in C such that ∃ j : vj = w ∼ w′.
(2) Applying conjugation and stabilization moves on all vi’s results in obtaining elements in Λk, ui’s, such 

that ui < vi for all i.
(3) The coefficient of w is an invertible element in C.
(4) Λk � w < u ∈ Λk+1.

Indeed we have the following: Let w′ ∈ Λ′
k ⊂ Λ′. Then, by Theorem 7 the monomial w′ is expressed 

as a sum of elements in Σn, where the only term that isn’t followed by a braiding part is the homologous 
monomial w ∈ Λk ⊂ Λ. Other terms in the sum involve lower order terms than w (with possible gaps in 
the indices and possible non-ordered exponents) followed by a braiding part and words of the form w · β, 
where β ∈ Hn(q). Then, by Theorem 8 elements in Σn are expressed to linear combinations of elements in 
Σn with no gaps in the indices of the looping generators (regularizing elements with gaps) and obtaining 
words which are of less order than the initial word w. Then, by Theorem 9 we express these elements 
to linear combinations of elements in the Hn(q)-module Λ, again of less order than w. In Theorem 10 all 
elements that are followed by a braiding part are expressed as sums of monomials in ti’s with coefficients 
in C. It is essential to mention that when applying Theorem 10 to a word of the form w · β one obtains 
monomials in ti’s that are less ordered than w. Some of these monomials in ti’s are in Λ and some have their 
exponents in non-decreasing order, but all monomials are of less order than w. We apply again Theorem 9
on these monomials τ that don’t belong in the set Λ and obtain words of less order than τ , followed by a 
braiding part. We only consider now the monomials not in Λ and perform Theorem 9. We obtain elements 
in the Hn(q)-module Λ of less order than the initial monomials, followed by a braiding part. Eventually this 
procedure stops at the lower order term of Λk, tk. So we have obtained elements in Λ of lower order terms 
than the initial element w, and thus, we obtain a lower triangular matrix with entries in the diagonal of 
the form q−A (see Theorem 7), which are invertible elements in C. The fourth claim follows directly from 
Definition 2. (See Fig. 15.)

If we denote as [Λk] the block matrix converting elements in Λ′
k to elements in Λk for some k, then the 

change of basis matrix will be of the form:
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S =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

. . . 0 0 0 0 0
[Λk−2] 0 0 0 0

0 [Λk−1] 0 0 0
0 0 [Λk] 0 0
0 0 0 [Λk+1] 0
0 0 0 0 [Λk+2]

0 0 0 0 0
. . .

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
The infinite block diagonal matrix

6.2. Linear independence of Λ

Theorem 11. The set Λ is linearly independent.

Proof. Consider an arbitrary subset of Λ with finite many elements τ1, τ2, . . . , τk. Without loss of generality 
we consider τ1 < τ2 < . . . < τk according to Definition 2. We convert now each element τi ∈ Λ to linear 
combination of elements in Λ′ according to the infinite matrix. We have that

τi �̂ Aiτ
′
i +

∑
j

Ajτ
′
j ,

where τ ′i ∼ τi, Ai ∈ C \ {0}, τ ′j < t′i and Aj ∈ C, ∀j.
So, we have that:

τ1 �̂ A1τ
′
1 +

∑
j A1jτ

′
1j

τ2 �̂ A2τ
′
2 +

∑
j A2jτ

′
2j

...
...

τk−1 �̂ Ak−1τ
′
k−1 +

∑
j A(k−1)jτ

′
(k−1)j

τk �̂ Akτ
′
k +

∑
j Akjτ

′
kj

Note that each τ ′i can occur as an element in the sum 
∑

j Apjτ
′
pj for p > i. We consider now the equation ∑k

i=1 λi · τi = 0, λi ∈ C, ∀i and we show that this holds only when λi = 0, ∀i. Indeed, we have:

k∑
i=1

λi · τi = 0 ⇔ λkAkτ
′
k +

k∑
i=1

∑
j

λiAijτ
′
ij = 0,

where τ ′k > τ ′ij , ∀i, j. So we conclude that λk = 0. Using the same argument we have that:

k∑
i=1

λi · τi = 0 ⇔
k−1∑
i=1

λi · τi = 0 ⇔ λk−1Ak−1τ
′
k−1 +

k−1∑
i=1

∑
j

λiAijτ
′
ij = 0,

where τ ′k−1 > τ ′ij , ∀i, j. So, λk−1 = 0. Retrospectively we get:

k∑
i=1

λi · τi = 0 ⇔ λi = 0, ∀i,

and so an arbitrary finite subset of Λ is linearly independent. Thus, the set Λ is linearly independent. �
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6.3. The proof of the main result

By Theorems 7, 8, 9 and 10 the set Λ is a spanning set of S(ST). By Theorem 11 the set Λ is also linearly 
independent. Thus, it forms a basis for S(ST) and the proof of Theorem 2 is now concluded.

7. Conclusions

In this paper we gave a new basis Λ for S(ST), different from the Turaev–Hoste–Kidwell basis and the 
Morton–Aiston basis. The new basis is appropriate for describing the handle sliding moves, whilst the old 
basis Λ′ is consistent with the trace rules [4]. In a sequel paper we use the bases Λ′ and Λ of S(ST) and the 
change of basis matrix in order to compute the Homflypt skein module of the lens spaces L(p, 1).
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