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Abstract. In this paper, we consider the leader length minimization
problem for boundary labelling, i.e. the problem of finding a legal leader-
label placement, such that the total leader length is minimized. We
present an O(n?log®n) algorithm assuming type-opo leaders (rectilinear
lines with either zero or two bends) and labels of uniform size which can
be attached to all four sides of rectangle R. Our algorithm supports fized
and sliding ports, i.e., the point where each leader is connected to the
label (referred to as port) may be fixed or may slide along a label edge.

1 Introduction

One of the most challenging tasks in map labelling is the automated visualization
of the information on a map, i.e. the association of text labels with graphical
features. In order to ensure readability, unambiguity and legibility, cartographers
suggest that the labels should be pairwise disjoint and close to the point (also re-
ferred to as site) to which they belong [BIT2]. Unfortunately, the majority of map
labelling problems are shown to be N P-complete [II4J6]. Due to this fact, graph
drawers and computational geometers have suggested labelling approximations
[14IT0] and heuristics [IT], which often try to maximize either the label size or
the number of features with labels. A detailed bibliography on map labelling can
be found in [9]. It is worth mentioning that the ACM Computational Geometry
Task Force [3] has identified label placement as an important area of research.
Research on map labelling has been primarily focussed on labelling point-
features, where the basic requirement is that the labels should be pairwise
disjoint. It is clear that this is not achievable in the case of large labels (or,
equivalently, large point sets). Large labels are common in technical drawings
or medical atlases where certain site-features are explained with blocks of text.
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To address this problem, Bekos et. al. defined boundary labelling[2]. In boundary
labelling, labels are attached on the boundary of a rectangle R which encloses all
sites. The main task is to place the labels in distinct positions on the boundary
of R so that they do not overlap and, to connect each site with its corresponding
label by non-intersecting polygonal lines, so called leaders.

The basic boundary labelling problem can be formally described as follows:
We are given an axis-parallel rectangle R = [lg,rg| X [br,tr] and a set P of n
sites p; = (x;,y;) in general position, i.e. no three sites lie on a line and no two
sites have the same x or y coordinate. We denote with W and H the width and
the height of R, respectively. Each site p; lie in the interior of R (i.e. [ < z; < TR
and br < y; < tg) and is associated with an axis-parallel, rectangular label [; of
width w; and height h;. Each label should lie outside R but touch the boundary
of R. Our task is to place the labels in distinct positions on the boundary of R,
so that they do not overlap and, to connect each site with its label, such that
no connection (referred to as leader) intersect any other connection or site. Such
labellings are called legal leader-label labellings or crossing free labellings.

The point where each leader touches its corresponding label is referred to as
port. Ports may be fixed (e.g., at the middle of a label edge) or may slide along a
label edge. Based on the type of allowed ports (fized of sliding) one can define the
corresponding variations of the boundary labelling problem. Furthermore, one
can define more variations of boundary labelling problems based on the location
of the labels. More specifically, labels are usually attached to one, two or all four
sides of the enclosing rectangle and are either placed at predefined locations
(fized labels) along the sides or can slide (sliding labels).

The leaders connecting the sites to their corresponding labels can be of several
types, each giving rise to a new boundary labelling model. Of particular interest
are two types of leaders: rectilinear and straight leaders.

— Rectilinear Leaders: Each leader consists of a sequence of axis-parallel
segments, which are either parallel (p) or orthogonal (0) to the side of R to
which the associated label is attached. This suggests that a leader ¢ of type
c16z . .. ¢k, where ¢; € {o,p} consists of an 2- and y-monotone connected se-
quence (s1, S2,. .., Sg) of segments from the site to the label, where segment
s; is parallel to the side containing the label if ¢; = p; otherwise it is orthog-
onal to that side. Our primary focus has been on opo and po leaders, see
Figures [[l and 2] respectively. For each opo leader we further insist that the
parallel p segment lies immediately outside R, in the so called track routing
area. Type-o leaders can be considered as either type opo or type po.

— Straight Leaders: Each leader is drawn as a straight line segment (see Fig-
ure [3). According to the previous classification scheme, we refer to straight
leaders as type s leaders.

Given a boundary labelling problem specified by a set of points inside an
enclosing rectangle and a labelling model (as specified by restrictions on the
type of ports, the location and type of labels, and the type of leaders), we are
interested in finding a solution that is optimal with respect to some objective.
We usually aim at:
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— Short Leaders: Find a legal leader-label placement, such that the total
leader length is minimum. Such a labelling minimizes the average leader
length.

— Simple Layout: Find a legal leader-label placement, such that the total
number of bends in minimum. Such a labelling minimizes the average number
of bend per leader.

Table [l summarizes the results of Bekos et. al. [2] on boundary labelling.
They examined a variety of models based on the type of leader, the location of
the label and the size of the label and presented algorithms for legal leader-label
assignments and leader-bend and leader-length minimization. These are the only
published results on boundary labelling.

Table 1. Known results on boundary labelling. TLL stands for “Total Leader Length”.

Model Objective  Time complexity
opo, 1-side, variable size labels legal O(nlogn)
#bends O(n?)
opo, 4-side, uniform square labels legal O(nlogn)
po, 1-side, uniform legal O(n?)
opo, 2-side (opposite), uniform labels of max-size TLL O(n?)
po, 2-side (opposite), uniform labels of max-size TLL O(n?)
opo, 4-side, uniform square labels TLL o(n®)
opo, 2-side (opposite), variable size labels TLL O(nH?)
s, 1-side, uniform labels legal O(nlogn)
s, 1-side, uniform labels TLL On**°), 6§ >0
s, 4-side, uniform square labels TLL O(n**%), 6§ >0

One of the presented algorithms in [2] examines 4-side opo labelling with
uniform square labels. In O(n®) time, it computes a boundary labelling of min-
imum total leader length. The algorithm is based on an O(n?log®n) minimum
cost bipartite matching algorithm for the production of a minimum total leader
length solution which may have crossings, and the subsequent elimination of
these crossings in O(n®) time (based on techniques used in VLSI routing). In
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this paper, we present a solution of O(n?log®n) time complexity which is also
based on minimum cost bipartite matching and an improved O(nlogn) algo-
rithm to eliminate crossings.

2 Four-Sided, Uniform Label, opo Boundary Labelling

We show how to compute in O(n2log>n) time an opo boundary labelling of mini-
mum total leader length where the labels can be placed on all four sides of the en-
closing rectangle’s boundary. We assume labels of uniform size and sliding ports.

We first make some observations regarding opo-labelling (which might contain
crossings) of minimum total leader length for the case of four-sided labelling with
labels of uniform size and sliding ports. Consider an opo-leader ¢ which originates
from point p and is connected with a label on side AB of the rectangle at port
q (see Figure[). The line containing the segment of the leader which is incident
to site p (and is orthogonal to side AB) divides the plane into two half-planes.
We say that leader ¢ is oriented towards corner A of the rectangle if port ¢ and
corner A are on the same half-plane, otherwise, we say that leader c is oriented
away of corner A. In the case where the opo-leader consists of only one segment,
i.e., the port lies on the line which defines the two half-planes, we consider the
leader to be oriented towards corner A (and also towards corner B).

Lemma 1. Consider four-sided labelling with labels of uniform size and sliding
ports and let L be an opo-labelling (which might contain crossings) of minimum
total leader length. Let c¢; and c; be two leaders originating from sites p; and pj,
respectively, which cross each other. Then it holds:

(i) The labels associated with leaders ¢; and c; are located at two adjacent sides
of the rectangle incident to, say, corner A.

(1t) Leaders ¢; and c; are oriented towards corner A of the rectangle.

(iii) Leaders ¢; and c; can be rerouted so that they do not cross each other and
the sum of their leader lengths remains unchanged.

Proof. Showing that “the labels associated with leaders c; and c; are located at
two adjacent sides of the rectangle” is easy. We simply have to show that it
is not possible to have the labels located at the same side or opposite sides
of the rectangle. For the sake of contradiction, assume first that the labels lie
on the same side, say AB, of the rectangle. Then the segments of the leaders
which are incident to the sites are parallel to each other. Since the sites have
distinct X and Y coordinates, these segments do not overlap each other, and
thus, the intersection of the two leaders takes place outside the rectangle (in the
track routing area). This implies that, along the direction of side AB, the order
of the sites is the reverse of the order of their associated labels. However, by
swapping the labels, we can reduce the total leader length (and also eliminate a
crossing), a contradiction since we assumed that the total leader length of the
labelling is minimum (see Figure [l). Consider now the case where, for the sake
of contradiction the labels lie on opposite sides of the rectangle. Then, since
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corner B.

the leaders intersect each other, the segments of the leaders which are inside
the rectangle (and incident to the sites) have to intersect. However, since these
segments are parallel to each other, they have to overlap, and thus have the
same X or Y coordinates, a contradiction since we assume that the sites are in
general position. Having eliminated the cases that the labels lie on the same or
on opposite sides of the rectangle implies that, assuming that we can identify
two crossing leaders, their associated labels lie on adjacent sides of the rectangle.

Let A be the corner which is incident to the two sides of the rectangle con-
taining the labels associated with leaders ¢; and c;. In order to show that in a
labelling of minimum total leader length both “leaders c¢; and c; are oriented
towards corner A”, it is enough to show that (in a labelling of minimum total
leader length) it is impossible to have one or both leaders oriented away of corner
A. We proceed to consider these two cases.

Case 1: Exactly one leaders, say c;, is oriented away of corner A. This case is
described in the left-hand side of Figure @la. Rerouting the leaders as described
in Figure [Gla results in a reduction of the total leader length, a contradiction
since we assumed that the total leader length of the labelling is minimum. Note
that, in the figure we only show the sub-case where site p; is below the horizontal
line passing through port ¢;. When p; is on or above the horizontal line passing
through port ¢;, rerouting again results to a reduction of the total leader length.
Thus, a labelling of minimum total leader length does not contain two crossing
leaders where one of them is oriented away of the corner A incident to the sides
containing their associated labels.

Case 2: Both leaders ¢; and c; are oriented away of corner A. When both
leaders are oriented away of corner A, rerouting results in higher reduction of
the total leader length, compared to Case 1 where only one leader was oriented
away of corner A. The rerouting of the leaders is described in Figure@b. Again,
only one of the four possible sub-cases based on whether site p; (p;) is to the
right (below) the vertical (horizontal) line passing through port ¢; (¢;) is shown.
Given that rerouting results to reduction of the total leader length, we conclude
that a labelling of minimum total leader length does not contain two crossing
leaders where both of them are oriented away of the corner A incident to the
sides containing their associated labels.
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Fig. 6. Rerouting used to prove that in an opo-labelling (where crossings are allowed)
of minimum total leader length, two crossing leaders are oriented towards the corner
incident to the sides of the rectangle containing the associated labels and that their
crossing can be eliminated without reducing the sum of their leader length

Having eliminated the cases where one or both crossing leaders are oriented
away of corner A, implies that (assuming that we can identify two crossing
leaders) they are both oriented towards corner A.

Showing that “leaders c; and c; can be rerouted so that they do not cross
each other and the sum of their leader lengths remains unchanged” is easy. In
the rerouting described in Figure [Blc, use the crossing point O to partition the
first segment of each leader ¢; and ¢; into two sub-segments. Then, leaders ¢
and c; can be obtained by a parallel translation of the (sub)segments of leaders
¢; and ¢, leaving their sum unchanged.

To complete the proof of the lemma, we note that whenever we performed
a rerouting, we never changed the position of a port. So, since the used port
would also be available in the case where the sliding-port model is used, the
lemma applies to sliding ports, as stated. a

Theorem 1. Consider opo-labelling of n sites with uniform labels and sliding
ports where crossings are allowed. Then, given a labelling L of minimum total
leader length, we can always identify a crossing-free opo-labelling L' with to-
tal leader length equal to that of L. Moreover, labelling L' can be obtained in
O(nlogn) time.
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Fig. 7. Rerouting used to eliminate crossings in an opo-labelling of minimum total
leader length. The crossings to be eliminated are identified in a left-to-right pass of the
sites, followed by a right-to-left pass. See proof of Theorem [Tl

Proof. We will show how to eliminate all crossings in L by rerouting the in-
tersecting leaders. Our method performs two passes over the sites, one in the
left-to-right and one in the right-to-left direction.

Consider first the left-to-right pass. In the left-to-right pass of labelling L,
we consider all sites with labels on the right side of the rectangle. We examine
the sites in order from left-to-right and focus only on those which are incident
to crossing leaders. Let p be the leftmost such site and let ¢ be the leader that
connects it with its corresponding label on the right side of the rectangle (see
Figure [7). Given that L is an opo-labelling of minimum total leader length,
Lemma [ (i) implies that leader ¢ intersects only with leaders that are con-
nected with labels on the top and bottom sides of the rectangle. Without loss
of generality, assume that c is oriented towards the bottom-right corner of the
rectangle, say A. Then all leaders that intersect ¢ have their labels on the bot-
tom of the rectangle and are also oriented towards A (Lemma [Il(ii)). Let ¢; be
the leftmost leader that intersects ¢, and let p; be its incident site. According
to Lemma [T (iii), we can reroute leaders ¢ and ¢; so that the total leader length
remains unchanged (Figure [7). Observe that the rerouting possibly eliminates
more than one crossing (e.g., the crossings between leader ¢ and leaders ¢; and
¢r) but, in general, it might also introduce new crossings (e.g., the crossings
between leaders ¢} and ¢;). However, the total number of crossings is reduced
and, more importantly, the leftmost site incident to an intersecting leader con-
nected to a label on the right side of the rectangle is located to the right of
site p. Continuing in the same manner, the leftmost site which participates in a
crossing (in the left-to-right pass) is pushed to the right, which guarantees that
all “left-to-right” crossings are eventually eliminated.

Another important property is that it is impossible to introduce any “right-
to-left” crossing during the left-to-right pass. To see this, assume that such a
crossing was introduced and that it involves leader ¢’ and the leader ¢; which
connects site p; to a label on the left side of the rectangle (Figure ). Given that
the rerouting does not increase the total leader length, the labelling resulting
after all rerouting is still one of minimum total leader length. Then, accord-
ing to Lemma [0 (i), both leaders ¢’ and ¢; must be oriented towards corner
D, a contradiction since leader ¢ is oriented away of corner D (and towards
corner A).
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From the above discussion, it follows that a left-to-right pass eliminating
crossings involving leaders with their associated labels on the right side of the
rectangle, followed by a similar right-to-left pass, results to a labelling L’ without
any crossings and of total leader length equal to that of L, that is, minimum.

To complete the proof of the theorem, it remains to explain how to obtain in
O(nlogn) time the new labelling L', given labelling L of minimum total leader
length. Consider the left-to-right pass. The analysis for the right-to-left pass is
symmetric. During the pass, we process the sites with labels on the right side
of the enclosing rectangle in order of increasing X-coordinate. Sorting the sites
in increasing order with respect to their X-coordinate can be done in O(nlogn)
time.

In order to process site p = (zp,y,) and to eliminate the crossings (if any)
involving its leader ¢, we have to identify the leftmost site p; such that its corre-
sponding leader (say ¢;) intersects leader c¢. Of course, the intersection involves
the first segment of leader ¢; that is parallel to the Y-axis. The processing of
the sites during the left-to-right pass can be accomplished by employing a data
structure storing “vertical line segments” and supporting visibility queries of the
form “given a query point po = (xo,yo) return the first line segment to the right
of po that is intersected by line y = yo”, as well as insert (for initialization)
and delete operations. For the case of vertical line segments of finite size, the
visibility query can be answered in O(log?n) time by employing a combination
of interval trees and priority search trees [7, pp. 211]. This results to a total
of (nlog®n) time for the left-to-right pass and, consequently, for the elimina-
tion of all crossings. However, the time needed to eliminate all crossings can be
further reduced to O(nlogn) if we take into account the fact that all vertical
segments considered during the left-to-right pass have one of their endpoints on
the bottom or the top side of the enclosing rectangle.

Without loss of generality, assume that leader ¢ is oriented towards the
bottom-right corner of the enclosing rectangle. (The case where it is oriented
towards the top-right corner can be handled in a symmetric manner.) Then, ac-
cording to Lemmal/[l (ii) all leaders intersecting leader ¢ are also oriented towards
the bottom-left corner and, thus, their associated labels are placed on the bot-
tom side of the enclosing rectangle. So, leader ¢ can only intersect vertical line
segments which have one of their end-points on the bottom side of the enclosing
rectangle.

When we have to solve a visibility query on the set of line segments hav-
ing one of their end-points on the bottom side of the enclosing rectangle, we
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can relax the restriction that the segments are of finite size and assume that
they are semi-infinite rays having their associated site as their higher endpoint.
This is due to the fact that all leader intersections take place inside the enclos-
ing rectangle. Recall that rr denotes the Y-coordinate of the right side of the
enclosing rectangle R. In the case of semi-infinite segments, the visibility query
(with po = (x0,yo) as the query point) on set of vertical line segments reduces to
finding the site of smallest X-coordinate in the semi-infinite vertical strip defined
by = > o, y < yo, and z < rg. The MinXinRectangle query just described can
be answered in time O(logn) by employing a dynamic priority search tree based
on half-balanced trees [7, pp. 209]. Insertions and deletions are also supported
in O(logn) time.

Thus, identifying the (at most n) pairs of leaders to be rerouted during the
left-to-right pass takes only O(nlogn) time, resulting to a total time complexity
of O(nlogn) for the production of the crossing free boundary labelling L'. O

Theorem 2. Consider four-sided opo-labelling of n sites with uniform labels and
sliding ports. A crossing-free solution of minimum total length can be computed
in O(n?log®n) time.

Proof. Let M be the set of the n labels around the boundary of the rectangle. We
construct a complete bipartite graph G = (PUM, E) between all the sites p € P
and all the labels m € M, with edge weights to be the Manhattan length of the
corresponding leaders. Note that the length of each leader depends on the type of
the port. For the case of sliding ports, the leader typically connects the site to one
of the corners of the label. We proceed by applying the Vaidya’s algorithm [8] for
minimum-cost bipartite matching for points in the plane under the Manhattan
metric. It runs in O(n? log® n) time and finds a matching between sites and labels
that minimizes the total Manhattan distance of the matched pairs. The leaders
in the produced solution might overlap. However, based on Theorem [I] we can
eliminate all crossings in O(nlogn) additional time. O

3 Conclusion

There are several issues that should be considered in future work on boundary
labelling. Among them, we distinguish:

— Labelling “Area Features” of Maps. Better quality labellings can be
produced by allowing a site to slide along a line segment or along the bound-
ary of a polygon. In this case, the solution of the boundary labelling problem
has to also specify the final location of each site.

— Mixed Boundary Labellings. Examples for type-opo and type-po leaders
show advantages and also some disadvantages of both types. A practical
solution might be to mix both types in order to cope with disadvantages
while keeping advantages.
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