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Extended abstract in Greek

H teyvix tou framization elvor €vag unyoviopog o omolog avamtiydnxe amd toug
Juyumaya xor Aaunponoviou, xou amoteleltan and o yevixeuor wiog GAyeBpag xou-
Bov étol doTe To anotéheoya vo ayetiletar e Toug mhaotwpévous xouBouc (framed
knots). ITio ouyxexpyéva, o unyaviopds tou framization umopel va meptypagel o¢ N
otadwacio tpdodeone Twv yevvntopwy Tou framing 6to civoro Twv YEVYNTOPWY TNC
GAyeBpag xOUPwY, 0 0pLoU6S OYECENMY OAANAETIOEUONG UETAEY TWV VEWY YEVVNTOPMY
XL TOV 0PYIXOY YEVVNTOPWY TNG GAYEBpag xou 1) epgdvion Tou framing otic oyéoeig
e dhyefpac. O oyéoec mou mpoxUmTouy Yo TEENEL PUOXE Vo Elval TOTOAOYIX
ovverelc. Eniong, yia tetpypévo framing Yo mpémel vo avoxtolue Tic Xhaowés dhye-
Beec. To mo dUoxolo mEoAnua authc Tng dladxactiog etvon 1 emBoAr Tou framing
oTg OYECES TOAWVLIXOD TUTou. 'BEva Bacixd mapdderypa framization etvan v dhye-
Bea Yokonuma-Hecke, Y4, (u), tou eivos to framization tng dhyePpoc Iwahori-Hecke.

e auThy TNV dwaxtopxr dlteldr) Tpotelvoupe Tplo mavd framization tng dAye-
Beac Temperley-Lieb w¢ mniixa tng dhyePpog Yokonuma-Hecke ndvey and xotdhhnia
oppimAgupa OendN. Ol miavég dhyefBpeg mnhixa tou npoximTouy eivon Teelg: H dhyefoa
Yokonuma-Temperley-Lieb (YTLg(u)), n dhyefea Framization of Temperley—Lieb
(FTLg,(u)) xou n dhyeBpea Complex Reflection Temperley-Lieb (CTLgy(u)). Ané
autég Leywpetloupe TV dAyeBpa FTLg,(u) 6T, énee da yivel CUPEC OGNV TopEla,
pog odnyetl oto framization mou avtavoAd TNV xUTACKELY| TOL “TOALKVOUOL Jones
YLt TAUCIWPEVOUS xOUBoUC™ UE TOV TO QUGIOAOYIXG TEOTO. X autrhv TNV Tepiindn
ToEOoLGLALOVTAL GUVOTTIXG. TOL AMOTEAECUOTA TNG Topolong Slutel3hic xan tapateldevton
Ol GNUAVTIXOTEPES AMODEIEELC.

i. H dAyeBpa Temperley—Lieb

H dhyeBpa Temperley-Lieb oplotnxe apywxd ond toug Temperley xou Lieb [34] xatd
TN Oudpxelal EPELVAS TOUG TAVL GTO HOVTEAO YLt TO AKOGWOo Tou midyou. Eivan pa
TpoceTapto T dhyePBpa Tdve and to C, ue povdda to 1 xou topdyeton and o clvoro
Yevwntoewy {fi,..., fn_1} 0 onoio avorotel Tic oyéoelc:

fz'2 = fl
fifi=fifi, li—jl>1
fififi=0ofi li—jl=1
OTOU J Wit AMEOCOLOPIGTY.  LNUELOVOUUE OTL amd TNV TEe®TN oYEon TS TupdoTo-

ong tng dhyeBpag, mEOXUTTEL OTL OL YEVVATOREG £lvorn LOLOOLVAUOL Xl ETOUEVWS U~
avTlo TEEdLUoL.
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H ex véou avaxdiudy) tne dhyePeac Temperley—Lieb anéd tov Jones [15] ¢ mnAixo
¢ dhyePpag Iwahori-Hecke xou 0 0plopdg and tov (Lo plag anetxdviong byvoug méve
OTN CUYXEXQWEVY dhyeBpa, 0OfyNoE Ot ampPOPAETTES, UEYEL TOTE, EQUPUOYES CTNV
Ocewpior KopPov (ot0 yvwotd modvdvupo Jones V(u), g and Tic mo onpovTixég
avahholwTeg toototiog Yot x6uBouc), eved €dwaoe Wi véa dinomn oty oAknhenidpoon
ueToV g Oewploc Koufwv xar tne Ocwplag Avamapaotdoewy. Yuyxexpiuéva, Y€cw
TOU UETACY NUATIOUOU:

omou to u opileton Uéow TNg oyéong Sl =24+u+ut, TolpVOUUE TNV oXOAOU-

Un napdotaon v v dAyeBea Temperley-Lieb TL, (u) ye clvoro yevvntépwy to

{h1, ..., hn_1} %o tic axdhouldeg oyéoelc uetalld adTwv:
hihjhi = hjhihja |Z - j| =1 (1)
hi = (u—1h; +u (3)
hih;h; + hihi+hh; +h; +h; +1=0, |i—j| =1 (4)

And v tetpaywvix oyéon (2) npoxintel twe ot yevvhtopes h; eivan avtioTeédi-
uot. Emmiéov, ot oyéoeic (1)—(3) eivan axpiBde ot oyéoeic mou opilouv v dhyePpa
Iwahori-Hecke. Ernouévwg n diyefea Temperley-Lieb, uropet vo Yewpniel we¢ mniixo
e dhyePpac Iwahori-Hecke, H,(u), nédve and to augimhevpo bewdes J mou opilouv
ot oyéoelc (4). Oétovtac:

h@j = hlhjhz + h]hz —+ hlhj + hl + hj + 1

ATOOEVUETAL TS TO WOeWdeC J elvan xUplo xou mopdyetar and to ototyelo hyo. To
otouyela h; ; ovoudlovton otolyela Steinberg, eved ol oyéoelg (1.15) oyéoewc Steinberg.

To mohudvupo Jones 2-petofintodv 1 Homflypt, P(u,(), [13, 29], xataoxeud-
oTNXE pEow Wwag amewoviong tyvoug Markov, ye mopduetpo ¢, mou oplotnxe and Tov
Ocneanu mave otig dhyefeec Iwahori-Hecke. Egéoov, onwe anédeie o Jones, 1
dhyePea Temperley-Lieb etvar éva mniixo tne dhyefpac Iwahori-Hecke n aneixdvion
fyvouc tou Ocneanu mepvdel TNy dhyeBea TnAixo otay autr undeviCel Tov yevviTopa
ToL Wewdoug J. Autd cuyfoaiver dTav N ToEdUETEOS ¢ TakpveL 500 CUYXEXPIIEVES TYIEC.
Amé g autég Yévo o €xel Tomohoyixd evolapépoy, N = —ULH. [oc autr) Ty Tn
ToU (¢ TO ToAuKVLUO Jones 1-ueTafAnthc TpoxinTel and 10 mtolvwvupo Homflypt.

Ou dyefpec Iwahori-Hecke xow Temperley-Lieb efvou tar mo onpovtind mopoadely-
wotar pac dAyefpag kopPwv. Mio dhyefea xouPov elvon wa dhyefeo n omolo otny
TOEAG TUOY| TNG EUTEQLEYEL TIC OYETELS TV TAEEIBWY (braid relations), ot onofec Yern-
OWOTOUVTOL GTNY XATOVONoT TNG Tokvounong twv xouPov. Iho cuyxexpiuéva, o
GhyePBpa xOUPwy amoteAetton amd wior Tewdda (A, 7, 7) 6mou T elvon plar ovamaedo Too
NG oUddug Twv TAeEBwY oty A xou 7 elvon pia suvdptnor tyvouc Markov oplouévn
méve oty A.

ii. H dAveBea Yokonuma—Hecke

H dhyefpo Yokonuma-Hecke, Yq,(u), oplotnxe apyixd oto [37], eved otn cuvéyew
oto [18], oplotnxe w¢ to mnAixo tng modular ouddag TwV TAUCLWUEVLY TAEEBwWY
Fan (01c onoleg oL xAwotéc €youv framing modulo d), mévew and wio teTpay VX



oY£on ToU EUNEQIEYEL TOUC YEVWATORES framing ¢; U€ow CUYXEXQUEVKY LOLOBUVIUOY
otoyeiov ;. Tho avohutixd, ebvar n oxdrouvdn C(u)-hyefpa nnhixo:

Yo (u) = Eap
g = 1= (= De; — (u— 1) gi)
6mou €; = % S tr e And to mapandve, 1 dAyeBea Y, (1) unopel vor mopac tardel
amb TOUC YEVVATOEES t1, ... tn, G1,- -+, Gn—1 XOU TIC OXONOLIEC OYECELC UETAUED AUTOV:

9i9; = 9;9i, i —j|>1
9i+19i9i+1 = GiGi+1Gi;

@ =1+ (u—1)e;+ (u—1)eg;

tit; = tjt;,  ywxdde i, g
td =1, vy xdde i

giti = tiy19i

giti+1 = 1igi
git; =t;g;, Omov j F# i, xujF#i+1

To otovyeio e; etvon 1BLOBUVOUA XoL UTOEOVY Vo YEVIXELTOLY 0 €Xig. I'ar omoloodr|tote
Oeixteg 4, j xou yio omoodnnote m € Z/dZ, opilouye o axdhouvdo cTotyelo yéoa TNy
C./T"dm:

1 d—1
61‘7]‘ = C_Z Z tftj_s, (5)
s=0
O
1 d—1
e = =D (6)
s=0

Enlong, mopotnpolue 6tL: €; = €541 = 81(0)‘ O©¢tovtag d = 1, 1 dhyefoa Yq ,(u) Tow-
tileton ye v dhyeBpo Iwahori-Hecke H,,(u). Ou éAyeBpec Yokonuma-Hecke éyouv
ueretnlel ot [37, 18, 23, 20, 24, 33, 4]. Eunkéov, oo [18] o Juyumaya xotaoxel-
ooe pior emay oy yeapuxr Bdon yia tic ShyeBpec Yan,(u) xou péow autic dptoe wa
HOVOOLXY| Yeouuxn amewovion tyvoug Markov, tr, néve o autég tig dhyeBpeg, 1 ontola
e€opTATOL OO TOPUUETEOUS 2, T1, . . . , Tq—1. 110 cuyxEXPUIEVL

Ocdpnua 1 ([18] Ocwenua 12). Eoww d évas Jetikds axépatos. Ia g ampoo-
NPI0TES 2, X1, ..., Tq—1 UTAPYEl p1a povadlkn Ypaupkn areikévion tyvovs Markov
tr:

tr: U2 Yan(u) — Clu)lz, 21, ..., Tq-1]

n omota opiletar e emaywyn oto n oUuPwra e TOUS aKoAovdous Kavoves:
= tr(ba)
=1

)
)

tr(ag,) = ztr(a) (1616tnTa Markov)
) = axstr(a) (s=1,...,d—1)

omov a,b € Yq,(u).
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Y1y mpoomdielo Toug, ot Juyumaya xou Aounponollou, va 0plcouy TOTOAOYIXES
aVaAROIWTES Yior TAAUCLOUEVOUS xOuBoug PEow Tou tr, OTWE TEoéxule oTo [23], o tr
oev umopel va xavovixonomniel dueca GUUPOVAL UE TIG OYECELS LGOBUVIULNS VLot TANCLL-
uéveg mAegidec. To yeyovog autd odrynoe oe cuviixeg mou Ya €mpene vo emPBAndoly
O TG TOPUUETEOUC L1, . .., Tg—1 TNG ATEXOVIONG (yVoug tr. DUyxexpUéva, oL Topdue-
TEOL T1, ..., Tq—1 TNS amexoviong fyvoug tr Yo meémel vou ixavomotoly €va UG TNU Un
YooUUIX®Y EELIOWOEWY, To Aeyouevo E-olotnua:

d—1 d—1
E Tm4sl—s = Tm E Ls—s
s=0 s=0

Mo mpogavic Moo ebvor 6tav o z; efvan d—pilec tng povédac. O P. Gérardin o1o[23,
Appendix] Berxe 10 TApEC oUVOAO AUoEWY Yio To E-olotnua xou €deile 6Tl mopo-
METEOTOLOOVTAL ATt TOL UN~XEVE UTOGUVOAXL TNG Z/dZ. Aedopévng pag hoong tou E-
CUC THUATOS, TOAUWVUMXES avahhOlwTES tooToToG 2-PETOBANT®Y Yia TAUCUWUEVOUG
xopfouc, xhaotxolg xéuPouc xou xépuPouc singular xotooxevdotnxay oto [20, 22, 21]
avtioToryo xou pehetndxay tepartépw ato |2, 5.

iii. H dAyeBpa Yokonuma—Temperley—Lieb

iii.o. H dhyePoa YT Ly, (w)

H mpcdytn dhyefpa mou opicaue w¢ mdoavéd framization tne dhyefpoc Temperley—Lieb
elvon 1 Aeyouevn dhyefBoa Yokonuma-Temperely-Lieb. Muyxexpéva Yewpolue o
1WBemdeg mou opilouv Ta oTotyela Steinberg otnv mepintwon g diyeBpog Y. (u).
[Tio avohutind, Y€Touye:

9ij = 9i9;9 + 9;9i + 9i9; + 9: +g; + 1
wei,j € {1,...,d—1} xa i — j| = 1. Emnpdoieto, Vewpolye 10 apupimievpo decdeg
I = (g, j). 'Eyouye tov axdéroudo optopd:
Optowoéc 1. T n > 3, n dhyeBpo Yokonuma—Temperley—Lieb, YTLg,(u), optleto
©¢ To TNAlXo:

YTLg,(u) := M.
: I,

Me éaha Aoy 1 dhyefoa YTLg,(u) umopel vo mopactadel and toug yevvhtopeg

G153 Gn—1, t1,...,t, , OL OTOLOL IXAVOTIOLOUV TIC OYETELC:
9i9; = 959> |i—j[>1 (7)
9i+19:9i+1 = 9i9i+19i (8)
g =1+ (u—1)e; + (u—1)e;g; (9)
tit; =tit;,  yxde i, (10)
th =1, vy xdde i (11)
gili = tiy10i (12)
gitit1 = 1ig; (13)
git; =1t;g;, O6mov j F# i, xujF#i+1 (14)
9i9i+19i + 9i9i+1 + 9i+19i + gi + git1 +1 =10 (15)
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ArnodewcvieTtar Tog To WBewdeg 17 eivan xVpLo xot TS ToEdYETAL A TO GTOLYED ) 2.
Oc¢tovtag d = 1 ony mopumdve TapdoTacT), TUEATNEOVUE TKS 1) dhYeBpa YTL; ,,(u)
towtileton e v dAyeBpo Temperley-Lieb, TL,, (u).

OEWPOVTAS TWE TO PETACY NUATIONOS {; 1= #1(9Z + 1) ynopolue va TépoulE Lo
nopdotaon yioo Ty AYeBpa YT Ly, (u) pe pn avtioteédrpous yevvitopee. Tlpdypart,
€y oupE TNV oxdhovdn TedTaoN:

ITpotaor 1. H dAyefpa YTL,,(u) pumopel va Gewpnlel ws n dAyefpa mov éxer wg
VEVVITOPES Ta OTOTY €l
gla-“gnflatlw--atn

Ka1 TS naparkdtw oyEoes:

th = 1, ya kdOei (16)
tit; = tit;, ywa kdlei,j (17)
lit; = til;, JmovjFikajF#i+1 (18)

1

it (i) (19)

1

—1e; +2

g? = Mfz‘ (21)

u+1
Ciliirl; — 23
+1 (0 +1)? (23)

Y ouvéyewa, Selyvouue e xdle ototyeio oty YTL,,(u) uropel vor ypogel wg
YEUUUIXO GUVOUAGUOS HOVOVOULY, xoévo amd To ontola TEQLEYEL TO UEYIGTO XAl TOV
eNdytoTO YEVVATORA TO TTOAD il PORE Xou BErXauE EVa ToRdy Y0 GUVORO Yia TNV dhye-
Bea YTLg,(u). Iho ouyxexpwéva, wo AéEn otnv YTLg, (u) hyetou avnyuévn dtov
€YEL TO EAAYIOTO PAxog 0 Tpog T oyéaewc (7)—(15). "Eyouue howndv tnv axdroudn
TeOTACN:

ITpbtaom 2. To ovrvodo twy avyuévwr Aééewr

Ygn = {ta(gmgil—l o Givk)(GiaGin—1 -+ - Gin—ky) - - - (gz'pgz'p—1 . -gz'p—kp)}, (24)
omov
=t .t eCy, 1<i<ig<...<ip<n-—1,
Kai
1§i1—]€1<i2—k2<...<ip—kp,

napdyer ypaupuxd tny dAyefpa Yokonuma—Temperley-Lieb algebra YTLg,(u). O
péoTos yevvrjtopas etvai o g;, tov 6e&10tepou KUKAOU Kai 0 eAdy10tos yerviiTopas
elvai o0 g;,_x, Ka1 Ppioketar oToy mo apioTePd KUKAO ToU Xy .

Ov XhouBepdinn xon Pouchin ypnouonowsvtag pyoieia tng Ocwpiog Avanapactd-
oewy xatdyepay 610 [3] va vnohoyicouy T Sdotaon g dhyeBpoc YT Ly, (u):
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IIpbtaom 3. H didotaon tng dAyefpas Yokonuma—Temperley—Lieb eivai:

n—1 2
d(d—1
dim (YT Ly (1)) = dey + % <Z> ,
k=1
omou ¢, €ivai o n—ootds apuds Catalan.
Enlong ané 1o clvolo Xy, xatdpepav vo e€dyouv wa ypouuxr Bdorn yio xdie
d xou xde n. Xenowonowvtag tnyv Hpdtaon 3 xatapéooue vo Boolue uLor yeouuLxn
Bdon v Ty mepintwon d = 2 xou 1 = 3, SLPopeTIXY| and auTH TV XAouBepdin xou

Pouchin.

ITpbtaom 4. To ovrodo

Sa3 = {1, 1, ta, tita, g1, t2g1, t3g1, tatsgr, 92, t1G2, t392, titsge,
9192, 119192, t29192, 39192, t1t29192, t139192, L2t391 92, t1t2t391 92,
G291, 19291, 29201, t3G201, t1tagagr, titsgagn, tatsgagn, titatsgagn } -

anotelel pua ypaupaxry Bdon ya tny dAyeBpoa YTLg 3(u).

iii.p. "Eva ypouuxd tyvoc Markov méve otnv dhyeBeo YTLg, (u)

To enduyevo epdTNUA TOU TEOXUTTEL Elvon €4V ot UTO TOLEC GUVITIXES 1) ATELXOVION
fyvoug tr tou Juyumaya mou oplotnxe Tdvew otV GAyeBpa Y4, (u) mepvd oty G-
veBpo mnhixo YTLg, (u). Kot' avahoyio pe tnv mepintwon tng xhaowhc dhyeBpog
Temperley—Lieb, to tr o meénet va undevilet to yevvrtopa Tou 1dewdoug 1 xou xat’
enéxtaon xde otoyelo mou Beloxetan péoa o autd. Etol hoimdv mpoxdntel nwg o
YEVWATOPOS TOU 1BeWdOUC [, To oTotyelo g1 2 undeviletar yia Ti¢ axdhovdeg TS NS
TOEUUETEOL 2 TOU trt

— (= DE+3) £ \/((u— DE +3)° — 4(u+ 1)
T 2(u+ 1) ! (25)

omov E = tr(e;) v xdde i. Emmiéov yio m € Z/dZ oupBonilouvue pe EM™ =
tr(el(-m)), Yo xdde 1. O€hovTog Vo EEETACOUUE oV QUTES OL THIES TNG TUPUPUETEOU 2 TNG
amexoviong tr undevilouv xde otoyelo Tou I, Sovhédaue YENOYOTOLOVTAC ETOYWYN
oto n. 1o avodutind, Yy n = 3, utohoylooue To tyvog xde otoryeiou Tou ;. Autd
elvon TG pop@ric myy 2, 6mov o m Peloxeton oty xavovxy| Bdon e Ygz(u). ‘Eto
TEOXOTTEL €VOL GUCTNUA TOAVWVUIIXWY EELOOOEWY X:

Zape =10 (26a)
(3) 4 Vape =0 (260
Wa,b,c = 07 (26Y,)

6mou:

Zape = (u+ 1)22xa+b+c + ((u — 1)E(a+b+c) + ToTpie + TpTare + xc$a+b) 2+ T TpTe
Vapte = (u+ D22 Tayppe + (u+ 1)ZE(a+b+6) 2 Talpre + O L)

Wape = (U + 1)2*Taipie + (u+ 2)z BT 4t <6§a+b+c)e2> .
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Y ouvéyeta, oanoutioope o (1) vo éyel Moele Tig Tég 2o tne (25). Ataxpivouye d0o
nepittwoelc: Eite 1o obotnuo twv e€lomoemy €yel xou Tic 0U0 THéS 24 ¢ AJoEL, elte
TOUAGYLOTOV L0l OO QUTEG. LTV TROTN TERIMTMON €Y OUNE YOVO avaryxaleg cuvirixeg
Yl v tepvdel To tr oty dhyeBpa tnAixo. Tlpdryuari:

Ocdpnua 2. Ian > 3, o tyvog tr mov opiletar otnr Y g, (u) neprder otnr dAyefpa

mnAiko YTLg,(u) av o1 mapduetpor x; elvar d—piles tns povddas (x; = xf, 1 < i <

d—1) ka1 z=——5nfz=—1

Yy nepintwon mou ta x; eivon d—plleg TN povddag mpoxvntel 6Tt B = 1. Avti-
oMo TOVTAC 0TNY (25) TEOXVTTOUV Ol TYWES Yiol TO 2 ToL OewpruaTtog 2.

211 0eUTERN TEPIMTWON XAVES Xou avary XUEC GUVUTXES TTROXUTTOUY £T0L (OO TE TO tr
Vo Tepvd 6T dhyePpa mniixo. 1oy mpoyweroouue ot BlaTUTLoY) Tou OewpRuATOC,
elodyoupe tov axdhouto cuuBolioyo: exp, (k) 1= exp(2imsk/d), 6touv 0 < k < d — 1.

Ocdpenua 3. To iyvog tr nepvd otnr dAyefpa tnAiko YTLg,(u) av kar pévo av x;
efvar Adoeis tov E-ovotiuatog kai pa and tig 0Uo mepintaoels 10 vouy:

(1) Ia kdrow 0 < my < d—1 ta zp exppdlovtar wg:
Ty =exp,, ({) (0<0<d—-1).
X avtn) Ty mepintwon ta xp elvar d-pileS Tng povddas ka1 z = ——5 Nz = —1.

(1) Ta kdrowa 0 < my,my < d—1 ta x; exppdlovtar ws:

(expyn, (0) + exp,,, (£)) (0<0<d—1).

DN | —

Ty =

Ez Z / ’ _ 1
avty) TNy mepintwon éxoupe z = —5.

Anédaén. Iopatnpolue apyd 6t tor 2y mou epgavilovtar oto (i) ebvar Tpdyuatt
AOOELC TOU GUG TAUATOC (2). Trodétoupe TP TwS oL AUGELC Yog BEV efvon aUTAC TNG
Hop@rc. Anéd autéd éneton OTL T, F# E@ v xdmowo 0 < a < d-—1.

Oa yenoWonotfcoule enaywyr 6To n. Ou delloupe apyxd TNy tepintwon n = 3.
Trodétouue 6Tt 10 (yvog tr mepvd oty dayeBpa mnhixo YTLg3(u). Autéd onuoiver
6Tl T0 0o TN (2) eyel MOOCELC Yo TO 2 OTOLONTOTE Ao oTES oL BldovTOL Ao TIC
e€lotoelg 25, yio onotodhnote a, b, ¢ € Z/dZ. Agoupdvtoc Ty eZlowon (260) and Ty
(260") €youpe ot

(maxb+c + TpTage — 2E(“+b+c)) z=— (xaxbxc — xCE(“+b)) ) (27)

Emiéyovtoac b = ¢ = 0 otny &lowon (27) nou £pOoov uToVEGOUE OTL UTIHPYEL EVal a

TETOLO0 OOTE T, # E@, EYOUUE OTL: 2 = —%. A6 Vv AT, aparpmdvTag T EELCMOOELS

(260) o amd TNy e&iowon (26y”) €youue ot

(3E(“+b+c) — TaTpie — Tplate — Telard) 2 = Talple + Te — tr(egﬁb“)eg). (28)

[oc Ty T a vty omola oy Vel T4 — E@ +£0
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xou Yé€tovtog b = ¢ = 0 oty e€lowon 28 éyouue 6T

2o — tr(el¥e,)

= — _ 29
= e, - B) (29)
Yuvoudlovtog thpa Tic ellonoels (27) xau (29) éyoupe dtu:
1 x4 — tr(e\”e,)
2 3z, — BEW)
1) LloOd\ VoL
3z, — E™) = 2(z, — tr(e\Vey)).
Xenowonowwvtog to Afuua 1.4, tor topandve eivor 1GodUVoUL UE:
3
3w—6—iw*$:2x—ﬁw*m*x.
Hodpvovtag 1o yetaoynuationd Fourier (Bh. Aupa 1.5) xatakryouue otny oaxéhoudn:
2 3
ﬁ&f\g — a.&/’\z &I\ — 0

Troétovtog TOpa OTL T = Y ocpey y Yet© Exoupe TNV axbroudn éxgpoon yla TouC
OUVTEAEGTES Y¢ OTO AVATTUYUO TNG T

2 , 3
Ye (ﬁye —aye—i-l) = 0.

Omde elte yo = 0 elte yo = d elte y, = 1d. Emopévec, av mépoupe tn doyépion tou
owvéhou {£: 0 < ¢ <d—1} ota oOvora Sy, S, Sé £TOL OOTE TAL Yy VO TPVOUV TNV

1
2

T = Zi_m+% Z i

meSy meSy
2

Twh i - d oto abvoho S; (i = 0,1, 5), ond 1o Afuua 1.5 éyovye ot

And ) ouviixn zo = 1 mpoximTouy xau oL axdrouideg cUVITXES :
1
1= %(0) = |Sl| + §|S%|

Autd onudvel T eite o cUvoro Sp elval LOVOGUVOAOD Xal S% = () elte 6T t0
S; = 0 o to o\.)vo)\o S% gyel 0vo otoyela. H mpotn neplntwon elvon avtiotoyn
NG TEpImTWoNg (i) émou ta xy ebvon d pilec Tic povddoac. 2t Oeltepn TEpinTWoT), av
S% = {my, my} t61E TOdPVOLYE Vv oxohovdn Avon tou E-cuothuatog:
1
T=g (expyn, (0) + exp,,, (0)), (0<0<d-1) (30)
TOL AVTIOTOLYEL OTNY TWH 2 = —3.
MmnopoUye mhéov va enahndelcouye To YEYOVOS OTL QUTEC OL AUGELS IXAVOTIOLOLY TO
obotnua (). Egbooy z = —% xou B = %, €)0UUE OTL EY =2,/2, Vooio = Wape =0,
xou enione mwe 1 e&lowon (26a) wwovtan pe :

TaTp+e T TpLate + Telatb = Tatbte T 22,2 %,
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7 omolo IXAVOTOE(ToN Ao TIG TUESC TWV Ty TOU OVOVTAL TNV (30). Yuveyilouue e
™V enaywyy 670 n. Trovétouue 6tL 1 utdleon woylel Yo Oheg TG dhyePpeg TnAixa
YTLg(u), 6mov k < n, Snhodn:

tr(ak g12) =0

Y xde ap € Yar(u), kb < n. Oo anodellovpe tnv unddeon yio k =n + 1. Apxel va
amOBElEOVUE OTL 1) ATELXOVIOT) [y Voug €lval (o1 Ye Undév yla omotodrnote ctotyeio Pei-
OXETOL OTN HOPPN Gy t1G1,2, OTOU TO Gpyq AVAXEL OTNV eToy YW Bdon e Yant1(uw),
0EBOUEVLV TV cUVINXGY Tou Bewphuatoc. Autd onuaivel 6T

t1(Apt1 91,2) = 0.

Egéoov 1o otowyelo anq1 Beloxetar otny enaywywd Bdon e Ya i1 (u), tote Ya éxet
plat oo TiG oxOAOVIES LOp@EC:

kg k
(pi1 = ApGn - - - Gil; N Gpy1 = apty g,

émou 0 a, PBeloxeton oty enaywy Bdon e Yg,(u). Do ty npdtn nepintwon
€Y OUUE OTL:

tr(ans1 g1.2) = tr(angn - - .gitf g12) = 2tr(angn_1 - . .gitf r12) = ztr(ag 2),

X0l TO ATMOTEAEOUO TROXUTTEL UEow enaywyhg. H dedtepn neplntwon anodeixvieTtar ue
avdhoyo TeoTO.
O

iii.y. Avohholwtee xOuBwy ond tic dhyePfpec YTLg, (u)

Aedopévne wo MNone X = {x1,..., 241} tov E-cuotipotog, n onoio mopauetpo-
notelton and To un-xevd unocvvolo S tne Z/dZ, ot Juyumaya xor Aaunponollou oto
23] bptoav v axdhoudn amexdvion, yio xde o € Us Fy:

e) W ee@), @

= u—;E, 7 0 PUOLXOS ETYOPPLOUOSC TNG dAYEBpag Tou avTioTolyel TNy
opdda Twv TAaolwpévey TAedwy CF, ent tne dhyeBpoc Yq,(u). ‘Onwe anédeilay, 1
amexévion L'y g(w, u) etvor Tomohoyixr avahhoie T TAUCLOUEVLY XEiXOV.

Emmiéov, ou Juyumaya xou Aaumponotlou neploptlovtag v I'y g(w, u) otny me-
plmtwon Twv xhacoxdy TAEEB0Y, ol omoleg umopolv vo Yewpniolv we TAUCLOUE-
veg mAe€ideg Ye undevixd framing, dpioav pior avahholwtn yior xhaotxole xpixoug,
Ags(w,u). Xto [21] n avarlholwt Ags(w,u) enextdidnxe o wa avahholwtn yio
singular xplxouc.

Y10 [2] amodetvieTon Twe Yot YEVIXES THIES TOV TOPUUETEWY U, 2 Ol AVOANOIWTES
Ay s(w,u) dev ouunintouv pe to tohudvupo Homflypt, extoc yio tic tetpiupéves ne-
ormtwoeic u =11 £ = 1. Tlop" 6hot autd 6K, To UTOAOYLO TIX DEDOUEVL [5] Oelyvouv
TG aUTES oL avahhoinTeg dev Leywpllouv (euydpla xOuBwv Ta omola T0 TOAVMVUHO
Homflypt enilong dev &eywpilel, emoyévng umopel va eivon TomoAoYIXE IGOBUVAUES e
T0 TtoAuvuuo Homflypt.

Cas(. (@) = ( -
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Arné g mpolnodéoeic Tou Oewpnuato 3 ATOPE{TTOUUE TIC TEPLTTWOEL OTOU: 2z =
—1 (xon tor ; ebvon d—pilec g povddog) xon z = —3 (xaw z = 3 (exp(fmy) + exp(fmy)))
xodog onuovTXr TotoAoyxn TAnpogoplo ydvetar. Ilpdypott, yio Topdderyua, To yvog
tr Bivel TV (Lot Ty yiot GAeC TIC BPTIES (AVTIOT. TEQPITTES) BUVAELS TWV g, YA M € 770
[23]. Ondre ot (BlopopeTinot) xpixol ToU AVTIETOLYOVY GTIC TURUTAVE BUVBUELS TWV g;
Yo madpvouy Ty Blar Ty TG avaAholwng Las(w,u). Emoyevwe, and g Tiwég Tou
Oewpruatoc 3 mou amouévouy TeoxinTeL 6Tt = 1 xou w = u. Eyoupe howndv to
axérouo Toploua:

ITépropa 1. O1 avalhoiwtes Vyg(u) = Agg(u,u) tavtilovtar pe o moAvdvupo
Jones.

iv. H dayeBpo FTLy,(u)

‘Oneg avapépoaue Xal TEOTYOUUEVWLS, UTERYoLY TeEl Tiavol urodriplol Yo Tov oploud
tou framization tnc diyeBpoc Temperley—Lieb. H 8edtepn dhyeBpo mou opiloupe
ebvar 1 GAyeBpar mnAixo FTLg,(u). Io ouyxexpwéva, opilouue authv tnv dhyefea
©¢ 0 TAixo g dhyePpoc Yokonuma-Hecke mdve amd €va opgimhevpo 10emdeg mou
XoTUoXELALETAL amd TNV oxOAoulT) uTooudda TG ouddag Cy, = Cf X S, émou Cy =
({1t =1) nxvxdoeh| oudda téEne d xon t; = (1,...1,¢,1,...,1):

H,"j = <t2tl_+11,tjt]__&1> X <Si, 8j> UE |Z — ]| = 1.

Ynueidvoupe 6T, Yoo j = i + 1, éyoupe otL xde & € H; ;4 umopel vo ypagel ot
uoper:
x =t ] w, (32)

omou v+ f+ v =0xuw w € (s;,8i11). Eyouue tov axdrouvdo oplopd:
Optowdeg 2. T n > 3, 1o Framization tns dAyeBpag Temperley-Lieb, FTLg,,(u),

opileton ¢ t0 mNAixo tNg GAYEBpoc Yan(u) mhve and to augithevpo 1Beddeg J mou
TopdyeEToL amd Tar GTolyelo:

= Y ge= Y. g0 (i=1,...,n-2).  (33)

r€H; it1 a+B+y=0
we(si,siJrl)

Ouolwg, 6mwg xan oTig TEPITTOOELS Twv ahyefpnv Temperley—Lieb xou YTLg(u),
amOdEVUETAL OTL TO WEWOES J elvan xUpto xaL TopdyeTal and To GTolyelo 7 9

Ocedpnua 4. H dyefpa FTL,,(u) eivar to tnAiko tng dAyefpas Y qn(u) ndvew and

T0 ap@itAeupo 10ewdes J mov mapdyetar and to oToiyEio:

T2 = Z gz = Z t(f{tgtggl,z

r€H 2 a+B+vy=0

H dhyeBpa FTL,, (1) unopet va napootadel and toug YEVWATOPES t1, . .., tny 1, - - - 5 Gn1
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xou TIC oxdhovleg oyEoelc UETAED AUTOV:
9i9; = 99, |i—7j]>1
9i+19i9i+1 = 9i9i+19i

@ =1+ (u—1)e;+ (u—1eg

titj = tjti, Y e Z,j
th=1, vy xdde i

giti = tiy19;

gitiv1 = 1:9;
git; =t;9;, Omov j F# i, xujFi+1
>ttt 0.=0 (i=1,...,n-2).

a+pB+y=0
WE(S5,Si+1)

‘Onowg anédet&ay ot XhouBepdnn xouw Pouchin [3], n Sidotaon tne dhyeBpoac FTL,, (u)

elvaut : )
. n!
dimFTLg, (u) = Z (W) Chy -+ - Chys
1. Rg!

|1 |+ K2 |+ 4 [kg|=n
oToL ¢, €lvon 0 n—001o¢ apriuoe Catalan.
H é\yefpa FTLg, (u) umopel va mopac tadel xou e un-ovtio tpédipous yevvitopec.
pdrypoartt, Eyouue TNV axdroudr tpdTaoN:

ITpotaor 5. H d\yefpa FTLy,,(u) propel va mapaotadel pe touvs yevritopes:
gla s 7£n—17t17' - 7tn
o1 omolol ikavorowUy Tis oyéoes (16) — (22) kalhg kar tig axdovdeg 6Vo oyéoe:

(u—1)e; + 1 (u—1)e;q +1
(u+1)2 (u+1)2

eieit1lilip1l; =

Cili 1 s — Ui = L1 il —

€i+1

. ‘
m €i€it14s

iv.a. ‘Eva ypauuxd tyvoc Markov néve otny dhyefea FTLg, (u)

Axohouldvtog o B0 oxentixd dnwe xar oty nepintwon e diyeBeac YTLg, (u),
umohoyloope Ti¢ ouVITXES UTO TI¢ oToleg To [y vog tr tne dhyefpoc Yain(u) TEEVE TNV
dAyeBpa mhixo. Xe authv Ty TEpinTwon o yevvATopag Tou Wewdoug J undeviCeton
YLl TIC axOAOUVES TWES TNG TORUUETEOU 2t
—(u+2)E+/(u+2)2E% —4(u+1)A
Z4 = (34)
2(u+1)

omou A = tr(ejes). Auth ) @opd €youpe to oxdrovdo Yeouuxd oot d eElow-
OEWV:

> (u+1)2%20 + (u+ 2)EQz + tr(el¥ey) = 0
(u41)2% + (u+2)EDz + tr(egl)eQ) =0 (1<i<d-1),
T0 omolo amartolpe Vo €yet NIoES ¢ Tpog 2 Tic Tee e (34). Av to olotnua éyet

%o TG OLO TWES TOU 2 G XOWEG AJOELG TOTE EYOUUE avayxaieg cuviixeg MOTE To tr
Vo tEpvd 6Ty dAYEPpar Tnhixo:
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Ocedenua 5. Iia n > 3, o ypaupuks iyvos tr s Y, (u) meprd oty dAyefpa
mnAiko FTLg, (u) av o1 mapduetpor xy, . . ., xq4-1 anotedody Aloes tov E-ovotiuatog
ka1 to maiprel z pa and TS akoAovles TIUES:

Av 10 cloTnua €yel TOUAGYLOTOV Lol OO TIC TWES TNG (34) ¢ xow1| Aoor tote
€)(OUPE LXAVES Xol ovaryXaleg SUVITXES MO TE TO tr var TEpVE o TNV dhyePpa TNAixo:

Ocedpnua 6. To ypaupuxs tyvostr tngY g, (u) meprd otny dAyeBpa tnAiko FTL,4, (u)

av Kai uovo av o1 mapdueTpol x; €lvar TS Hopens:
T =—2 (Zi_s+(u+1)2i_s) ,
SES1 SES2

onov x etvar n uryadikr) ovvdptnon ndvew and to Z/dZ, mov otéAver to 0 oto 1 kai o
k otny mapduetpo xy, tng ouvdptnong tyvous, evd Sup, U Sup, (£évn évwon) eivai o
popéas (support) tov petaoynuatiopdv Fourier tng ovvdptnong x.

Anédedn. Me enaywyr)oto n. Apywxd o anodellouye Tnyv nepintwon n = 3. O€houye
vl ETMAUGOUUE TO oxOhouo GUCTNUN EELCMOOEWY:

(u+1)222 + (u+2)2E9 + tr(ee) =0, viaxdde 0 << d—1.

Agopdvtog Ty Ten T e€lonmon and T UTOAOLTEG TEOXVUTTOUY Ol axOhoUES:
2(u+2)(BY —nE) = — <tr(e§e)62) — xy tr(6162)> vy xded <1 <d—1. (36)

Trovétoupe mwe T o; dev amoteholy AOon Tou E-CUoTAUATOC. XE ouUTH TNV
nepintwon Yo Aooupe to cUoTnua Tou divetar and Tic elionoelc (36). Av ta topamdve
o boVpe Yéoo oty dhyePpa C[Z/dZ] téte to tapomdve Tafpvouy TNy mopaxdte Lop@:

(u+2)z Z (E(e) —xB)t = — Z (tr(e&z)eg + tr(eleQ))) tt

0<i<d—1 0<e<d—1

Xenowonowwvtag Tov cuvoptnolxd cupBohioud e Hoapoypdpou 1.11.1 xou €yovtag
untédn to Afupo 1.4, éneton bt o1 ediowoetc (36) unopolv vo ypopolv we:

1 1
(u+2)z (C—iaz * x — Ex) =— (ﬁx T KT — tr(eleQ)x)

£Qopp6loVTaC TMPA ToV PETacY NUaTiond Fourier otny mopamdve looTnTo CUVAETHCENY
TEOXUTTEL OTL:

(u+2)z (%2 - Ef) —_— (Zj—z - tr(6162)§> (37)

‘Eotw thpa T = ZZ;O ymt™. Tote n eliowon (37) petatpéneton oty oxdrovdn:

2 3
(u+2)z (‘%” — Eym) = — (‘Z—’; — tr(eleg)ym>
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Emopevwe:

Ym (Z—’;‘ + (u+ 2)2%” —(u+2)zE — tr(eleQ)) =0 (38)

Ané v ellowon Eg = 0, tdpa, éyoupe 6Tt —(u + 2)zE = (u + 1)22 + tr(ejey).
Avtixohotédvrag Ty napandve Exgpoon Y to —(u+2)zE otny eiowon (38) éyouue

ot

Y y
Ym (d_n; + (u+ Z)ZFm + (u+ 1)z2> =0

1) LOOOUVOL:
Ym (ym + d'z) (ym + dZ(“ + 1)) =0 (39>

YuuBoiilouye ye Sup, U Sup, t0 @opéa tne Z, dmou:
Sup, :={m € Z/dZ; y,, = —dz} xou Supy:={m € Z/dZ; y, = —dz(u+ 1)}

%L €TOL £YOUNE OTL

Emoyévec:

7 4 4 4 4
xan dpar amtd v Ilpdtaom 1.5 mpoxdntel ot

=z D it wtl) Y i,

meSup, meSupy

Xenowonotwwvtag Vv Ipdtaon 1.5, cuunepatvoupe ot

Tp = —2 Z x(km) + (u+1) Z x(km) (40)

meSup; meSupy

"Eyovtac urodn m cuvininnm xyp = 1, umopolue Topa Vo UTOAOYICOUUE TIC TWES Yio TNV
nopdpeteo 2. Hpdypott, ond my eZiowon (40), éyoupe:

1 =29 = —z(|Sup:| + (u + 1)|Supa|)
1) LOOBUVOAL:

1
~ [Supi| + (u+ 1)[Sups|’

(41)

H vnéhoinn anddeln (n EMAYWYT OTO n) axohouvel ™V amédeln Tov Oewpruatog 3.
O

ITpotol culnticoupe TV e@upuoYr Tou Ocwpuatog 6 Tdvew e ToToAOYIXEG UvVah-
Molwteg xopPov Yo eiodyoupe xou TNy Teltn uTtodrpla dhyeBea w¢ to framization tng
dhyePpog Temperley-Lieb.
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iv.. Avahholwtee x6uPov and tic dhyefeec FTLg, (u)

Yyeuxd pe uc dhyeBpec FTLg,(u), 6nwe mpoxintet ond to Oedonuo 6, av [S1] =01
o , ) ’, ’ - ’ _ 1 ’ o _L
|S2| = 0 t6te T 2; amotehoVy hoon Tou E-cucthuatog xan z = woE 2= "7
Ané v &k, 1 tepintwon xatd Ty omola [S1| # 0 xou [Sa| # 0, amoppintetar xodg
To ; OeV amoTteAolY ADoT Tou E-cuoTtiuatog xal emouevewe dev TAnpeital 1) v 1ol
avoryxodor UV Yo TOV 0plou6 ToTOAOYIXWY avahholwTwy. Emmiéoy, aroppinteton
xou M mpimcocn z = —7gp, Yol Omeg xon oty mpimmcn ™me dd\yeﬁpocg YTLg, (u),
cnpowwm TOTEO)\OYLXY] TE& neogopia Xowsrou [ TV tepintwon Tou anouéver, xotd Ty
1 _
omola Ta 2 efvor Moewg Tou E-ouothparog xa 10 2 = — gy TeoXOTTEL 6TLw = u
ornd v (31). Ondte, éyouue oV axdAoudo 0plous:

Opt.cp.ég 3. Eotw Xg{z1,...,x4-1} pua AVon wov E auorr)parog, TOU TapapeTpo-
moleftal amdé o pn-Kevo UTL’OOUVO/\O S s Z/dZ, ka1 éotw z = m
Ané nr avalloiwtn Iy s(w, u) mpokinter n axddovdn avadloiwtn yia mAaiciwpévouvs

Kpikoug, Omov o € Uge Fy:

dast@) = (=L (R s () = st @),

Omov, 7y 0 PUOIKGS €TIHOPPIoHOS TNS dAyefpas mou avtiototyel otny oudoa twy mAal-

owpévor mekidwv CF, enl tns dAyefpas Y g (u).

Kot” avohoylo pe tnv nepintwon tng avarrolntng las(w,u), av TEPLOPLO TOVUE G TG
Thouolwuévee TAeEideg ue undevixd framing, mpoxUmTEL Uiot avoAAolw T YLol XAAGGIX0US
x6pPoug, 1 onolor cuuPBorileton pe: Og(u) = Ag(u, u).

v. H dAvyeBea CTLg,(u)

H teheutada dhyeBpa tnAixo tou opilouue eivor 1 dhyefpa CTLg,(u). o ouyxexpetr-
uéva, Yewpolye to axdhouto ctotyeio e Yan,(u):

Clo = Z Juw = Z t?t§t§91,2

weCd’g 04,57’7€Cd

xou T0 WewdeS Iy = (c1,2). 'Eyouue howdv tov axdrouvio optoud:

Optowde 4. Ia n > 3, opioupe tny dAyefpa nnAiko CTLg, (u):

Ydm(u)

CTLdm(U) = <Cl 2> .

H dhyeBpa FTLg,, (1) unopel va napootadet and toug YevwWnhtopes t1, . .., tn, 1, - -5 Gn1
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xou TIC oxdhovleg oyEoelc UETAED AUTOV:

9i9; = 9i9i» |i—jl>1
9i+19i9i+1 = 9i9i+19i

g =1+ (u="1ei + (u—1eigi

tit; = tjt;,  ywxdde ¢,
th=1, vy xdde i

9iti = tiy19i

giti+1 = 1:gi
git; =t9;,, Omou j# i, xoujF#i+1
oot tlge=0 (i=1,...,n-2)

we(si,si+1)

Emnhéov, undpyet TopdoTaon Ye Un-ovTo TEEPIIOUS YEVYHTORES Xo Yol TNV GAYe-
Bea CTLy,(w). Tpdyuatt, éyovpe v axdhouin mpdtaon:

Ilpbtaoy 6. H dAyeBoa CTL,,(u) propel va napaotalel jie tous yevvritopes:
gl) ce 7€n—17t17' s 7t'n,

o1 omolol 1kavorowly s oyéoes (16) — (22) kaldg kar tig axdovdeg 6Vo oyéoe:

(U — 1)61 +1 (u — 1)€¢+1 +1
Cilirly — =l = L1 il — l;
+1 (u + 1)2 +1 +1 (u_'_ 1)2 +1
d—1 d—1 u
(k) (k)
e; eiy1lili1l; = € Citl7 gt
= = (ut1)

Axohovdmvtog avdhoyeg YedddouC UE TIC TEONYOUUEVES GAYEPRES €YOUUE TO 0XO-
Aoudo Veodpnua:

Oedpnua 7. To iyros tr teprd otnr dAyefpa triko CTLy,(uw) av kar pévo av o

rapdueTpol z ka1 x; oxetiovtar péow g efiowong:

(u+1)22 Z T+ (u+2)z Z Ek)—l—Ztr (el 62

kEZ/dZ k€EZ/dZ keZ

v.o. Tornohoywéc avarhoiwtee and tic dhyefpec CTLg, (u)

O ouvifixeg Tou Oewpruatog 7 dev eumpiEyouy xopio Aoon Tou E-cuctruatog, e-
TOUEVLS YLoL Vo Umopel var optolel uior avoddolotn xpixwy oto eninedo tng dhyefpog
CTLgn(u) Yo npémer vo emBdihoupe auth T cuvihixn otig mopapéteous z;. O Moelg
Tou E-cuotuatog unopoly vo eExpeacToly GTr) Lop@Y:

Ty |Zlk€(CCd,

kesS

7 . d—1 . ] 7 7 Z
OTOL 1}, = ijo Xk (7))t Xk bvan o yapoxtiipac Tou o TéNVEL M — cos T 44 sin 2”§m

xou S ebvon 10 Un-%ev6 LocUVOro NG ouddacZ/dZ mou m(pocpsrponom uat Aoor Tou

27rkm
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E-cuotAuatoc. 'Eotw tohpa € va elvan 1 ameixdvion tng é()\yeﬁpocg IOV ownormxsi
/4 4 4 4 4 d
J
oV xuxht| opdda té€ng d, CCy, mou otélvel To ddpotoua Zj z;t’ oTo ZJ 0Tj
‘Eyouue 611

4 qy 0€ S
SRS DELTEE ) DTS B ARSI
kesS jOkGS

Arnéd autd mpoxinTEL OTU

d—1 d
@ = (2Ery 2 L oin) = S ey = mE Y 0€S

DB = (Tg7) = grgp 2 e i) = g el 0w ogs Y

Jj=0 keS keS

xou entiong €youue Ot

d—1 d
G,y (TrTxT s, v 0€S
Ztr(el €2) fs( pE ) d2\5|3 Z ig g * i) |S\3 Z e(ix) { w 0¢S
3=0 kes
(44)

Xenotpomowdvtog topa Tic e€lowoels. (42), (43) xou(44), n eiowon (7) yiveton yio tny
nepintwon mov 0 € S:

d ( (u+2) 1
—(u+1)2*+ Z 4+ = 0.
5| 5| S|
Enopévwe, 1o (yvog tr mepvd otny diyelpa mniixo yio Tic axdhovdeg TWES Tou 2t
1 ) 1
(u+1)[S| S|
Hwyn 2z = —ﬁ amopplnTeTo, €QOcOV TO yvog tr divel Tnv (Bl Ty Yot OAEC TIC

Gotiee (avtioT. mepLtTéc) SuvAElS TwY ¢;. Enopévee, ol avollolwtee Tou tpoxintouy
ond o tr oo eninedo tng dhyePpac mnhixo CTLgy, (u) tautilovton pe Tic avahhointeg
Up xou Op oto eninedo g dhyefpac tnAixo FTLy,(u). Tho ouyxexpyéva, ot cuvin-
xe¢ Tou TEENEL Vol emPBANU00Y OTIC TUPUUETEOUS TNE AMEXOVIOTS [y voug etvar (Bleg xou
OTIC BVO TMEQIMTAOOELS Xt ETOPEVS OL avOAOIWTES TTou TpoxUTTOY TawTi{oVTaL.

Emmiéoyv, o AMoeg 10 E-ouotiuatog (oL omoleg elvon txavég X avoryxodeg ouv-
Uxeg €101 WOTE 0 0PIOUOSC TOTOAOYIXAOY AVIANOIWTWY Yo TAUCLWUEVES TAEEIBES Vo
elvan sgotmég) EUTEQLEYOVTAL O TIC CUVUTXES TOU Oewpruatog 5, EVe 6TNV Teplntwon
e GAyeBpac mnhixo CTLg,(u) Yo meéner va emPBaAndolv epboov to {yvog nepdoet
oty dhyePpa Tnhixo. Autol efvar xa ol x0plot AdyoL Tou og 0dnyoly 6To va Yewpr-
ooupe v dhyeBpa mnAixo FTLg,(u) ¢ o mo guotoloyixd avdhoyo tne dAyefpoc
Temperley—Lieb yio tnyv nepintworn 1oV TAUCIWUEVLY Xp{XwY.

vi. H oyéon petald twv t1otdv aAyelpdv
Yuveyilovtag, ouyxpivaye tig dhyeBpec FTLg,(w), YTLg, (u) xou CTLgy,(u) xau o-
Todeiloue TNV axdAoudn TedTuoT:

Ilpbtaom 7. To axélovlo didypaupa efvar avtipetadetind:

Yd,n (U) —— CTLdﬂ(u) ——— FTLdm(U) ——— YTLdm(u)

Hnl(u) TLE (u)://
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vii. Yuunepdopata

O avodhoiwteg x0uBwy amd ¢ dhyePpec FTLg,(u) xow CTLg,(u) napopévouy und
otepebvnon. Av ol avolhoiwteg amo Tic dhyeBpec Yokonuma-Hecke amoderytouv o-
L elvor TOTOAOYIXS t60dUVouES Ue To Tolumvudo Homflypt, téte o1 avalhoiwteg amd
¢ dhyePpec mnhixot FTLg, (uw) xow CTLg, (u) Yo eivor totoloyixd 16080vopes ue to
molucvupo Jones. Av oyt, tote Yo ebvon yeriowo vo ueAetndoly ol avtioToryeg avol-
Molwteg yior 3-tohhomAdtntes (6mwe mpoxtntouy ond tnv epyacia tou Wenzl [36]).
Ye auth) TV Tepintwon, and tic dhyeBpec YTLg, (1) unopolue vor avaxTHooUUE TIC o-
vorholwteg Witten yio 3-rtohhanAdtntes, 9ocov oL avtioToryeg avarholnTeg xOUPnv
ovaxTtoly To ToAuGVUUo Jones [8].

Téhog pepd amd Ta TOLd OTNUAVTIXG EPWTAUATO TOU TROXVTTOLY OO GUTH T1) OLUTEL-
B etvan 1) Slary POUUOTLXT) EQUNVELN TV THEUC TACEWY UE UN-avTIo TEEPLIOUS YEVVHTOPES
Yo xdde par amd Tic dAyeBpeg mnAlxa xan 1 HEAETN TS Oewplac Avamapao TIoEWY TV
oAyeBewv FTLg, (u) xow CTLg ().

vii. Anuooieloelg xXol TUEOVCLACEL; OE CUVESELAL

To napandve amotehéoyata €youv cuyypagel Ue TN Hop@t| dolpwy Ue Toug axdAou-
Jouc tithouc:
I. “The Yokonuma-Temperley—Lieb algebra”, mou du dnupooieutel oo éyxpito emi-
oTnuovix6 meptodixd Banach Center Publications 103.
II. “Framization of the Temperley—Lieb algebra”, to onolo xatatédnxe mpog dnuooci-
€UOT] OE €YXQLTO ETUC TNUOVIXO TEQLOOIXO.

Emniéov, ta anoteréopota NG TapoLomg BidaxTopxt| SLTElBhc TopoucLdo Trxay
oTadLoxd otar oxdhovda GUVEDELYL UE TN Hop®T) SOAETTWY OULALOV:
1. Joint meeting of the German Mathematical Society (DMV) and the Polish Math-
ematical Society (PTM), 17-20 September 2014, Poznan, Poland.
Yuvédplo ‘AlyefBpac, 2-3 Moiou 2014, Oecoolovinm.
Winterbraids IV, 10-13 February 2014, Dijon,France.
Winterbraids III, 17-20 December 2012, Grenoble, France.
Winterbraids II, 12-15 December 2011, Caen, France.
Knots in Chicago, 10-12 September 2010, Chicago, USA.
. Knots in Poland III, 18-25 July 2010 Warsaw, 25 July-04 August 2010 Bedlewo,
Poland.
8. Advanced School and Conference on Knot Theory and its Applications to Physics
and Biology, 11 - 29 May 2009, ICTP, Trieste, Italy.
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Introduction

The Temperley-Lieb algebra appeared originally in Statistical Mechanics and is
important in several areas of Mathematics. Since the original construction of the
Jones polynomial by V.F.R. Jones in his seminal work [15], where he constructed a
unique Markov trace on the Temperley—Lieb algebra, the Temperley—Lieb algebra
has become a cornerstone in the fertile interaction of Knot theory and Representation
theory. The Temperley-Lieb algebra was introduced by Temperley and Lieb [34] and
was rediscovered by Jones [15]. In algebraic terms, the Temperley—Lieb algebra can
be defined as a quotient of the Iwahori-Hecke algebra.

The Temperley-Lieb algebra, the Hecke algebra and the BMW algebra are the
most important examples of knot algebras. A knot algebra is an algebra that is
typically defined by generators and relations including the braiding relations, which
can be used in the understanding of the classification of knots.

The framization is a mechanism designed by Juyumaya and Lambropoulou and
consists of a generalization of a knot algebra via the addition of framing generators.
In this way we obtain a new algebra which is related to framed knots.

More precisely, the framization procedure can roughly be regarded as the proce-
dure of adding framing generators to the generating set of a knot algebra, of defining
interacting relations between the framing generators and the original generators of
the algebra and of applying framing on the original defining relations of the alge-
bra. The resulting framed relations should be topologically consistent. The most
difficult problem in this procedure is to apply the ‘framization’ on the relations of
polynomial type.

The Yokonuma—Hecke algebra can be regarded as the basic example of a framiza-
tion of the Hecke algebra [20, 24]. This framization of the Hecke algebra gives
the recipe of how to apply the framization technique on the quadratic Hecke re-
lation. Further, in [18] the Yokonuma-Hecke algebra Y,,(u) (defined originally
in [37]) has been defined as a quotient of the modular framed braid group Fgp,
which comprises framed braids with framings modulo d, over a quadratic rela-
tion (Eq. 1.27) involving the framing generators ¢; by means of certain weighted
idempotents e; (Eq. 1.22). Setting d = 1, the algebra Y, ,(u) coincides with the
Iwahori-Hecke algebra H,,(u). The Yokonuma—Hecke algebras have been studied in
[37, 18, 23, 33, 4]. Further, in [18] the Juyumaya found an inductive linear basis for
the algebras Y4, (u) and constructed a unique Markov trace tr on these algebras de-
pending on parameters z,x1,..., T4 1. Aiming to extracting framed link invariants
from tr, as it turned out in [20], tr does not re-scale directly according to the framed
braid equivalence, leading to conditions that have to be imposed on the trace pa-
rameters xq, ..., xq_1; namely, they had to satisfy a non-linear system of equations,
the E-system (Eq. 1.39). The z;’s being d** roots of unity is one obvious solution.
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Gérardin found in [20, Appendix| the full set of solutions of the E-system. Given
now any solution of the E—system, 2—variable isotopy invariants for framed, classical
and singular links were constructed in [20, 22, 21] respectively, which are studied
further in [2, 5].

In this thesis we propose three framizations of the Temperley—Lieb algebra as
a quotient of the Yokonuma—Hecke algebra over appropriate two—sided ideals. The
possible quotient algebras that arise are three: the Framization of the Temperley—
Lieb algebra (FTLg,,(u)), the Yokonuma—Temperley—Lieb algebra (YTLg,,(u)) and
the Complex Reflection Temperely—Lieb algebra (CTLg,(u)). From these we choose
the algebra FTL,,(u) as the analogue of the Temperley-Lieb algebra in the context
of framing, since it reflects the construction of a “framed Jones Polynomial” in the
most natural way.

The outline of the thesis is as follows. Chapter 1 is dedicated to providing neces-
sary background material from the literature including the Iwahori—-Hecke algebra,
H,,(u), the Temperley—Lieb algebra, TL,(u), the construction of the Ocneanu trace,
7, on H,(u), the passing of 7 to TL,(u), and the representation theories of H, (u)
and TL, (u). Further, we discuss the work of Juyumaya and Lambropoulou on the
Yokonuma-Hecke algebras, Y, (u), [18],[23]. More precisely, we give the defini-
tion of Y4,(u) as a quotient of the d modular framed braid group Fu,(u) (Defi-
nition 1.10),[18]. Next, we present an inductive basis for Y, (u) (Proposition 1.9)
[18] and we also give the construction of a unique linear Markov trace, with pa-
rameters z, %y, ..., %41, by Juyumaya on the algebras Y4, (u) (Theorem 1.5), [18].
Furthermore, we discuss the set of solutions of the E-system found by P. Gérardin
(Theorem 1.7) and how this applies to the normalization and rescaling of the trace
tr. One (trivial) solution is that the z;’s are d'™ roots of unity, but this case is not
of a great topological importance. Moreover we discuss the invariants for framed
links that are derived from the trace tr and we show that these invariants coincide
with the Homflypt polynomial only for the trivial cases where the x;’s are d'* roots
of unity or u = 1 [2]. However, these invariants are conjectured to be topologically
equivalent to the Homflypt polynomial [5]. We conclude this chapter with the re-
sults of Chlouveraki and Poulan [4] on the representation theory of Y, (u).

The motivation behind this thesis is given in Chapter 2 where we present three
possible quotients of Y4, (u) that could possibly lead to the framization of the
Temperley—Lieb algebra (Section 2.1) and we analyze the connection between these
quotients of Yy, (u) (Proposition 2.1). We then present our results on the first
quotient algebra that emerged through this process, the Yokonuma—Temperley—Lieb
algebra YTLg ,, (u) (Definition (2.1)). For d = 1 the algebra YTL; ,,(u) coincides with
the Temperley—Lieb algebra. We first show that the defining ideal of this quotient
algebra is principal (Corollary 2.1) and we give a presentation for YTLg,,(u) with
non-invertible generators analogous to the classical case (Proposition 2.2). We then
give a spanning set 34, for YTLgy,,(u), where each word in ¥,,, contains the highest
and lowest index braiding generator exactly once (Proposition 2.4). Moreover, any
word in X4, inherits the splitting property from Y, ,(u), that is, it splits into the
framing part and the braiding part. We also present the results of Chlouveraki and
Pouchin [3] on the dimension (Proposition 2.5) and a linear basis for YTLg,,(u)
(Theorem 2.1). From the spanning set X4, they extracted an explicit basis for
YTL4,(u) by describing a set of linear dependence relations among the framing
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parts for each fixed element in the braiding part. Furthermore, using the dimension
results of [3] we find a basis for YTLs 3(u) different than the basis in [3]. We conclude
this chapter by discussing the results of Chlouveraki and Pouchin [3] on the repre-
sentation theory of YTLg,(u). Next, we focus on the quotient algebras Framization
of Temperley-Lieb algebra, FTLy,(u) and Complex Reflection Temperley-Lieb al-
gebra, CTLg,(u). We show that the defining ideal for each of these two quotient
algebras is principal (Theorem 2.3) and we give presentations in terms of generators
and relations with invertible and non—invertible generators for both of the algebras.

Further, we provide a linear basis for the case d = 2, n = 3 and present the formula
for the dimension of FTLg,,(u) by M. Chlouveraki and G. Pouchin [3] (Section 2.4.3).

Chapter 3 is dedicated to the determination of the conditions that the trace
parameters z,xq,...,xq_1 should satisfy so that the trace tr, defined on the alge-
bras Yg.,(u), passes to the quotient algebras YTL,,(u), FTLy,(u) and CTLg,,(u)
respectively. More precisely, the trace tr passes to each one the quotient algebras
above, if it annihilates the generator of the defining ideal that corresponds to each
quotient algebra. From this we extract conditions for the trace parameter z (Egs. 3.3
and 3.20 for the cases of YTLgy,(u) and FTLg,(u) respectively, and Theorem 3.7
for the case of CTLg,(u)). Unfortunately, this condition is not enough for the cases
of YTL4,(u) and FTLg,(u). Therefore, we have to seek extra conditions for the
trace parameters y,...,xq_1. Our method consists of annihilating every element
in the defining ideal of each the two quotient algebras using the trace tr, for the
case n = 3. From this we extract a system of polynomial equations which we solve
on the level of the group algebra by expressing the polynomials by means of the
convolution product of the group algebra, and by applying an appropriate Fourier
transformation (Sections 3.1 and 3.2).

More precisely, for the case of the quotient algebra YTLg,,(u), we compute first
the values of the trace parameter z that annihilate the generator of the defining ideal,
which are the roots of a quadratic equation (Eq. 3.2). Then we annihilate the traces
of all elements of Y,,(u) that lie in the defining ideal of YTL,,(u) and so we end up
with a system (X) of quadratic equations in z (Egs. 3.10a-3.10c). If we demand that
(3J) has both roots of Eq. 3.2 as common solutions, which is essential for discussing
link invariants, we end up with necessary conditions for the trace tr to pass to the
quotient algebras YTLg,,(u) (Theorem 3.4). In particular, Theorem 3.4 states that
the trace tr passes to the quotient algebra YTLg,,(u) if the trace parameters are d™
roots of unity x1,...,24_1 and z = —u%l and z = —1. Note that these two values for
z are precisely the ones that Jones computed such that the Ocneanu trace on H,, (u)
passes to the quotient, the Temperley—Lieb algebra TL,(u). If we also let (X) to
have one common solution for z we obtain the necessary and sufficient conditions for
the trace tr to pass through to the quotient algebras YTL,,(u) (Theorem 3.3). To
be more precise, Theorem 3.3 states that the trace tr passes to the quotient algebras
YTL4n(u) if and only if either the conditions of Theorem 3.4 are satisfied or the
trace parameters ¥, ..., T4 1 comprise a solution of the E-system (other than d**
roots of unity) and z = —%. Thus, we obtain the conditions for the z;’s, so that the
trace tr passes to the quotient algebra.

For the case of the quotient algebra FTLg,,(u) we use the same reasoning. Solv-
ing the corresponding system (Eqs. 3.27 and 3.28) we deduce that the sufficient
conditions such that the trace passes to quotient algebra FTLgy, (u) are that the
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trace parameters xy,...,r4s 1 comprise solutions of the E—system and z takes one
of the following two values: z = —ﬁE or z = —E (Theorem 3.4). Furthermore,
the necessary and sufficient conditions for the case n = 3 (Theorem 3.5) state that
the trace parameters x1,...,x4_1 should be the value at k, 1 < k < d — 1, of the

following complex function over Z/dZ:

Tp = —2 Z X(km) + (u+1) Z x(km) |,

meSup, meSupy

where Sup,; U Sup, (disjoint union) is the support of the Fourier transform of z and

z takes the value: )

~|Supy| + (u+ 1)[Sups|”

z =

We then generalize by using induction on n (3.6). These are our main results.

Finally, in Chapter 4 we discuss the invariants that can be constructed through
the trace tr on each one of the three quotient algerbas. As already mentioned, the
x;’s comprising a solution of the E—system is a necessary and sufficient condition
so that invariants for (classical, framed, etc.) links can be defined on the algebras
Yin(u). By further specializing the trace parameter z to each of the values that
tr passes to the corresponding algebra quotient and thus invariants for (framed,
classical) links emerge on the quotient algebras.

More precisely, for the case of YTLg,(u), in [2] it is shown that if the trace pa-
rameters i, . .., %41 are d’ roots of unity, then the classical link invariants derived
from the algebra Y, (u) coincide with the 2-variable Jones or Homflypt polynomial.
Using Theorem 3.3 and the results in [2], we obtain from the invariants for framed
and classical links in [20, 22] related to Yg,(u), the 1-variable invariants V;4(u)
for framed links and Vj 4(u) for classical links, through the algebras YTL,,(u). As
we show, the invariants coincide with the Jones polynomial for the case of classical
links and they are framed analogues of the Jones polynomial for the case of framed
links (Corollary 4.1).

In the case of FTLg, (u), we obtain from the invariants for framed and classical
links in [20, 22] related to Y4, (u), the 1-variable invariants 94 s(u) for framed links
and 64s(u) for classical links. In the case of CTLgy,(u), the parameters z; are
free, so in order to obtain a link invariant of any kind related to this algerbra, we
must impose the condition of the x;’s comprising a solution of the E-system. The
advantage of the quotient algebra FTL,,(u) over the quotient algebra CTLy,,(u)
is that the conditions of Theorem 3.5 so that the trace tr passes to the quotient
algebra, include the solutions of the E—system. For this reason, we propose the
algebra FTL,,,(u) as the most natural analogue of the Temperley—Lieb algebra in
the context of framed links.



Chapter 1

Preliminaries

1.1 Notations

Throughout this thesis we shall fix the following notation. By the term algebra we
mean an associative unital (with unity 1) algebra over the field C(u), where u is an
indeterminate. The following two positive integers are also fixed: d and n.

We denote S,, the symmetric group on n symbols. Let s; be the elementary
transposition (7,7 + 1). We denote by [ the length function on S,, with respect to
the s;’s.

Denote by Cy = (t |t¢ = 1) the cyclic group of order d. Lett; = (1,...,¢t,1,...,1) €

n where t is in the i position.

Finally, we denote Cy,, := C} % S,,, where the action is defined by permutation

on the indices of the ¢;’s, namely: s;t; = t,,()s;.

1.2 The Iwahori—Hecke algebra

In this section we will present the Iwahori-Hecke algebra H,,(u) and we will discuss
some of its basic properties such as linear basis, dimension and the existence of a
unique Markov trace function on it. We start by giving the connection between the
braid group and the algebra H, (u). Consider n points on a horizontal plane and n
points on another horizontal plane directly below the first one. A braid is formed
when these 2n points are connected by n strands that are not allowed to go back
up. We have the following definition [16]:

Definition 1.1. The braid group on n-strands, B,, is the group with following
presentation:
O = Oi0 il > 1
Bn: 17017'-~70n—1 7i9; 5 |Z j’ -
O',L'O'jO'i = O']'O'Z'O'j |Z —j| =1
The generators o; are called the elementary crossings and are the positive crossing
between the i and the i + 1% strand.

A geometric interpretation of the elements o; and their inverses can be seen in
Figure 1.1.

The algebra H, (u) can be seen as a u—deformation of CS,. That is, the C(u)-
algebra that is generated by the elements h,,, where w € S,, and the following rules
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Figure 1.1: The elements o; and O'i_l

of multiplication.

hoh P for I(s;w) > l(w)
S whs + (uw—1)hy, for l(s;w) < l(w)

where [ is the length function defined on S,,. Setting h; := hs,, the algebra H,, (u)
can be presented in terms of generators and relations by hq, ..., h,_1 subject to the
following relations:

he = wu-1+(u—1)h (1.3)

Remark 1.1. The first two relations in the presentation of H,(u) are exactly the
braid relations. Thus, there exists a natural epimorphism: CB, — H,(u), that
sends o; — h;.

Remark 1.2. The generators h; are invertible. Indeed from the quadratic relation
in the presentation above we obtain:

hi'=ut(hi+1) -1 (1.4)

Moreover, for m € N we have the following computation formulas in H,,(u) (see [2]):

hm = (“:;11) hi + (“:+_11 + (—1)’”) (1.5)

Next, we present a linear basis for H,(u) (see [12], [16]). We start with the
following property of H,,(u):

Proposition 1.1. Every word in H,1(u) can be written as a sum of monomials
that contain the generator h, at most once.

Having that property in mind, we introduce the following sets that will be used
in constructing an appropriate spanning set of H, (u):

H; ={1,hi,hihi—1,...,hihi 1 ... h} (1<i<n) (1.6)
Notice that if v; € H; then h; 1 1v; € H;vq, forany 1 <i<n —1.
Proposition 1.2 ([12]). The following set of monomials spans the algebra H, (u):
U={uwuy.. . upq|u;€H;y 1 <i<n-—1}

We say that the elements of U are in normal form.
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Remark 1.3. An analogous argument holds for the symmetric group S,,. Let w € .S,
then it can be written as a product wiws ... w,_1, where:

'wie{1,81',81'81',1,...751‘51',1...Sl}, 1§Z§7L—1

In order to show that the elements of U are linearly independent and thus they
furnish a linear basis for H,,(u), one should use the method by J. Tits (see [12], [14,
§7]). We start by defining the following endomorphisms of End(CS,,) for w € S,:

siw, l(siw) > l(w) (1.7)
and

R;(w) = { wsj, l(ws;) > l(w) (1.8)

wws; + (u— Dw, Hws;) < l(w)

Using (1.7) and (1.8) one can show that there exists an algebra homomorphism ¢
from H, (u) to CS,, that sends h; — L;, by proving that £; and R; commute, and
that the £;’s satisfy the relations of H,(u). Finally, by showing that ¢ is a bijection
and using Remark 1.3, one proves that any element of &/ maps to an element of the
linear basis of CS,, and thus we have:

Proposition 1.3. The elements in normal form m = ujus ... u,_1, where u; € H;,
1 <i<n-—1, are linearly independent. Moreover, dim(H,(u)) = n!.

Remark 1.4. The linear basis U of Proposition 1.3 indicate that the following
natural inclusions exist:

H,_1(u) C H,(u).

Thus, H,,(u) can be considered a H,,_1(u) — H,,_;(u) bimodule.

One of the most important properties of the Iwahori-Hecke algebra, is that it
supports a unique Markov trace function which commutes with the inclusions of
Remark 1.4. Tt was first proved in [13, 29] by Ocneanu. We give first the definition
of a trace on an algerba:

Definition 1.2. A linear function T from an algebra to some module is called a
trace if it satisfies T(xy) = 7(yx) for any x,y in the algebra.

We now have the following:

Theorem 1.1 (Ocneanu). For any ¢ € C* there exists a linear trace T on U 1 H,, (u)
uniquely defined by the inductive rules:

(1)=1
(ab) = 7(ba), a,be H,(u) (Conjugation).
(ah,) =(7(a), a€H,(u) (Markov property).

509

1.
2.
3.

\]
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1.3 The Homflypt polynomial

From a topological point of view, closing a braid «, that is, connecting corresponding
ends in pairs, gives rise to an oriented link. The closed braid is denoted by & and
is called the closure of the braid o. For the converse, we have the following theorem
by Alexander:

Theorem 1.2 (Alexander). Any oriented link is isotopic to the closure of a braid.

Further, isotopy classes of oriented links are in one-to—one correspondence with
the equivalence classes of braids. More precisely, we have the following theorem:

Theorem 1.3 (Markov). Isotopy classes of links are in bijection with equivalence
classes of braids in Uy B,. The equivalence relation is generated by the two following
moves:

I. Conjugation: af ~ pa, a, f € B,.

II. Markov move: a ~ ac!, a € B,,.

n

The two-variable Jones or Homflypt polynomial is one of the most important
invariants in Knot Theory and it can be defined through the Ocneanu trace 7. It
was discovered independently by Lickorish and Millett, Freyd and Yetter, Ocneanu
and Hoste in [13]. The addition of PT recognizes independent work carried out by
Jézef H. Przytycki and Pawet Traczyk [29]. Postal delays prevented Przytycki and
Traczyk from receiving full recognition alongside the other six discoverers. Before
moving to the construction of the invariant, we note the analogy between the Markov
moves of type II of Theorem 1.3 and the third relation of Theorem 1.1. Therefore,
the most natural way to define the invariant is to normalize 7 so that the generators
h; and h; ! yield the same trace value [16]. Let ¥ € C such that:

T(ﬁhz) =T ((ﬁhl)_l)
or equivalently using Eq 1.4:

T(h")  wlr(h)+ut =1 1—u+(
m(h) ¢ ¢

Denote \ := 1—+{+4 We have the following definitions [16]:

Definition 1.3. The two—variable invariant Xy (u, \) of the oriented link L is the
function:

1-u \" (@)
Xp(u, (@) = ————— (\/X> T(m()), 1.10
@) = (-2 (). (10
where o € By, () is the algebraic sum of the exponents of the o;’s in « and 7 is
the natural epimorphism of CB,, into H,(u) that sends o; to h;.

Definition 1.4. Three oriented links L., L_ and Ly are skein related if they have
diagrams that are identical except in the neighbourhood of one crossing point where
they look exactly as in Figure 1.2.
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X < -

Figure 1.2: L, L_ and Ly

For certain values of the parameters u and A, the polynomial invariant X, (u, \)
coincides with the two-variable Jones polynomial Py (t,z). We have the following
proposition [16]:

Proposition 1.4. To each oriented link L (up to isotopy) there is a Laurent poly-
nomial Pp(t,x) in two variables t and = that, if X and w satisfy t = VAJ/u,

T = <\/_— \%) then:
Pr(t,z) = Xp(u, A).

Moreover, Ppr(t,x) is uniquely defined by the following Skein relation:

t_1PL+ —tPL_ :xPLO

1.4 The representation theory of the algebra H,,(u)

In this section will briefly discuss the representation theory of the symmetric group
Sy, which will help us define inductively the representations of the algebra H,, (u).
These representations will play an important role in the computation of the dimen-
sion of the Temperley—Lieb algebra (see next section). We start with the following
definitions.

Definition 1.5. Let G be a finite group and let V' be a finite dimensional C—vector
space. We say that V is a representation of G if there exists a group homorphism

p:G— GL(V).
That is, the following relation holds: p(g1 * g2) = p(g1)p(92), for any g1, g2, € G.

Definition 1.6. 1. Let W C V be a subspace of the representation V. The subspace
W is a subrepresentation of G if:

p(g)(w) e W, Vge GweW

2. The representation V' is called irreducible if V' # {0} and the only subrepresen-
tations of V' are the following two: {0} and V.

It is known that any representation V' is a direct sum of irreducible represen-
tations and also that the irreducible representations of a finite group are in 1-1
correspondence with its conjugacy classes [7]. Since a braid induces a permutation
in an obvious way, it is expected that some family of representations of B, will be
related to the representations of the symmetric group S, [16]. We have the following
definition:

Definition 1.7. A partition is a family of positive integers X = (A1, ..., \.) such
that \y > Xg > ... > \.. Weset |\ =X+ ...+ A\ ,and we call || the size of \.
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The conjugacy classes of S,, are indexed by the partitions of size n that corre-
spond to the length of the disjoint cycles of the permutation. These can be repre-
sented by a Young diagram. From now on we will refer to the partitions of size n
as the partitions of n. We have the following [16]:

Definition 1.8. A Young diagram is a finite collection of boxes arranged in left-
Justified rows, with row sizes weakly decreasing. The Yound diagram associated to
the partition X = (A1, X, ..., \,) is the one that has r rows and \; boxes in the it
row (see Figure 1.3).

Figure 1.3: The Young diagram that corresponds to the partition A = (3,2,1).

Let A = (A1,...,\;) be a partition that is associated to a given Young diagram
and let V) be the corresponding representation. The dimension of the representation
V) is given by the following formula, known as the “hook length” formula. For each
box v we compute its hook length hy(v), that is, the number of boxes horizontally
to the right and vertically below the box in question, including the box itself. The
dimension of the representation is then n! divided by the product of the hook lengths,

namely:
n!

Hvehk(v)

We shall describe now, following [16], how a given irreducible representation of
S, is decomposed when it is restricted to S,_1, thus giving us a rule to construct the
representation inductively. Given an irreducible representation 7 of S,, with Young
diagram Y, its restriction to S, _1 is the direct sum of each representation of S, 1
obtained from .S,, by removing a box so as to obtain a Young diagram. We have
the following situation that describes inductively all irreducible representations of
all symmetric groups:

Vi =

[ ] S

L[]

L]

Eé\

= 5

Sy
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One can imagine the diagram to continue indefinitely downwards. The lines con-
necting different row represent the restrictions of the representations. For example,

the restriction of of S, restricts to the direct sum of Hj and [T 17 of Sj.

On the other hand, since the Iwahori-Hecke algebra H,(u) can be regarded
as a u—deformation of CS,,, it is semisimple. Choosing a u close to 1, the whole
structure of H,(u) and the inclusions H,(u) C H,,;;(u) remain the same under the
deformations. We have the following theorem [16, 35]:

Theorem 1.4. Ifu # 0 and u is not a root of unity, the irreducible representations
of Hp(u) are in one—to—one correspondence with Young diagrams. The decomposition
rule and hence their dimensions are the same as for S,,.

1.5 The Temperley—Lieb algebra

The Temperley-Lieb algebra over C was originally defined by generators fi,..., f,_1
subject to the following relations:

fi2 = fi
fififi = o0fi, |i—jl=1
fifi = fifi, li—jl>1

where ¢ is an indeterminate (see [10],[16],[15]). The generators f; are non-invertible;
one can define the Temperley—Lieb algebra with the following invertible generators
(see [16]):

where u is defined via the relation 71 = 2 4+ u +u~!.

The Temperley algebra TL,,(u), over C(u), is defined by generators hq, ..., h,_1
under the relations:

hihih; = hshihs,  |i—jl =1 (

hih; = hihs,  |i—j] > 1 (1.13
h?:(u—l)hi—{—u (
hihhi + hjhi+hihy + hi +h; +1=0, |i—j| = 1. (

Note that relations (1.15) are symmetric with respect to the indices i, j, so rela-
tions (1.12) follow from relations (1.15). Relations (1.12)—(1.14) are the well-known
defining relations of the Iwahori-Hecke algebra H,,(u). Therefore, TL,(u) can be
considered as a quotient of H,(u) over the two-sided ideal generated by relations
(1.15).

Definition 1.9. The Temperley—Lieb algebra TL,(u) can be defined as the quotient

of the algebra H, (u) over the two—sided ideal generated by the Steinberg elements
h

/L?]:

hij = Z hy, forall |i—j|=1. (1.16)

WE(84,55)

It is not difficult to show that the ideal of Definition 1.9 is a principal ideal and is
generated by the element h; 5. Indeed, we have the following:
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Proposition 1.5. The algebra TL,(u) is the quotient of the algebra H,(u) over the
two—sided ideal that is generated by the element hy o, namely:

In the remaining part of this section we will give the results of [10, 16] on a linear
basis for TL,(u) and an upper bound for the dimension of the algebra TL, (u). We
have the following proposition [10]:

Proposition 1.6. The following is a spanning set for TL,(u):
Bn - {(hj1hj1—1 . hjl—kl) (hjghsz—l e hjg—kz) [ (hjphjp—l .o hjp—kp)}
where 1 < j1 <jo<...<jp<n—1land 1 <ji —k <jo—Fke <...<jp—kp,

One can count the monomials in B, by corresponding them to the paths from
(0,0) to (n,n), that do not cross the diagonal, in the lattice Z? [15, 10]. For example,
the element (hshszhs)(hshihs) € Bg corresponds to the following path in Z2.

(0,0) = (4,0) — (4,2) — (5.2) — (5,3) — (6,3) — (6,6).

Such paths are counted by the Catalan numbers, ¢, == —— (2:) Thus we have that:

n+1
dim(TL,(u)) < ¢,.

1.6 The Jones Polynomial

Jones’ methods for redefining his Markov trace on the Temperley—Lieb algebra as
factoring of the Ocneanu trace on the Iwahori-Hecke algebra [16] tells us that the
least requirement is that the Ocneanu trace respects the defining relations (1.15),
that is, 7 annihilates the generator of the defining ideal of the quotient algebra
TL,(u), namely:

T(hlyg) =0

or equivalently:
(u+ 1)+ (u+2)¢C+1=0, (1.17)

which has the two following solutions for (:

1
= — d ¢(=-1. 1.18
(=——s and ¢ (118)
The value ¢ = —1 is of no topological interest since from Eq. 1.5 we have that:

u™ — 1 u™ — 1
) = + + (=)™ ).
= (S0 ()
Hence, the trace 7 gives the same value for any even (resp. odd) power of the gen-
erators h; and therefore important topological information is lost. Thus, when we
discuss topological invariants of links, we consider that 7 passes through to the quo-

1

tient algebra TL,(u) only for the case where ¢ = -
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In Section 1.3 we discussed the construction of the Homflypt polynomial through

the Ocneanu trace [16]. By specializing the trace parameter ¢ to —ULH the Jones
1

polynomial is recovered. Indeed, for ¢ = —-5 in Eq. 1.9 we have that:

and therefore Eq. 1.10 becomes:

X = (-2 (v riata) (1.19)

Denoting V(u)(&) := X (u,u)(&) one obtains the one-variable Jones Polynomial as
a specialization of the Homflypt polynomial (see also [16], [10], [12]).

1.7 The representation theory of the algebra TL,(u)

In this Section we will discuss the representation theory of the Temperley-Lieb
algebra by refering to the discussion of Section 1.4, and then use it to compute the
dimension of TL,(u). From Definition 1.9 we have that TL, (u) can be considered
as a quotient of the algebra H,,(u) over the two—sided ideal that is generated by the
relations:

hihigihi + higrhi + hihigy + higr +hi +1 = 0.

It is known [16] that the representations of the symmetric group for which
8i8i+15i + Sit18; + SiSiy1 + Sip1 +5i +1 =0
are those whose Young diagrams have at most two columns. Indeed, let

Ty - Sn — El’ld(V)\)
S; 7T)\(Si)

be the representation of S, assosiated to the partition A of n. For n = 3 we asso-
ciate (I 1] to the identity representation, Hj to the representation that sends s; to

01
tion. For the first case we have that:

( —L ) and s; to 1 _(1) ) and finally, we associate E to the sign representa-

s 8i8i418i + 5i418i + 8iSip1 + Sip1 + 85+ 1) =1+1+1+14+14+1=6,

T

which is not equal to zero and thus it is discarded.
For the second case we have that:

0 —1 0 —1
T (8iSiv18; + Siv18i + 8isiy1 + Sip1 + 8+ 1) = ( ) + < )

Bﬂ -1 0 1 -1

(Do) ()G ) G)=(00)
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For the last case we have that:

i
Notice that the last two cases have at most two columns. Therefore, the irreducible
representations of TL,(u) are the irreducible representations of H,(u) that their
restriction to S3 does not contain the trivial representation. In other words, the
irreducible representations of TL,(u) are the irreducible representations of H, (u)
that have at most two columns in their Young diagram. One obtains the following
diagram for TL,(u), whose meaning is the same as for the case of Hecke algebras
of Section 1.4, where the Young diagrams are replaced by the dimensions of the
corresponding representations:

(SiSiJrlSi -+ Si4+15; -+ S8;Si+1 + Si+1 +s; + 1) =-1414+1-1-141=0.

1 TLy(u
1/ \1 TLa(u)
\ 7

2 1 TLg(u)
A
2 3 1 TLy(u)

The sum of the squares of the dimensions of the irreducible representations in
the k' row gives the dimension of the algebra TLy(u) . Therefore we have that:

dimTL, (1) = — (2”)

n+1l\n

For an explicit proof the reader should refer to [10, §2.8, §2.11]. Thus, we have also
the following:

Corollary 1.1. The set B is a linear basis for TL,(u).

For the rest of this section we shall present the results of Juyumaya and Lam-
bropoulou regarding invariants of framed links (see [18], [17],[23], [20], [21], [22]).

1.8 Framed braids

The group Z" is generated by the “framing generators” ti,...,t,, the standard
multiplicative generators of Z". In this notation an element a = (a4, ...,a,) € Z"
in the additive notation can be expressed as t}* ...t%. The framed braid group on
n strands is then defined as:

Fn=17Z" x B,
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where the action of B, on Z" is given by the permutation induced by a braid on the
indices:
O'itj = tsi(j)o—r (120)

In particular, o;t; = t;110; and t;,10; = o;t;. A word w in F,, has thus the “splitting
property”, that is, it splits into the “framing” part and the “braiding” part:

w=t".. . to

where 0 € B, and a; € Z. So w is a classical braid with an integer attached to each
strand. Topologically, an element of Z™ is identified with a framed identity braid on
n strands, while a classical braid in B, is viewed as a framed braid with all framings
zero. The multiplication in F,, is defined by placing one braid on top of the other
and collecting the total framing of each strand to the top.

For a fixed positive integer d, the d-modular framed braid group on n strands,
Fan, is defined as the quotient of F,, over the modular relations:

th=1 (i=1,...,n). (1.21)

Thus, Fy, = C} X B, where C7 is isomorphic to (Z/dZ)™ but with multiplicative
notation. Note that there is an obvious embedding of CCY} in F;,. Framed braids
in F,, have framings modulo d.

Passing now to the group algebra CF,,,, we have the following elements e; (see
Figure 1.4 diagrammatic interpretations), which are idempotents (cf. [20, Lemma

4]):

d—1
1 S1—S8 N
e ::EZtitiH, i=1,...,n—1. (1.22)
s=0
0 0 0 1d-1 0 2d-2 0 d—1 1 0
e = c11_ + + + ot

Figure 1.4: The element e; € CFy3.

The definition of the idempotent e; can be generalized in the following way. For
any indices i, j and any m € Z/dZ, we define the following elements in CF,,,:

=
€ij = C_l tht]—s, (123)
s=0
and:
=
e = SOt (1.24)

I
o

S

(notice that e; = €;,41 = ez(-o)). The following lemma collects some of the relations

among the ¢;’s, the t;’s and the o;’s. These relations will be used in this thesis.
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Lemma 1.1. For the idempotents e; and for 1 <1, j < n—1 the following relations
hold:

tjei = eitj
€i+10; = 04€i42

€05 = 06, fOT]#Z—l,Z—Fl
€;0,0; = 0,056 fO’I” |Z — j| =1
€i€i+1 = €€ 42
€i€it1 = €ii42€i11.

Proof. All relations are immediate consequences of the definitions. The proofs for
the first four relations can be found, for example, in [21, Lemma 2.1]. For the fifth
relation we have:

d— _

€;€; = 1 t t

iCi4+1  — d z 1+1d i+1%42
0 m=0

&
IS

1 -1 d-1
- = B (1.25)
=0 0

3
I

Setting now k = m — s we obtain:

R.
—_
QU
L

1

(125) = —

(]

stk
tzt 1tz+2

v}
H”
=)
i
=)

1 54— —k
= 7 tztz+2 dztz—i—ltHQ

- 61,1—}—2 €it1-

Q.

The sixth relation is proved in an analogous way. O]

We conclude this section with two more technical lemmas that will be used
extensively in the rest of this thesis.

Lemma 1.2. For 1 <i<n—1 and m € Z/dZ we have the following:

(m) (m)
€ "G+l = €i€ip

Proof. We have that:

d— d—1
m 1 pmtsy—s m+sy—s+ki—k
ez( )€¢+1 p Z i tz—l—l Zt z+2 ) Z t T (1.26)
s=0 5,k=0
Setting now r = m + s we have that:
=
rym—r+ki—k __ ry—r m+kyi—k __ (m)
(1 26) d2 Z tz tz—l—l 2fz—|—2 - thtz+1d th—l—l tz+2 €;€ 41
r,k=0

In a complete analogous way we can also prove that:

Lemma 1.3. For 1 <i <n the following holds m € Z/dZ:
d—

1 _
y Z tmEss = Z totm e,
s=0
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1.9 The Yokonuma—Hecke algebra

The Yokonuma—Hecke algebra 'Y 4, (u) is defined [18, 20] as the quotient of the group
algebra C(u)F,, over the two-sided ideal generated by the elements:

o7 —1—(u—1)e;— (u—1)e;0o4, for all i,
which give rise to the following quadratic relations in Y4, (u):
g=14+@u—-1)e+(u—1)eg (1.27)

where g; corresponds to ;. Since the quadratic relations do not change the framing
we have that CC} C C(u)C} C Yg,(u) and we keep the same notation for the
elements of CC? and for the elements e; in Y4,,(u). We have the following definition
(18], [23]:

Definition 1.10. The algebra Y 4,(u) has a presentation with generatorsty, ..., t,, g1,

git; = ts,(j)9i
g7 =14 (u—1)e; + (u—1)eg;

G2, Gn_1, subject to the following relations:
9i9; = 9;9i li—jl>1 (1.28)
9:959: = 9;9:9; i —jl=1 (1.29)
tf=1 (1.30)
tit; = tit; (1.31)
(1.32)
(1.33)

The elements g; are invertible (see Figure 1.5 for diagrammatic interpretations):

g =g+t W =1)e+ W —1)eg.

0 0 0 0 0o 0 0 0 0 1 d-1 0 2 d—2 0 d—1 1 0

0 0o o0 1 d-10 2 d-2 0 d—1 1 0
=l nl el e=al
) ) ) )
Figure 1.5: The element g; " € Yq3(u).

Remark 1.5. For d = 1 we have t; = 1 and e; = 1, and in this case the quadratic
relations (1.27) become g7 = (u — 1)g; + u, which are the quadratic relations of
the Iwahori-Hecke algebra H,(u). So, Y;,(u) coincides with the algebra H, (u).
Further, there is an obvious epimorphism of the Yokonuma-Hecke algebra Y, (u)
onto the algebra H,,(u) via the map:

gi

t

h;
; (1.34)

—
—
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We can alternatively define the algebra Y, (u) as a u—deformation of the algebra
CCy, (recall that Cy,, is the semidirect product C% x S,). More precisely, let
w € 5, and let w = s;, ...s;, be a reduced expression for w. Since the generators
gi = gs;, of Yq,(u) satisfy the same braiding relations as the generators of S,,, then
together with the well-known theorem of Matsumoto [28], it follows that the element
Gw = Gi, - - - gi,, is well defined. We have the following multiplication rule in Yy, (u)
(see Proposition 2.4[17]):

| gsw for I(s;w) > l(w)
goi = { Gogw + (1 = Vesgun + (u— Desgy for Hsw) < Lw) 3%

We also correspond ¢, to t; and we define: ¢;.., = 91,9 = tigw. Next we present
an inductive basis for the Yokonuma-Hecke algebra. We will need the following
proposition [18]:

Proposition 1.7. Every word in Yq,(u) can be written as a linear combination of
words inty, ..., ty, g1 ..., gn_1 having at most one a1 € {gn_1t" |1 <m < d—1}.
Words containing o, 1 at most once are called reduced.

We have the following definition:

Definition 1.11 ([18]). The normal words of Y4, (u) are the words that are of the
form:

VoU1 ...Up—1
where v; € R;, such that R, = {1,t,gv|v € R,.1,1 < m < n— 1} and
Ry:= {1L,t7"|1 <m <n-—1}.

Remark 1.6. An analogous argument holds for the algebra CCy,,. Indeed, if we
change the quadratic relation of Definition 1.10 to s? = 1, one can easily prove that
any word in CCy,, can be written the form:

WoWy ... WpH—1

where w; € W, := {1,8;,,s,w|w € W;_1,0 < s <d—1} and Wy :={1,¢] |0 < s <
d—1}.

Proposition 1.8 ([18]). The algebra Yu,(u) is linearly spanned by the normal
words.

What remains now to show is that the set of the normal words in linearly inde-
pendent and thus it furnishes a linear basis for the algebra Y, ,(u). For this one has
to use the method of J. Tits [14].

Proposition 1.9 ([18]). The set of normal words is a C(u)-basis for Y 4., (u). More-
over, the dimension of Yq,(u) is d"n!.

Sketch of proof. For further details the reader should refer to [18]. Let V' = C(u)Cy,,
and let ¢ € V.We define the following algebra homomorphism p and A from the
algebra Y, ,(u) to the algebra End(V):

(s it 1(gsi) > 1(g)
Pg:9 -= gsi+ (u—1)e; + (u—1)gsie; if I(gsi) <(g)
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\ogo—d 5 if I(sig) > 1(9)
597 sig+ (u—1)e; + (u—1)essig i (sig) < (g)

For any t; € C} we can define A, and p;, as A\;,g = t;g and p;,g = gt; respectively.
Moreover, it is obvious that A, py, = pg; Ay, for any t;,t; € Cj. Next, one has to
prove that Ay p,. = pg; Ay, by distinguishing cases according to the lengths of g,
s5ig, gs; and s;gs;. Further, the map ¢t — X, g; = A, defines a homomorphism of
C(u)-algebras A : Yy, (u) = End(V). Finally, we deduce that:

)\(Uo e Un—l)(]-) =W1...Wp-1-

Thus, any linear combination ) ayg (where g runs the normals words in Y, (u))
becomes a linear combination ) |  a,w, where now w runs the normal words in Cg,y,.
Therefore oy = 0, for all g, and thus the set of normal words in Yy, (u) is linearly
independent. Two final remarks are now due.

Remark 1.7. The normal words of Proposition 1.9 can be rewritten in the form:
Wp1Gn1---GilF or wy_itF (1.36)

where w,,_; is in the inductive basis of Y4,-1(u) and 0 < k < d — 1. We shall use
this notation for the rest of this thesis.

Remark 1.8. In analogy to Remark 1.4, the set of normal words indicate that the
following natural inclusions exist:

Yd,n(u) - Yd,n—}—l(u)-

Thus, Ygn,+1(u) can be considered a Yg,(u) — Ya,(u) bimodule.

1.10 A Markov trace on Y, (u)

Using the inductive basis of Proposition 1.9, J. Juyumaya constructed in [18] a
unique linear Markov trace on the algebra Y, (u). Namely:

Theorem 1.5 ([18] Theorem 12). Let d a positive integer. For xo := 1 and inde-
terminates z, x1, ...,xq_1 there exists a unique linear Markov trace tr:

tr: U Yan(u) — Clu)[z, 21, ..., 24-1]
defined inductively on n by the following rules:
= tr(ba)
1

ztr(a) (Markov property)
i) tr(aty,) = xstr(a) (s=1,...,d—1)

R e e e
~
~
S pa——g
—+
=
P e T R
=
:Q =
~—
Il

where a,b € Yq,,(u).
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Remark 1.9. By direct computation, tr(e;) takes the same value for all i. We
denote this value by F, that is:

d—1

E = tr(e;) = 2112 r(t5t5) = Zas Tis,

s=0

For all 0 < m < d — 1, we also define:

IS9
—
T
—

E(m) — tr(egm)) — (tm+st1_+1> xm+3xd757

ISHN
&Ir—‘

@
Il
o
@
Il
o

Notice that E = E©,

1.11 Framed link invariants through Y, (u)

In analogy to the classical case, closing a framed braid gives rise to an oriented
framed link. Conversely, by adapting Theorem 1.2 to the framed link context, an
oriented framed link can be isotoped to the closure of a framed braid.

Further, adapting Theorem 1.3 to the modular framed braid context, isotopy
classes of oriented modular framed links are in one-to—one correspondence with
equivalence classes of modular framed braids. More precisely, we have the following
result from [23]:

Theorem 1.6 (Markov equivalence for framed braids and modular framed braids).
Isotopy classes of oriented framed links (resp. modular framed links) are in bijec-
tion with equivalence classes of framed braids in UnenF, (resp. UnenFan). The

equivalence relation is generated by the two mowes:
(1) Conjugation: off ~ Bo, «a,p € F, (resp. Fan)
(ii) Markov move: a ~ ao, ',  « € F, (resp. Fan)

The case of classical framed links is well known (see for example [26]).

1.11.1 The E—system

In analogy to the discussion of Section 1.3 and according to Theorem 1.6, any
invariant of oriented framed links has to agree on the closures of the braids «a, ao,
and ao,!. Note the resemblance of the conjugation rule and the Markov property
in Theorem 1.5 with moves (i) and (i7) of Theorem 1.6. Following [16] Juyumaya
and Lambropoulou defined an invariant by re—scaling and normalizing the trace tr.
In order to do that one needs that the expression tr(ag, '), for @ € Y, (u), factors
through tr(a), just like tr(ag,) does from the Markov property of the trace [23].
Yet, we have:

tr(ag,t) = tr(agy) + (u™! — Dtr(ae,) + (u™' — Dtr(ae,g,) (1.37)
Note that the following holds for any y € Yg,,(u):

tr(y engn) = tr(ygn) = 2 tr(y)
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since:
= 1 41
YEngn = E Z yt? 7_L-Tlgn = a Z ytnmgnt;m-
m=0 m=0
Thus, we only need further that the trace tr satisfies the multiplicative property:
tra(ae,) = trg(a) tra(e,) a € Yan(u) (1.38)

With these properties we could then define framed link invariants using the same
method as for defining the Jones polynomial[16]. Unfortunately, we do not have a
nice formula for tr(a eq,,). The reason is that the element e, involves the nth strand
of the braid a.

Remark 1.10. One obvious solution of the E-system is that the z;’s are d** roots
of unity but this of no topological importance. Indeed, if we let the x;’s be d** roots
of unity, we have the following example:

tr(thth) = zpr; = 2pqy = tr(ti 1Y)

but the closures of these two 2-stranded braids are not isotopic as framed (un)links
of two components. In [23] it is proved that such a rescaling is possible if the
trace parameters x; are solutions of a non-linear system of equations, the so—called
E—system.

Definition 1.12. [23] We say that the complex numbers (xg, z1,...,24-1) (Where
xo is always equal to 1) satisfy the E—condition if x4, ..., x4 1 satisfy the following
E-system of non-linear equations in C:

E™ =g E (I1<m<d-1)

or equivalently:

d—1 d—1
me+sxd_5 =T, szxd_s (1<m<d-1). (1.39)
s=0 s=0

In [23, Appendix] it is proved that the solutions of the E-system are the complex
functions = : s — x4 over Z/dZ, parametrized by the non—empty subsets S of the
cyclic group Z/dZ as follows:

1
Ts =gy Zexps (1.40)
| ’sES

where exp, (k) = exp(2imsk/d), for 0 leqgk < d — 1 (see Theorem 1.7 below).

Remark 1.11. It is worth noting that the solution of the E-system can be inter-
preted as a generalization of the Ramanujan’s sum. Indeed, by taking the subset P
of Z/dZ consisting of the numbers coprimes to d, then the solution parametrized by
P is, up to the factor |P|, the Ramanujan’s sum c4(k) (see [30]).

Equivalently, z, can be seen as an element in CCy, namely:

d—1
T, = Zxktk (1.41)
k=0
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where z;, = ﬁ Y osesXs(k), K =0,...,d =1 and x, is the character of Cy defined

as Xs : t™ > expy(m). So, the coefficient z;, of t* in (1.41) corresponds to z, (k) in
(1.40).

Recall now that on the group algebra CG of the finite group G, we have two prod-
ucts, one of them is the multiplication by coordinates, also called the multiplications
of the values, which is defined as:

and the other product is the convolution product:

<Z agg) % <Z bhh> =3 aghugh =) _ (Z ahbgh_l) q. (1.42)

gelG hed geG hel geG \heqG

By taking G = C,; and considering the element x = Zogk <d1 x,t*, we have the
following lemma:

Lemma 1.4. In CC; we have:
rxx=d Z EO¢
0<<d—1

and
Txxxr = d° Z tr(efey)t’.

0<¢<d—1

Proof. The expression for x % x follows immediately by direct computation. Indeed,
from the definition of the convolution product we have that:

d—1 d—1 d—1 d—1 d—1 /d—1 d—1
TR = Z apt® Z agtt = Z Z apatttt = Z ( akagk> tt = dz EO
k=0 =0

=0 k=0 (= =0 k=0

For the second expression we have that:

THxT kT =d Z EO# 5 1

0<t<d—1

=d E EO# « E ait”
0<t<d—1 0<k<d—1

— 4 Z EO gk
0<l,k<d—1

=d E agay_sapt™F
0<t,k,s<d—1

=d Y awa gt
0<t,k,s<d—1

= d2tr(e¥)ez).
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For each a € Z/dZ the character y, defines, with respect to the convolution
product, an element i, of CCy,

One can verify that

o di, ifa=05b
la 1, =
’ 0 ifa##b

that is, i,/d is an idempotent element. On the other hand, regarding 4, := t* as
element in CCy, it is clear that,

5. .6, = Oa ?fa:b_
0 ifa#b

The connection between the two products on CCy is given by the Fourier transform.
More precisely, the Fourier transform is the linear automorphism on CCYy, defined

| x = Z ast® — T = Z (x *1g)(0)t° (1.43)

0<s<d—-1 0<s<d—1

With the above notation we have:

Lemma 1.5. The following hold in CCy:

—

b0 =1i_a, i, = dé,, %(u) = dz(—u).
Proof. The proof is just a straightforward computation (see [32]). O

We can now prove the following theorem using the notation that we introduced
above (see [23, Appendix] for the original proof):

Theorem 1.7 (P. Gérardin). The solutions of the E—system of Eq. 1.39 are of the

form:
1
Ty = E E €XPg

ses

where z(0) := 1.
Proof. The E—condition (1.39) can be written using Lemma 1.4 as:
rxxx = (zxx)0)z.
To solve the E—system we use Fourier transform to obtain:
72 = (zx2)(0) 7.

If (z * 2)(0)

= 0, then 72 = 0 so 7 is 0 and also is x, which is excluded by the
condition z(0) =

1. Now, the equation says that the function Z is constant on its
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support S where it is (z % x)(0). As the characteristic function of S is, up to the
factor d, the Fourier transform of the sum of i,,a € S, we have shown that

v = (x*x)(o%Zis—EZis (1.44)

ses seS

1
For z(0) = 1, we have (x * x)(0)3|5| = 1, with |S]| the cardinality of S. Applying

Lemma 1.4 we deduce that: )
E=— (1.45)
5]
We have proved that the solutions of the E—system are the functions x¢ parametrized
by the non—empty subsets S of the cyclic group C; of order d as follows:

1 .
ISZEZIS

We have the following remark due to [23, Appendix]

Remark 1.12. For S = Cy, it is the trivial solution ig. The complement of the
support of any non trivial solution is another solution. In particular, each element

a € C,4 defines two solutions of the E—system : one is the character y,, the other is
Xa

1—-d

outside 0. When the order d is even, we can take a = d/2, this gives

(="
1_d,u7é0.

We have the following theorem [23]:

given by

the solution u —

Theorem 1.8. If the trace parameters x1,...,xq_1 satisfy the E—condition then for
all o € Yg,(u) we have:
tr(aeq,) = tr(a) tr(eqn)

1.11.2 Link invariants from tr

Let d € Nand let Xy9 = {x1,...,24-1} be a solution of the E-system parametrized
by a non—empty subset S of Z/dZ. Then, using Theorem 1.8 we can proceed with
the factorization of tr(ae,) in (1.37). Indeed, we have from (1.37):

tr(ag,') = [z+ @' —=1)E+ (" —1)z] tr(a)
—(u—1
= % tr(a) = tr(g, ') tr(a)
where E was defined in Remark 1.9. For the value of E under the E—condition, recall
from (1.45) that F = ﬁ In analogy to the construction of the Homflypt polynomial
(see Section 1.3), ag, and ag,' must be assigned to the same trace value for any
a € Yg,(u). For this, we define
z—(u—1)

v uz|S| (1.46)
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SO
z—(u—1)
trg(g ) = ————2 = w2. 1.47
Denote now by exponential sum e(«) of « as the algebraic sum of the exponents of
the o;’s in «, and let 7 is the natural epimorphism of F, onto Y4, (u). We then

have the following definition [23, 22]:

Definition 1.13. Given a solution of the F-system parametrized by a non—-empty
subset S of Z/dZ, for any framed braid « € F,, we define for its closure a:

(1 —wu)|S]
Vw(u—1)
Let now £ denote the set of oriented framed links and let C(u)(z, 1, ..., T4-1)

be, as usual, the ring of rational functions on z, X4 g over C(u). Then we have the
following [23]:

Lasw. (@ = ) (VD) Dtr((a))

Theorem 1.9. If the set X, satisfies the E—condition then the map 'y s(w,u) is
an isotopy invariant of (modular) oriented framed links:

Fos(w,u) : L — C(u)(z,21,...,24-1)
a — TIys(@)

Further, by restricting I's(w,u) to classical links, seen as framed links with
all framings zero, to an invariant of classical oriented links is obtained, denoted
Ad’s(w, u) .

In [2] it is proved that the invariants Ay g(w,u) coincide with the Homflypt
polynomial, P(u, ) for the trivial cases where u = 1 and £ = 1. In order to compare
these two invariants, Chlouveraki and Lambropoulou specialized the indeterminates
x1,...,Tq_1, thus constructing a specialized Juyumaya trace.

Definition 1.14. Let xq,Xs,...,x41 € C\{0} and consider the ring homomorphism

0:C(u)[z,x1,...,x4-1) —> C(u)lz]
z z
T Xom (1<m<d-1)

The map @ shall be called the specialization map. We will call the composition

Ootr: U Yin(u) — C(u)[z]

the specialized Juyumaya trace with parameter z.

In the case where X4 = {z1,...,24-1} is a solution of the E-system we denote:
0 otr = tr,. In particular for the case where £/ = 1 we have the following:

Proposition 1.10. Let X4 ¢ be a solution of the E-system such that E = 1. Let tr
be the Markov trace on Y q,(u) with parameters z, Xqs, and let T be the Ocneanu
trace on H,(u) with parameter (. If we take z = (, then

(Tom)(a) = (trod)(a) (o€ By)
for alln € N,
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By the assumptions of Proposition 1.10 we have that w = A and thus:

Corollary 1.2. Let X4 be a solution of the E-system such that E = 1. Let tr be
the Markov trace on'Y 4, (u) with parameters z, Xqg, and let T be the Ocneanu trace
on H,(q) with parameter (. If we take ( = z, then

P, \)(@) = Ags(w,u)@) (o € By)
for alln € N,

We conclude this chapter with a few words on the representation theory of the
Yokonuma—Hecke algebra.

1.12 The representation theory of Y ,(u)

The representation theory of the Yokonuma—Hecke algebra has initially been studied
by Thiem in the general context of unipotent Hecke algebras [33]. Chlouveraki and
Poulain d’Adency [4] developed an inductive and highly combinatorial approach to
the representation of the Y, (u). We know that Y, (u) is a u—deformation of CCy,.
Since the group Cy,, is isomorphic to the complex reflection group G(d,1,n), the
representations of the complex reflection group are studied instead. We start with
the following definition [4]:

Definition 1.15. Let d € N. A d-partition X\, or a Young d—diagram, of size n is
a d—tuple of partitions such that the total number of nodes in the associated Young
diagrams is equal to n. That is, we have A\(1), ..., AX(d—1) usual partitions such that

MO+ AD)|+ ...+ [Nd—=1)] =n.

We also say that X is a d—partition of n. We denote by P(d, n) the set of d—partitions
of n. We have P(1,n) = P(n).

A standard d—tableau of shape A € P(d,n) is a way of filling the boxes of the
Young d-diagram of X\ with the numbers 1,2,...,n such that the entries strictly
wmcrease down the columns and along the rows.

For example for the standard d-tableaux 7 of size 3 we have :

7= ([113} 2. [2])

We write § = (z,y) for the node in row z and column y. A pair (6, k) consist-
ing of a node # and an integer k € {1,...,d} is called a d—node. The integer k
is called the position of 6. A d-partition is then the set of d—nodes such that the
subset consisting of the d—nodes having position k forms a usual partition, for any
ke{l,...,d}.

For a d-node lying in the line x and column y of the k™ diagram of A (that is
0 = (x,9,k)), define p() := k, the position of 6 and c(0) := ¢*¥=®), the quantum
content of 6.
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For a d-tableaux 7T, we denote by p(7 | i) and ¢(7 | i) the position and the quan-
tum content of the d-node with the number ¢ in it.

Let {&1,...,&5-1} be the set of all roots of unity ordered arbitrarily. Let also
Vi be a C(u)-vector space with basis {v,} indexed by the standard d-tableaux of
shape A, and set v, := 0 for any non-standard d-tableaux 7 of shape A\. We have
the following proposition [3]:

Proposition 1.11. Let T be a standard d—tableauz of shape A € P(d,n). The vector
space Vy is a representation of Y, (uw) with the action of the generators on the basis
elements v defined as follows fori=1,... n:

ti(vy) =&,V
fori=1,....,n—11if p; # pis1 then:
gi(VT) = VTSi

and if p; = P11 then:

Cirqr(u —u™t uciq — ute;
gi(VT): H—l( )+ i+1 7

v .
TS
Civ1 — G Ciy1 — G !

where s; is the transposition (i, + 1).
The following Theorem describes the irreducible representations of Y, (u) [4].

Theorem 1.10. For any A\ € P(d,n), let V) denote the representation of Y4, (u)
constructed in Proposition 1.11. Then

(a) If Vy is isomorphic to Vy for some N € P(d,n) then A = \'.
(b) The representation V) is irreducible.

(c) The set {Vix| A € P(d,n)} is a complete set of pairwise non—isomorphic irre-
ducible representations of Y g (u).

Remark 1.13. Since Y4, (u) is a u—deformation of CCy,,, the specialization u —
1 induces a bijection between the irreducible representations of Y., (u) and the
following set of irreducible representations of G(d, 1,n) [4]:

Irr(G(d, 1,n)) = {E* |\ € P(d, \)}. (1.48)
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Chapter 2

Framization of the
Temperley—Lieb Algebra

2.1 Three possible candidates

Recall that the algebra H, (u) is a u—deformation of the group algebra CS,,, while
TL,(u) is the quotient of H, (u) over the two—sided ideal that is generated by the
Steinberg elements h; ;11, given in Definition 1.9, namely:

higai = ha

we(si,siJrl)

As mentioned in the Introduction, the algebra Y, (u) is the basic example of a
framization of the Iwahori-Hecke alebra, H,(u). Moreover, from the discussion in
Section 1.9, Y4, (u) can be regarded as a u—deformation of the group algebra CCl,,.
Following the construction of the classical Temperley—Lieb algebra we would like to
introduce an analogue of TL, () in the ‘framing context’, that is, in the context of
framed knot algebras. Namely, to define a quotient of Y, (u) over a two-sided ideal
that is constructed from an appropriately chosen subgroup of the underlying group
Can of Yan(u). At this point two such subgroups emerge naturally. More precisely,
the subgroups (s;, s;+1) of S,, that are related to the defining ideal of TL, (u) can be
also considered as subgroups of Cy,. Thus, we consider the following elements in
Ydm(U)I

Giit1 = Z 9w =14 gi + giv1 + 9igiv1 + 9iv19i + 9i9i+19i (2.1)
we(si,si+1)

The second possibility is to let the framing generators ¢; be involved in the
generating set of such a subgroup. Thus, we consider the following subgroup of
Cd,n3

Ciiv1 = (i tigr, tiva) X (54, Siy1).
We also consider the following elements in Yy, (u):
Capti= Y, Gu= D ] giin (2.2)
weC i1 a,B3,7€Cq

The second equalities in (2.1) and (2.2) follow from the multiplication defined on
Y. (u) (recall Eq. 1.35). Therefore we can define at least two types of algebras which
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could be considered as analogues of the Temperley—Lieb algebras in the context of
knot algebras with framing.

Definition 2.1. For n > 3, the Yokonuma-Temperley—Lieb algebra, denoted by
YTLgyn(u), is defined as the quotient of Y, (u) over the two—sided ideal I; generated
by the elements g; ;1+1, namely:

Ydm(u) _ den(u)
<gi,i+1 s for all Z> Il )

Definition 2.2. For n > 3, we define the Complex Reflection Temperley—Lieb al-
gebra, denoted by CTLgy,(u), as the quotient of the algebra Yy, (u) over the ideal
that is generated by the elements c;;1;, that is:

Y
CTLgp(u) == d’#(u).

As mentioned in Section 1.11.2, invariants for framed knots and links are defined
through the trace tr on the Yokonuma—Hecke algebra, by imposing the E—system
on the parameters 1, ...,x4_1 [23]. Hence, we expect that the ‘framization’ of the
Temperley—Lieb algebra will allow us to define a ‘framization’ of the Jones poly-
nomial, analogous to that of the Jones polynomial. Unfortunately, both quotients
above are not satisfactory for this purpose. More precisely, in the case of Iy, very
strong conditions on the trace parameters must be applied in order for tr to pass
through to the quotient algebra. This leads to a great loss of topological information,
thus YTL,,(u) is also not a good candidate. However, the original Jones polynomial
can be recovered from this quotient algebra. In the case of I, the algebra CTLg,,(u)
is large enough so that only conditions on the trace parameters z are needed in order
that tr passes to the quotient algebra CTLg,(u) (see Theorem 3.7). However, in
order to obtain knot invariants we would still need to impose the E—system on the
trace parameters xy, ..., 241 as in the case of Yg,(u).

YTLd’n (u)

The trace considerations indicate a third alternative of definition for the analogue
of the Temperley—-Lieb algebra as knot algebra with framing: the Framization of the
Temperley—Lieb algebra. More precisely, we define this framization as a quotient of
the Yokonuma—Hecke algebra over an ideal that is constructed from the following
subgroup of Cy :

Hi,iJrl = <tzt;+11, ti+1t;_,’_12> X <Si, S; + 1> for all 4.
Each x in H, ;41 can be written in the form:
T = 10t 1] w, (2.3)

where o+ 8+ =0 and w € (s;, Si11).
We have the following definition:

Definition 2.3. For n > 3, the Framization of the Temperley—Lieb algebra, denoted
by FTL,,(u), is defined as the quotient Y, (u) over the two-sided ideal J generated
by the elements

Tiit1 1= Z Je = Z tf‘tfﬂtiv”gw (t=1,...,n—2), (2.4)

acEHi’H_l Oé+,8+’)/:0
we <Si ,Si+1>

where the second equality follows from the multiplication defined on Y, (u).
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The Yokonuma-Temperley—Lieb algebra was introduced and studied in [8], while
the algebras FTLg,(u) and CTLg,(u) in [9].

2.2 Comparison of the three quotient algebras
We will now give a relation between these algebras. Following the discussion above,
we have the following interesting quotients of Y4, (u) to consider:
CTLgn(u), FTLgn(u), YTLgn(u).
Notice now that the following hold:
(siy8i41) < Hjjr1 < Cijv1 = L<J QL4

The second inclusion of the ideals, J <1 I; is clear. Indeed, every x in H; ;1 can be
written in the form:

x =10t 4t w =t it w,  where w € (s, si41).
Therefore, from the multiplication rule of Eq. 1.35, we have that g, = tftf;fti_ f2 Juw-
Thus we can rewrite the elements r;;;; in the following form:,

d—1 d—1
_ ayb—ay—b _ arb—ay—b _
Tii+1 = E titiv1livoGw = E Litizitito E Jw | = €i€i+19i4+1
a,bZ/dZ a,be€Z/dZ WE(S4,8i+1)
wE(si,si+1>

(2.5)
We shall proceed with the proof for the first inclusion of ideals. We have that:

Cm+1 = H;i11 X Cy.

Indeed, let = = tf‘tfﬂtgﬂ w € Cj 41, where w € (s;, Si+1), and let ¢ be the following
homorphism:

¢: Ciiy1 — Cy

where Cy ~ (t;|t4 = 1). Observe that ker¢p = H,,;y; and also that ¢ Hiir
ide,. This implies that C;;41 = H; 11 @ Cyq. Thus, given x € C; ;41 we have an
unique decomposition x = ¥y, where k € Z/dZ and y € H;;.,. Now, from the
multiplication rule of Y4, (u), we have:

Ciitl = Z 9z = Z tf Z Gy- (2-6)

IEECZ',H_l k‘EZ/dZ yGHi,H_l

Hence I, <1 J.
We have proved the following proposition:

Proposition 2.1. The inclusions of ideals above yield the following natural com-
mutative diagram of epimorphisms:

Yd,n (U) —— CTLdﬂ(u) ——— FTLdm(U) ——— YTLdm(u)

Hnl(u) TLE (u)://
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2.3 The Yokonuma—Temperley—Lieb algebra

The rest of this section will be dedicated to our results on the Yokonuma—Temperley—
Lieb algerba.

2.3.1 The definition of YTL,;,(u)

We will first give a definition of YTL,,,(u) in terms of generators and relations. We
have the following:

Definition 2.4. For n > 3, the Yokonuma—Temperley—Lieb algebra can be pre-
sented by the generators gi,...,gn-1, t1,...,t, (by abuse of notation), subject to
the following relations:

9i9; = 9i9i, li—jl>1 (2.7)

9i+19i9i+1 = Yi9i+19i (2.8)

@ =1+ (u—1)e;+ (u—1)eg; (2.9)

titj = tjti, for all ’L,j (2].0)

td =1, for alli (2.11)

giti = tit19i (2.12)

Gitiv1 = igi (2.13)

git; =tjg;, forj#i,and j#i+1 (2.14)

9i9i+19i + 9igit1 + 9iv19i + 9i + gira +1 =10 (2.15)

We shall refer to relations (2.15) as the Steinberg relations of Y'TLg,(u).

Note that relations (2.15) are symmetric with respect to the indices ¢, i + 1, i.e.:

959419 = —9i9i+1 — 9ix19i — Gi+1 — 9i — 1 = Gix19:Gi41.
so relations (2.8) follow from relations (2.15).

Remark 2.1. In analogy to the Yokonuma-Hecke algebra, YTL; ,,(u) coincides with
the algebra TL,, (u). Further, the epimorphism (1.34) induces an epimorphism of the
Yokonuma-Temperley—Lieb algebra YTLg,,(u) onto the algebra TL, (u). Clearly, by
relations (2.12) and (2.13), any monomial in YTLg,,(u) inherits the splitting property
of Y, (u), that is, it can be written in the form:

w=1". .. t"Gi .. iy (2.16)
where: aq,...,a, € Z/dZ.
We shall now prove that the ideal I; is in fact principal.
Lemma 2.1. The following hold in Y4, (u) for alli=1,...,n —2:

—

(1) 9. = (glgn 1) ! ( - Gn— 1) (=1)

(2) Gis1 = (91 gn1)"™ 192 (91 Qo)

) gigir1 = (91---9n1)"" 9192 (91 gn1) "7V
@) ging = (91 901)" 201 (1. guor) OV
(5) 9igit19i = (1. Gn— 1)Z 1919291 (91---gn_1)*(“1)
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Proof. We will demonstrate the proof for the cases (1) and (5). The rest of the cases
are proved in an analogous manner. For case (1) we have that the statement is true
for 7 = 2. Indeed:

(91 9n-1) 1 (91 Gn-1)"" = 01920195 - - Gn—1(91 - - - Gn—1) "
= 02(9192 - - Gn—-1)(91 - - -9n-1)_1

Suppose that the statement is true for ¢ = k. We will show that the statement holds
for © = k + 1. We have:

(g1 9n-1)%g1(g1 - gn-1)* = (91 90-1) (1 9n-1)" "g1(g1 - gn—1) ¥ V(g1 ... gn-1)""

= (g1 gn-1)9k(91 - gn-1)""

=91 Gk-19kTk+19kTk+2 - - Gn—1(g1 - - Gn—1) "
=01 Ge19k+19kGk+1 - - Gn-1(g1 - - - Gn-1)""
= gr+1(g1 - Gn-1)(g1 - - gn—1)""

= Gk+1-

For case (5) we have from (1):

9i9i419i = (91 ga1) 91091+ 90 1) T (g1 gu1)'G1(g1 - gn) ™
(g1 go) (g guor) Y

= (01 901) 191 gn )" g1 ga) T (g1 )
g1(g1- - gn-1) (g1 gn-1) T g1 Gae) (91 Gnr)”

= (g1 9n1) " 010201 (g1 - - Gua) Y,

(i=1)

O

Corollary 2.1. YTLg,(u) is the C(u)-algebra generated by the set {ti,..., t,,
g1, gn—1} whose elements are subject to the defining relations of Yqn,(u) and
the relation:

g12 = 0.
Proof. The result follows using the multiplication rule (1.35) defined on Y4, (u) and
Lemma 2.1. O

2.3.2 A presentation with non-invertible generators for YTL;,,(u)

In analogy with Eq. 1.11 one can obtain a presentation for the Yokonuma—-Temperley—
Lieb algebra with the non-invertible generators:

1
= ——(9; +1). 2.1
b= — o+ 1) (217)

In particular we have:

Proposition 2.2. YTL,,,(u) can be viewed as the algebra generated by the elements:

éla"'én—htl)"'atna
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which satisfy the following defining relations:

td = 1, foralli (2.18)
tﬂfj = tjti, fO’I” all ’L,j (219)
1
1
lit; = tili+ ——(tiz1— t; 2.22
ibi4-1 zz+u+1(z+1 z) ( )
—1)e; +2
p oo Wzbatr2, (2.23)
u-+1
0.l Iy 2.9
Ezez-i-llz <u+ 1)2 gl ( 5)

Proof. Obviously, YTLg,(u) is generated by the ¢;’s and the ¢;’s. It is a straight-
forward computation to see that relations (2.7)—(2.15) are transformed into the
relations (2.18) — (2.25). Indeed, for Eq. 2.20 we have, for |i — j| > 1, that:

1
(tjgi +t;) = tju—(gz' +1) = t;;.

1 1 1

w1 +1 +1
For Eq. 2.21 we have that:

1 1

1
u+1 u+1 u+1
On the other hand, multiplying Eq. 2.17 with ¢,,, from the left gives:

1
tiv19i + ——
u

—tin (2.27)

i u+1

1Y Z“r (3 u t’[/ t’L+] *

Equation 2.22 is proved in an analogous way. For the quadratic relation, we have
from Eq. 2.17 that:
We then have that: ,

g; = ((u+1)%;-1)

which is equivalent to:
T+ (u—1)e; + (u—1)egi = (u+1)22 —2(u—1)4; + 1

or equivalently:
(w— 1) (u+ el = (u+ 1202 — 2(u + 1)4;

which leads to:
52— (U—1)€Z+2

: ;.
u+1
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which is Eq. 2.23. For Eq. 2.24 we have, for |i — j| > 1, that:

1
Gl = et e + 0 = gy (99 + 9+ 95+ 1)
1 1

Finally, for the Steinberg elements g; ,+1 using Eq. 2.28 we have that:
Gii1 = 9i9i19i T 9i19i+ Gigir1 + Gim1 + i+ 1 = (u+1)°0iliy1 6 — (u41)°6 + (u+1)¢;
From the Steinberg relation (2.15) and Eq. 2.23 we have that:
(u+ 1)l 1l = (u—1)e; + 1)
or equivalently:
(u—1)e; + 1

(u+1)2
which is Eq. 2.25. O]

bilial; = li,

Remark 2.2. Setting d = 1 in the presentation of YTL,,(u) in Proposition 2.2, one
obtains the classical presentation of TL,(u), as discussed in Subsection 1.5. Note
also that, substituting in the braid relation (2.8) the g;’s using Eq. 2.28, we obtain
the equation:

(u — 1)€i+1 +1
(u+1)2

(u—1)e; + 1

bl =

Uy = L1 lili g —

€i+l

which becomes superfluous, since it can be deduced from Eq. 2.25. This was to be
expected, since the braid relations (2.8) were also superfluous.

2.3.3 A spanning set for YTL,;,(u)

In this section we discuss various properties of a word in YTLg,,(u) and we present
a spanning set for YTLgy,,(u) (Proposition 2.4). Furthermore, we give the dimension
of YTLg,,(u) (Proposition 2.5) as computed by Chlouveraki and Pouchin in [3] and
we also present their results on the linear basis of YTLg, (u) (Theorem 2.1). We
finally compute a basis for YTLy 3(u) different than the one of Theorem 2.1. We
have the following definition:

Definition 2.5. In YTL,,,(u) we define a length function [ as follows:

Lty - giy) =1 (s, ... 81,),

where [" is the usual length function of S, and t* := t*...t% € C7. A word in
YTLg4n(u) of the form (2.16) shall be called reduced if it is of minimal length with
respect to relations (2.7)-(2.9), (2.15).

Proposition 2.3. Each word in YTLg,(u) can be written as a sum of monomials,
where the highest and lowest index of the generators g; appear at most once.



32 - FRAMIZATION OF THE TEMPERLEY-LIEB ALGEBRA

Proof. Since YTLgy,,(u) is a quotient of the algebra Y, ,,(u) the highest index prop-
erty (Proposition 1.7) passes through to the algebra YTLg,(u). The idea is anal-
ogous to [15, Lemma 4.1.2] and it is based on induction on the length of reduced
words, use of the braid relations and reduction of length using the quadratic rela-
tions (2.9). For the case of the lowest index generator g; we shall use induction on
the length of words and the Steinberg relations (2.15). Indeed, clearly, the statement
is true for all words of length < 2, namely for words of the form t%, t*g; t*g19> and
t"9201.

For words of length 3: Let w = t%g1g2g1. Applying relation (2.8) will violate the
highest index property of the word, so we must use the Steinberg relation (2.15) and
we have:

919201 = —tgag1 —1°g1g2 — t"g2 — g1 — t°.

We assume that the lowest index generator appears at most once in all words
of length < r, and we will show the lowest index property for words of length
r+ 1. Let w =t%¢;,6i, - - - ¢;,, be a reduced word in YTLg,(u) of length r 4+ 1, and
[ =min {iy,..., 0}

Let first w = t*w,gywsg,ws, and suppose that wy does not contain g;. We then
have two possibilities:

If wy does not contain ¢;,1, then ¢g; commutes with all the ¢;’s in ws so the
length of w can be reduced using the quadratic relations (2.9) for g7 and we use the
induction hypothesis:

w = trwigwagiws
= t"wiwagiws
= twywe(1+ (u—1)e; + (u— 1)eg)ws
t"wiwawsz + (u — 1)t"wiweeyws + (u — 1)t wwae;giws.

If wy does contain g;,1, then, by the induction hypothesis ws has the form wy =
U1G1+1v2, Where in vy, vo the lowest index generator is at least g, o, hence:

w = t"wiguigiy1v291w3
a
" w101 G1914+1G102W3

a
= "W G141 9191+102W3,

and there is one less occurrence of g; in w. In the case where [ + 1 = m, where m =
max {iy, .. .1}, we apply instead the Steinberg relation (2.15), so no contradiction is
caused with respect to the highest index generator. Continuing in the same manner
for all possible pairs of g; in the word we reduce to having g; at most once. O

The following proposition gives us a precise spanning set for YTL, ().

Proposition 2.4. The following set of reduced words

San = {t"9090-1- - ir—k1)(GisGis—1 - - - Gis—ts) - - - (Gir Gip—1 - - - Gip—t,) } (2:29)

where
=t tmeCy, 1<i<iz<...<ip<n-—1,
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and
1§i1—l€1<i2—l€2<...<ip—kp,

spans the Yokonuma-Temperley-Lieb algebra YTLg,(u). The highest index gen-
erator is g;, of the rightmost cycle and the lowest index generator is g;,_y, of the
leftmost cycle of a word in Xg,,.

Proof. We will prove the statement by induction on the length of a word starting
from the linear basis of the Yokonuma-Hecke algebra Y, ,(u) [18, Proposition §].
Namely,

BYd,n = {ta(gilgil—l e Gink ) (GiaGin—1 -+ - Gin—a) - - - (gipgz'p—l - -gip—kp)}, (2.30)

where:
a€ (Z/dZ)", 1<i3<ip<...<i,<n-—1.

Note that By, , spans linearly the quotient YTLg, (u) since it is a quotient of Y4, ()
and also that in By in there is no restriction on the indices ¢; —£1, . . . , i,—k,. Starting
now with a word in the set By, , we will show that it is a linear combination of
words in the subset ¥g,. The statement holds trivially for words of length 0,1 and
2, since such words are in ¥4,. For length 3 consider the representative case of
the word t"g1¢2g1 which is not in ¥;,. Applying the Steinberg relation (2.15) a
linear combination of words in 3,,, is obtained (see Eq. 2.29). Suppose now that
the statement holds for all words of length < ¢, namely, that any word in By, , of
length ¢ can be written as a linear combination of words in ¥4,. Let w be a word
in By, , of length ¢ + 1 which is not contained in ¥4,. Then w must contain a pair
of consecutive cycles:

(9irGir—1 - - - 91 )(GiaGin—1 - - - G1),
where k > [. It suffices to consider the situation where i, = i; + 1, otherwise the

generators of higher index may pass temporarily to the left of the word. Next, we
move the term g as far to the right as possible obtaining:

(91'1 - -9k+1)(9z‘2 <o 9429k 9k4-1969k—1 - - .gz).

We now apply the Steinberg relation (2.15) and we obtain five terms, all of length
< q+1, and we apply the induction hypothesis. More precisely, we have the following
five terms:

9i1 -+ - 9k+1)\Giy - - - 9k+29k+19kGk—1 - - -gl)a

(9i )

(9ir - Ge41)(Giy - - - 9k+29k+19k—1 - - -91),
(Gir - Grs1)(Giy - - - Ok+29k9k—1 - - - g1),

E )

Q

e

iv - Gkr1)(Gin - - - Grr29kGkr1G6-1 - - - G1),

Gir - Ge+1)(Giz - - - Giv2Gk-1 - - - G1)-

Proposition 2.3 guarantees that the highest and lowest index generator will appear
at most once in each word of ¥4,. To see the exact position of the highest and
lowest index generators in the words of X, one can observe that the position of
the highest index generator g; is already clear in the set By, (cf. [18] [16]). To
establish the position of the lowest index generator in the words of ¥4, we shall
analyze each of the five terms above. In the first term the lowest indices of the two
cycles are not in the desired form. To resolve this, we move gx1 to the right in order
to create the term gxi1gxi2gx+1, we apply the Steinberg relation once more and we
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use the induction hypothesis. In the second term the subword (gx_1 ... ;) may pass
to the left (since the generator g has disappeared), so we obtain the following word:

(Gr—=1---90)(Gir - - Grs1) (G - - - Grt1)- (2.31)

This word contains two cycles with the same lowest index generators, hence we need
to apply the Steinberg relation (2.15) and use the induction hypothesis as above. In
the third term, gy returns to its original position and the subword (gx_1 ...¢;) may
pass to the left, obtaining a word in the set ¥, namely:

(Gir - - Ger19kGk—1 - - - 1) (Gis - - - Grr2)- (2.32)

The same holds for the forth term, which can be rewritten as:

(Giy - - Gkr196Gk—1 - - G1)(Gis - - - Grt1)- (2.33)

Finally, in the fifth term, the subword (gx_; ... ¢g;) may pass to the far left, namely:

(Gr—1 -+ 9)(Giy - - - Gh41)(Gin - - - Grr2), (2.34)

which is a word in the set ¥4,. The fact that the lowest index generator g; appears
in the leftmost cycle of the monomial in ¥4, is now clear from (2.31), (2.32), (2.33)
and (2.34). Concluding, in each application of the Steinberg relation (2.15) the
length of w is reduced by at least one, so, from the above and by the induction
hypothesis the proof that X, is a spanning set is concluded. O

Remark 2.3. An alternative proof of the above proposition would be the following.
An element w in a group is called fully commutative if any reduced expression for w
can be obtained from any other by means of braid relations that only involve com-
muting generators. Through relations (2.7)—(2.15) any word is a linear combination
of words of the form t%g,, ...g;,, where g,, ...g;, is the image of a fully commutative
word of the braid monoid and it is well-known that a fully commutative word can
be written under the form given in the statement of Proposition 2.4. For facts about
fully commutative elements the reader is referred to [31], [11], [6], [1].

2.3.4 A linear basis and the dimension of YTL;,(u)

M. Chlouveraki and G. Pouchin in [3] have computed the dimension for YTLg,,(u) by
using the representation theory of the Yokonuma-Hecke algebra [4]. More precisely,
they proved the following result.

Proposition 2.5 (cf. Proposition 4 [3]). The dimension of the Yokonuma—Temperley—
Lieb algebra is:

[y

d(d — 1) <

2
n
()
1

dim(YTLgn(uw)) = de, +

i

where ¢, is the n'* Catalan number.
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To find an explicit basis for YTLg, (1) Chlouveraki and Pouchin in [3] worked
as follows: As mentioned in Remark 2.1 each word in YTLg,(u) inherits the split-
ting property. For each fixed element in the braiding part, they described a set of
linear dependence relations among the framing parts (see [3, Proposition 5]). Using
these relations they extracted from X4, (recall Eq. 2.29) a smaller spanning set for
YTL4n(u) and showed that the cardinality of this smaller spanning set is equal to
the dimension of the algebra. Thus, it is a basis for YTL,4,(u). Before describing
this basis, we will need the following notations:

Let 2 and k& be the following p—tuples:

i =(i1,...,3) and k= (ki,.... k)
and let Z be the set of pairs (i, k) such that:
1< <...<i4p<n—-1 and 1<y -k <...<ip—k<n-1
We also denote by g;; the element:

Gik = (9@19i1—1 .. -gil—kl)(giggig—l .- -gig—kz) cee (gipgz'p—1 .- ~Qip—k,,)

Under these notations the set ¥4, can be written as:
San={t" .t gig|r1,...,rn € Z/dZ, (i, k) € T}.

The degree of a word w =t1* ... t"gi, ... gi,, iIn Yy, (u), denoted deg(w), is defined
to be the integer m. Set:

Ygn = {5 € Xgn|deg(s) < deg(w)}.

The group algebra C(u)(Z/dZ)" is isomorphic to the subalgebra of Y4, (u) that
is generated by the ¢;’s but not to the subalgebra of YTL,,,(u) that is generated by
the ¢;’s. Further, the group algebra C(u)(Z/dZ)™ has a natural basis, By, given by
monomials in ty,...,t,, the following:

By ={t1...t0 |y, ... vy € Z/dZ}.

Thus, any element of C(u)(Z/dZ)"™ can be written as a linear combination of words
in Bg,,. There is a surjective algebra morphism from C(u)(Z/dZ)"™ to the subalgebra
of YTLgy,,(u) that is generated by the ¢;’'s. We will denote the image of an element
b € By, into the subalgebra of YTLg,(u) that is generated by the t;’s with b.
Before stating the final theorem of this section, we shall introduce the following
notation. Let w be any word in YTLg4,(u). We denote by R(w) the following ideal
of C(u)(Z/dZ)":

R(w) ={m € C(u)(Z/dZ)" |mw € Spanc(u)(Zi;“)}.
We consider the set By, (g;x), which is a proper subset of By, such that
{big + R(gik) | bik € B(gik)}

is a basis of the quotient space C(u)(Z/dZ)"/R(g;x). We then have the following
theorem:

Theorem 2.1 (Chlouveraki and Pouchin, cf. [3], Theorem 2). The following set is
a linear basis for YTLg,(u):

San = {bik Gir | (i, k) €L, bis, € Ban(gin)},
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2.3.5 A basis for YTLs3(u)

For d =2, n = 3 it is not difficult to find a basis for YTL, 5(u). We will give here a
basis different than the one in Theorem 2.1. To find a basis for YTLs 3(u) we work as
follows: From Proposition 2.5 we have that dim(YTLy 3(u)) = 28. On the other hand
the spanning set 3y 3 of YTLy3(u) of Proposition 2.4, contains 40 elements. Thus,
any relation w;g;ows = 0 with wy, we € Yo 3(u) reduces to having wy, wy € g 3.
Further, if any of w;, ws contain braiding generators, then by Lemma 2.4 (after
pushing framing generators in wsy to the right) these get absorbed by g; 2. Thus,
and since ¢;; = 3(1 + t;t;) for d = 2, it suffices to consider the following system of
equations:

Wy g1,2W2 = 0 w1, Wq € T, (235)
where T := {1,t1, o, t3, t1to, t1ts, tats, t1tats3}. For finding all possible linear depen-
dencies in ¥, 3, after substituting gig291 with —1 — g1 — g2 — 9192 — 9291 in Eq. 2.35,
note that some of these 64 equations reduce trivially to g1 = 0; for example if
wy = 1 or wy = t1tats (since it commutes with g1 5). From the rest one can extract

12 linearly independent equations which, applied on the spanning set X, 3 lead to
the following basis for YTLy 3(u):

Sa3 = {1,t1,t2, tita, g1, 1291, L1391, tatsgu, go, t1 G2, t3ga, titsge,
9192, 119192, t29192, 39192, t1t29192, t1139192, L2t391 92, t1t2t391 92,
G291, 119291, 2921, t39291, t1tagag, titsgagr, tatsgagn, titatsgags } -

For the case d = 2 and n = 3 we impose the following ordering in the elements of
the spanning set (2.29):

Yos = {l,t1,to,t3, t1to, tits, tats, titats,
91,191,291, 1301, tilegr, tatsgn, Lalsgn, titalsgn,
92,1192, t292, 392, t1taga, t1t3gz, tatsge, tilatsga,
9192, 119192, 129192, 139192, t1t29192, t1t391 92, t2l39192, tatatz 9192,
9291, 19291, 129291, t39291, titagagr, titsgagr, talsgagn, titatsgagr b (2.36)

We now have the following:

Proposition 2.6. The following set is a linear basis for YTLs 3(u):

{1,t1,to, t1ta, g1, t2g1, t391, tatsgr, 92, t1G2, t392, t1tsge,
9192, 119192, 129192, 39192, t1t29192, t1t391 92, t2t39192, t1t2t39192,
G291, 19291, t2G201, t3G201, titagagr, titsgagn, tatsgagn, titatsgagn }

Proof. We begin from the relation ¢g; o = 0 which generates the ideal I; and we
compute all possible expressions of the form:

w1 g1,2w2 = 0, (2.37)

where w1, Wy € T = {]_,tl,tg,tg,,tltg,t1t3,t2t3,t1t2t3}. Note that from Lemma 2.4
it suffices to check (2.37) only for the elements of 7. Note also that we always
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substitute the term ¢y g291 of g1 2 with —1 — g1 — g2 — 9192 — g291. For example for
the case where w; = 1 and wy = t;, we have:

(1491 4+ 92+ 9192 + G201 + 19291)t1 = 0 &
t1 +tag1 + 1192 + t2g192 + t3919291 = 0 <
t1 +tagr + 1192 + 129192 — 3 — t3g1 — t3g2 — 39192 = 0

Equation 2.37 yields 64 expressions in total from which 16 are trivial, i.e. the cases
where w; € T and ws = 1, and the cases where w; € T and w, = t;tat3, because
titots passes intact to the left of g;o. For the remaining 48 cases we observe that
any expression of the form (2.37) is equal to one of the form:

/ /
wigr 2wy = 0,

such that wiw| = titats (resp. wowh = t1tats).
Indeed, recall first that titst3 is the only monomial that can freely move from the
left to the right of g » without changing the expression, i.e.:

g1 2t1tats = titatzgr 0.

So, starting from ¢y sw,, where wy € 7 we have that:

G12Ws = g1a(trtats)wh = titatsgr owy, (2.38)
where w) € T and wywh = t1tat3. For example we have that:

g12t1ite = g1 2(titats)ts = titatsgy ots.
Now let wq g1 0wy = 0, where wy, wy € T. From Eq. 2.38 we have that:

w191 2we = w1 (g12(t1tats)wy) = wy(trtats)growy = wigr 2wh,
where w| € T and wyw] = t1tats. For example we have that:
t1g12t1ts = t1(gr2(titats)ts) = t1(titats) g ota = tatsgr oto.

Therefore there are only 24 apparently different equations between the monomials
of the spanning set (2.36), the following:

L tity —tots + titagr — talsgy + titsge — tatsga + tilsgagn — tatzgagr = 0

2.ty —t3 +tagr — t391 + 1192 — t392 + t29192 — 139192 = 0

3. tigr — tagi — taga + l3g2 — 129192 + 139192 + 119291 — t2g2g1 = 0

4. —t1 +t3 — tigr +t301 — t1g2 + 2g2 — t192g1 + t2g2g1 = 0

5. —titsgr + tatzgr + titage — tilsga + titag192 — t1tzgi1ga — tilsgagr + tatzgagr = 0
6. —tita + tats — tatagr + tilsgr — titage + tatsga — tilagige + titsgrga = 0

T. 1 —tits + titagr — titsgr + go — titsge + titagigs — titsgige = 0
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8.

9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.

24.

g1 — titagr — titaga + titsge — 11929192 + tit3g192 + 9291 — titagagr = 0
—1+tit3 — g1 +titsgr — g2 + titago — gogr + titagagy = 0

tita — tats + g1 — tatzgr + titage — talsga + g192 — tal3g192 = 0

—g1 +titagr — g2 + talsga — G192 + t2l3g192 — G291 + t1t2g2g1 = 0

—tlity + oty — titagr + latsgr + g2 — titage + g2g1 — titagagr =0

—1 4 tits — g1 +totsgi — o + titsge — G1ga + tatsgige = 0

titsgr — latsgr + g2 — talsge + 9192 — tat3g192 + titsg2g1 — tatzgegr =0

L —tits + g1 — tatsgr — talsga + tatzge — titsgagn + tatzgegr =0

o — tilats + t1gr — titatsgr + taga — tilatzge + t19192 — tilatzgiga = 0
—t1g1 +t2g1 — t1g2 + titatzge — t1G192 + titatsg192 — 19291 + t2g201 = 0
—tlo + tilats — tagr + titalzgr + t1g2 — t2ga + t1g201 — t2gagr = 0

—lo + tilats — tagr + t3g1 — t2ge + tilatsge — 29192 + t3g192 = 0

—l3g1 + titalsgr + taga — t3g2 + 129192 — t3G192 — t39291 + tatatzgegr = 0
o — tilats + tagn — titatsgr + t3ga — tilatzge + t39201 — tilatzgegr =0
—l1 +t3 — tigr + titatsgr — t1ge + t392 — 119192 + talatzgi1ga = 0

tsgr — titatsgr + t1g2 — titatsge + t19192 — titatzgige + 39291 — titatsgegr = 0

t1 —t3 +t1g1 — t3g1 — t3g2 + titatsge — t3g2g1 + titatsgagr = 0

We then group them according to the leading term of each equation in the
sense of the ordering (2.36) ( i.e. we take all equations that start with 1, then all
equations that start with ¢; and so on) and then we perform Gauss elimination on
this system. From these we deduce the following system of 12 intrinsically different
linear relations:

(i) 1 — tits + titogr — tatsgr — titsgs + lotsge — 39192 + 3titagige — 3titsgige +

Statsg19s — 59201 + stitagagn — 3titsgegn + Statsgagy =0

(ii) t1 —t3 4 tagn — titatsgn — t3ge + titatzge — t1gog1 + tagagh =0

(ili) to — titats + tagr — titatsgr + t3g2 — titatsga + t3gag1 — titatsgagn = 0

(iv) tits — tots + titagi — tatagr + titsge — tatsge — 2G19o + Stitagige — Stitsgige +

Stotsg192 + 59201 — stitagogi + 3titsgagy — 3tatsgogr =0

(V) g1 — titagr + 39192 — Stitag192 + 3titsg192 — 3tatsgige + 39201 — stitagogr —

Stitsgog1 + 3tatsgagr = 0

(Vi) tig1 — tagr + 5119192 — 3120192 + 3t3g192 — stilatsgige + 5119201 — 3l2gag1 —

$t39201 + 3titatsgagr = 0
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i _ 1 _1 1 _1 _1 1
2
(vii) t3g1 — titatsgr + 519192 — 5tag192 + 5139192 — 5titatzgigs — 5t19291 + 3tag2g1 +
St3gag1 — stitatsgagr = 0

_ 1 _1 1 _1 _1 1
2
(viil) titsg1 — tatzgr + 59192 — 5titagige + 5tit3g192 — 5tatsgig2 — 59201 + 5titagagr +
stitsgagr — 3tatsgagr = 0

(ix) g2 — tatsgs + 50192 + 3t1tagigs — stalsgige — Statsgige + 39201 — 5titagags +
Stitsgagr — 3tatsgagr = 0

(x) t1g2 — titatsgo + 5619192 + 520192 — 5139192 — 3tilatsgige + 5119291 — 5t29291 +
$t3g2g1 — stitatsgogr = 0

(xi) tags — t3ga + 5119192 + 3129192 — 3t39192 — stilatsgige — 5t19201 + 3l2g2g1 —
1 1
3l39291 + Statalsgagr =0
2 2

(xii) titags — titsge + 59192 + stitag1g2 — 3titsgige — 5tatsgige — 39201 + 5titagegr —
Stitsgag1 + 3tatsgogr = 0

These give rise the following set of linearly independent monomials:

{1,t1,t2, t1ta, g1, t2g1, t301, tatsgn, 92, t1Ga, t392, t1tsge,
9192, 119192, 129192, 39192, t1129192, t1t391 92, L2t39192, t1l2t39192,
G201, 119291, t2G201, 139291, t1tagagn, titsgagn, tatsgagn, titatsgagr }

and so the proof of the proposition is concluded. O

We conclude this section with the representation theory of Y4, (u).

2.3.6 The representation theory of the algebra YTLy,(u)

In this section we will present briefly the results of Chlouveraki and Pouchin [3]
on the representation theory of the algebra YTLg,, (u). By definition, YTLg,,(u) is
a quotient of Y, ,(u) and so, by standard results in representation theory we have
that the irreducible representations of YTLg,(u) are in bijection with the irreducible
representations p* of Y, (u), such that:

PMgr2) =0 (2.39)

Recall now that P(d, n) is the set of d-partitions of n and denote by R(d, n) the
set of d—partitions A of n such that (2.39) is satisfied. We denote also:

Irr(YTLgn(u)) = {p* | X € R(d,n)}

the set of irreducible representations of YTLg,,(u). For every A € R(d,n) we have:

Pow=p
where w is the natural surjective homomorphism from Yy, (u) onto YTL,,(u). We
have the following [3]:

Proposition 2.7. We have that A € R(d,n) if and only if the trivial representa-

tion is not a direct summand of Resg(ldi’)n)(E)‘), the restriction of the irreducible

representation E* of G(d,1,n) to (sy, s2).
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Since (s1, s2) is isomorphic to S3, the problem of determining the irreducible
representations of YTL,,(u), transforms to the problem of finding the irreducible
representations that appear in the restriction of a representation from G(d, 1,n) to
S3. Following [3], we see that for d = 1, the restriction of an irreducible repre-
sentation labelled by a partition A corresponds to the removal of nodes from the
Young diagram of A in a way consistent to the definition of Young diagrams. More
precisely, if A is a partition of n, then ReséZﬁl (E*) is the direct sum of all represen-
tations labelled by the partitions of n — 1, whose diagrams are obtained from the
Young diagram of A by removing one node. Consequently, Resgz(E’\), where k£ < n,
is a direct sum of all representations labelled by the partitions of £ whose Young
diagrams are obtained from the Young diagram of A by removing n — k nodes. In
particular, Resgg (E*) is a direct sum of all representations labelled by the partitions
of 3 whose Young diagrams are obtained from the Young diagram of A by removing
n — 3 nodes. Hence the trivial representation is a direct summand of Res‘sq;(EA) if
and only if the Young diagram of A has more than two columns. We, thus, have the
following corollary [3]:

Corollary 2.2. We have X\ € R(d,n) if and only if all direct summands of

Resngd’l’n)(E’\) are labelled by the partitions whose Young diagrams have at most two
columns.

For d = 1, this, in turn, yields the characterization of the classical Temperley—
Lieb algebra TL,(u) (see Section 1.5).

Corollary 2.3. We have:
R(L,n)={A € P(n)|\ <2}

that is, E* € Irr(TL,(u)) if and only if the Young diagram of X\ has at most two
columns.

In order to obtain a description of R(d,n) we will use the following proposition

[3]:

Proposition 2.8. Let A = (AQ AWV A4y ¢ P(d,n). The Young diagrams

. G
of all direct summands of Resg

S <2,

(@Ln) (BN have at most two columns if and only if

n

Combining this with together with Corollary 2.2, we have the following [3]:

Theorem 2.2. Forn > 3, We have that:
i=0

R(d,n) = {)\ € P(d,n)| EA? < 2} :

That is, E* € Trr(YTLg,(w)) of and only if the Yound d-diagram of X has at
most two columns in total.
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2.4 The algebras FTL;,(u) and CTLg,(u)

For the rest of this chapter we will concentrate on our results for the algebras
FTL4,(u) and CTLg,(u) (recall definitions 2.2 and 2.3).

2.4.1 Defining relations for FTL;,(u) and CTLg,(u)

We will start by showing that the defining ideal for each one of the quotient algebras
is principal.

Theorem 2.3. The algebra FTLg,,(u) is the quotient of Y4, (u) over the two-sided
ideal generated by the single element:

T2 = Z Gz = Z ti”tgt%gl,z-
z€H1 2 a+p+y=0
For the proof of the theorem we will need the following two lemmas:
Lemma 2.2. The following hold in Y 4,(u) foralli=1,...,n—1andj=1,...,n:
Ltp=(g1 - gnr) " ti(gr gna) 07

2. gi=(g1---9n-1)"" g1 (g1 Gp1) Y

Proof. For case (1) we have that the statement is true for j = 2. Indeed:

(g1 gn-1)t1 (91 gn1) ' = g1t192 - Gn1(g1 - Gn1)”"
=to(g1- - Gn-1)(G1-- - Gn1) "
= 19.
Suppose that the statement is true for j = k. We will show that the statement holds
for j = k+ 1. We have:
(g1 Gn-1)"t1(g1 - gn1) F = (91 go-1)(g1 - gn-1)" t1(91 - Guo1) F V(g1 gur)
= (g1 G )tr(g1 . Gno1)
= g1 g1k tk Grp1 - Gnoa (g1 Gn1) ™
=trr1(g1-- gn-1)(g1 - ~9n71)71
= tkt1-

The proof of case (2) follows also by induction. We have that the statement is
true for ¢ = 2. Indeed:

(g1 gn-1) 91 (g1 gn1) "' = 01026195 - - - Gn-1(g1 - - Gn—1)""
= 92(9192 - gu-1)(91 - - gu1) ™
= 9g2-
Suppose that the statement is true for ¢ = k. We will show that the statement holds
for i = k + 1. We have:

“E (g1 gea) !

(91 901 91(g1 - gn1) F = (91 go1) (g1 -+ Gu1)" " 1(g1 - Gn1)
=91+ gn-1)gr(g1 - gn1) ™"
=01 Gk-19kIk+19kGk+2 - - Gn—1(g1 - - Gn—1)"
=01 Gh19b19kTk41 - In-1(G1 - - Gn1) "
= grs1(91 - Gn1)(G1 -+ Gnor)

= GJk+1-

1
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Lemma 2.3. The following hold in Ya,(u) for alli =1,...,n—2 and o, 3,7 €

Z7/d7:
(1) t“t,+1t,+2 = (g1 Gt T (g1 Guy) Y
<2) t tz+1tz+291 = (91---gn 1)Z ltatﬁt?’gl (gl G 1) (i-1)
(3) tat1+1tz+2gz+1 = (g1 Gn— 1)Z ltat2t3gz (g1 Gn1)” (i-1)
(4) t tz+1tz+2gzgz+1 — (g1. - On— 1)2 1tat6t3glg2 (91 G 1) (i—1)
(5) ty t’H—ltz—l—QgH—lgl = (g1 Gn— 1)’ 1to‘tﬁt'yggg1( Gno1)” (i—1)
<6) t t1+1tz+2gzgz+1gz = (91 e Op— 1)z ltat2t3glg2g1 (g1 - n 71) (i—1)

Proof. We will make extensive use of Lemma 2.2. For case (1) we have:

0ty = (91 1) (91 1) T (1 ) (g1 Gn1)
(g1 gn) T (g1 gy )T

= (g1 gn ) (g1 ga ) (1 n ) M1 gnn) Y
(g1 gn-1)"H g1 gn)* (91 gn) (91 Gn1) T

= (g1 gnt) MO (g1 gny) Y.
For case (2) we have:

(11001 = (91 gn) T (g1 90-1) TP (g1 gue) T (01 gr)
(g1 o) T (g1 gam1) T (91 g) T (g1 gn1)
= (g1 gn-1) (01 G (91 1) (g1 Guoa) 0T
(g1 9n1) 91 Gt (91 - Gn) 21 - gor) T
(1 ) 101 0) O
= (g1 gn1) 3301 (g1 - gna) TV

—(i—=1)

For case (3) we have:

t?tzﬂ i+29i+1 = (91 .. -Qn—l)i_lt?(gl .. -gn-l)‘“‘”< B

- gn)'t (g1 gnr)

(g1 'gn—l)iﬂt?(gl <o Gn— 1)_(”1)(91 X -gn—l)igl (91---gn-1)

= (g1 gn) (1 Gn-D) (91 gne1) (g1 - ga) O

(g1 gn1) g1 gn ) (g1 Ga1) P01 gna) Y
(g1 gn1) T g2(gr - gnr) Y

= (g1 Gur) 5t ga (g1 - Gua) O

—1
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For case (4) we have:

tet) ] 0gigin = (g1 Gn1) (g1 9n1) T (g1 g )t (g1 gr)
(g1 gn) T (g1 g0) T (g1 gn) (91 )Y
(g1 .gn_l)ig1(g1 . .gn_l)_i
= (1 gn-1) (01 G (91 1) (g1 Guoa) O
(g1 gn1) 91 Gt (91 - Gne) 21 - gor) Y
(g1 gn) (g -gn—1>_(i_1)(gl i On) g1 Gnr)

9191 90-) 01 ga) Y

(91 Gno1) 5513910201 - - Gnr) Y.

For case (5) we have:

040t 010 = (g1 Gn1) (g1 1) T (g1 G ) (91 )

(g1 o) T (g1 g0 ) g1 g g1 gna)
(g1 gn1) 11 gny) "0V

= (g1 o) (g1 G ) (G1 - Gn1) g1 Gar) Y
(g1 9o) 91 g (91 - gum) g1 - gor) Y
g1 Gn1) Mg gn1)91(91 - Gn1) Mo - .gnfl)*(ifl)
(g1 gn1) g1y gna) "0V

= (91 ‘gn—l)i_lt?tgt;:g2gl(gl e gny) Y.

Finally, for case (6) we have:

i—1
tl

1t 29i9i419i = (91 -+ gn1) (91 901) g1 ga1) (g1 Gnt) ™

(g1 Ga) T (g1 'gn—l)_(”l)(gl e ) (g1 grg) "D

(g1 9019191 Gn) (g1 Gne1) T 11 gor) Y
= (g1 Gn1) (g1 Gue )t (1 Gre1) (g1 Gun) Y

g1 ) g1 G )2 (G Gn1) 2(Gr e gny) D

(g1 1) ta(gn - .gn_1)_(i_1)(91 o Gne) Mg Gnt)

cg1(g1 - gn1) 1 90) T (91 gum)  ga(gr - gae) Y
= (g1 gn1) 019201 (91 - gna) O,

]

Proof of Theorem 2.3. Expanding Eq. 2.4 and applying Lemma 2.3 we obtain:

>

Bt ge= D, (91 9u1) T 5156 90 (91 gamr) 7Y

a+pB+y=0
WE(Si,Si+1)

a+B+vy=0
weES3

(gl...gn_ly—l ( j{: t?tgtggL2> (gl'..gn_1>—@—1%
a+p+y=0
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or equivalently: . .
7’m+1 = (91 N gn_l)l_lT‘LQ(gl e gn_l)—(z—l) (240)
Therefore, the two—sided ideal J is generated by the single element:
7"172 = Z t?tgtg 9172.
a+p+v=0

and so the proof of the Theorem is concluded. O

Remark 2.4. From Eq. 2.5 we have that the element r; 5 can be rewritten as:

_ Q== _
T2 = E 11ty Tt3gi2 = dejesg .
o,YEZ/dZL

Therefore we deduce that:

J = (r2) = (e1€2912)-
From Theorem 2.3 we have the following corollary:

Corollary 2.4. FTLg,,(u) is the C(u)-algebra generated by the set {t1,...,tn, g1, .-, Gn-1}
whose elements are subject to the defining relations of Ya,(u) and the relation:

T2 = 0.

Subsequently, by Definition 2.3, we have that the relations r;;41 = 0 also hold in
FTLgn(u).

From the above we obtain an alternative definition of the algebra FTL,,(u) in
terms of generators and relations:

Definition 2.6. Forn > 3, the algebra FTL,,,(u) can be presented by the generators
Jls- s Gn_1, t1,...,tn, subject to the following relations:

9i9; = 9i9i, li—jl>1

9i+19:9i+1 = GiGi+19i

97 =1+ (u—1)e; + (u—1)eg;

tit; = tjt;, foralli,j

th=1, foralli

9iti = tiy19i

gitiv1 = 1:g;

git; =tjgi, forjF#i, andj#i+1

€i€i+19ii+1 = 0 (2-41)

In analogy to Theorem 2.3 we have the following for the algebra CTLg,(u):

Theorem 2.4. The algebra CTLy,,(u) is the quotient of Y 4,(u) over the two-sided
ideal generated by the single element:

Cl2 = Z Juw = Z t‘fétgtggm-

weCl,2 a,B8,7€Cy
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Proof. In analogy to the proof of Theorem 2.3, it is enough to prove that ¢; ;11 =
eyt where v := (g1 ... 9gn_1)"". From Eq. 2.6, we have

yer2y = ( > 'yt’hl) yrigy !

0<k<d—1

By using now Lemma 2.2 and Eq. 2.40, it follows that ve; 27" = ¢;41. The rest of
the statement is now clear. 0

Remark 2.5. Note that from Eq. 2.3 and 2.6 we have that:

_ k _ k _ k _ (k)
Ciit1 = g t; E gz = E Ui = g t;€i€it10ii41 = E € €iit1Gii+1

kez/dZ  x€H; 11 keZ/dZ keZ/dZ keZ/dZ

The following corollary provides a presentation for CTLg,(u) in terms of gener-
ators and relations.

Corollary 2.5. The C(u)-algebra CTLgy,,(u) can be presented by the elementsty, ..., t,,
g1, - Gn—1 who are subject to the defining relations of Yq,(u) and the relation:

c12 = 0. (2.42)
Thus, the algebra CTL,,(u) can be alternatively be defined as follows:

Definition 2.7. Forn > 3, the algebra CTLgy,,(u) can be presented by the generators
Jly- -y Gn_1, t1,...,t,, subject to the following relations:

9:9; = 9;9i, li—Jjl>1

9i+19:9i+1 = 9i9i+19:

gi =1+ (u—1e; + (u—1)eg

tit; = t;t;,  foralli,j

td=1, foralli

giti = tiy19i

gilit1 = 1igi

git; =tjgi, forjF#i, and j#i+1

Z eVeir1giin =0 (2.43)
kEZ/dZ

We conclude this section with the following remark.

Remark 2.6. For d = 1, the algebras FTLy,(u) and CTLg,(u) coincide with the
algebra TL,(q).

2.4.2 Presentations with non—invertible generators

In complete analogy to the case of YTLg4,(u), one can obtain presentations with
non—invertible generators for both of the algebras FTL,,,(u) and CTL,,(u) using
the transformation (2.17). We have the following propositions:
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Proposition 2.9. The algebra FTLy,,(u) can be presented with generators:
gla cee 7€n—17t17' o 7tn
subject to the following relations:

th=1, tt;=t;t;, foralli,j

Eit]‘ = tj&', ézt] = tjgia fO?" |'L - jl >1
gifj = gjéi, for |Z — jl >1

Uity = tip1l; + (ti — tiy1)

u—+1
1

+1 +u+1( +1 )

2 (u—1)e; + 2

i t;
u—+1
(u—1)e; + 1 (u—1)e; 1 +1
Ciliv1li — Tt b= L1 lilipr — (w+1)? i
U
eiei1lilip1l; = m eieir1l;.

Proof. Obviously, FTLg,(u) is generated by the ¢;’s and the ¢;’s. All the equations,
except the last one, can be proved in total analogy to those of Proposition 2.2. Note
also that, contrary to the case of YTL,,(u), the equation:

(u — 1)61 +1
(u+1)2

(U — 1>6i+1 —+ 1
(u+1)2

Cili 1l — U = lig1lilipg — liy1, 1<i<n—2.

which corresponds to the braid relation ¢;g;119; = ¢i+19:gi+1, is not superfluous.
For the elements e;e;116; ;11 using Eq. 2.28 we have for 1 < ¢ < n — 2 that:

€i€i+19ii+1 = €iCit1 (9i9i+19i + 9i+1Gi + 9iGis1 + Giv1 + gi + 1)
= eieir1 ((u+1)°Gliil; — (w+ 1)°6 + (u+ 1)4)

From Eqgs. 2.41 and the quadratic relation for the ¢;’s we have that:
€;€it1 ((U + 1)2€zgz+161) = €i€i+1(('u, — 1)62 + 1)61

or equivalently:

€i€i+1€i£z‘+15i = 6i€i+1€i,

u
(u+1)2
which is Eq. 2.25. O

Proposition 2.10. The algebra CTLg,,(u) can be presented with generators:

glv"wgn—l;tlw"atn



2.4 THE ALGEBRAS FTL,, (u) AND CTLgy,,(u) - 47

subject to the following relations:

tld = 17 tztj = tjtz, fOT all Z,]
bty =1l Gty =til;,  for |i—j|>1
gigj = gjéiu fO?" |Z — jl > 1

1
biti =t + u—(tz —tiy1)

+1
1
+1 + . 1( +1 )
—1l)e; +2 .
6?:%&, 1<i<n-1
U
(’LL — 1)61 +1 (u — 1)61'_,_1 +1
bl by — ————— Uy = L1 bl — i
i (u+1)2 R (u+1)2 i
d—1 d—1 u
(k) _ *) /.
€; eip1lili1l; = Z €, €it1 (u T 1)2 l;.
k=0 k=0

Proof. The proof is a straight forward computation and totally analogous to the
proof of Proposition 2.9. O]

2.4.3 A basis for FTLs3(u)

For a complete description of FTL,,(u) a basis needs to be presented. Unfortu-
nately, it is very difficult to compute a concrete basis for FTLg,,(u), for any d and
any n. The problem lies in the fact that the dimension grows rapidly for n > 4.
Using tools from representation theory Chlouveraki and Pouchin [3] were able to
provide a formula for the dimension of FTLg,,(u). More precisely, they proved that:

| n! 2
dimFTLg, (u) = Z (W) Chy « - - Chy, (2.44)
et |-z |t g =n N L

where k; is a partition with at most two columns and ¢, is the k—th Catalan number.
Having said that, the only case that can be computed relatively easy is FTLg 3.
For that, we will need the following lemmas that will also be used in the proof of
Theorem 3.4.

Lemma 2.4 (cf. Lemma 7.5 [19]). For the element gy 2 we have in Yq,(u) (recall
(1.23) for ey 3):

) Qg2 = [1+( )

) 2912 = [1+( )

) G192912 = [L+(u—1)er + (u—1)ers+ (u— 1)%eres]gi2

) GR01g12 = [14( )Jes 4+ (u—1)ers + (u— 1)%ere2]gi

) 919201912 = [1+( Jer+ex+er3) + (u—1)%(u+2)eres]gro

—~

Analogous relations hold for multiplications with g, 2 from the right.
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Proof. The idea is to expand the left-hand side of each equation and then use
Eq. 1.33 and Lemma 1.1. For case (1) we have:

N2 = g1+ + G192+ 9192 + 919201 + 919201
= g+ 1+ (u—1e + (u—1)e1g]
+9192 + [g2 + (u — 1)e1ga + (u — 1)e1g16o]
+919291 + [9291 + (u — 1)e1gagr + (u — 1)e1g19291]
= gio+ (u—1)e1g1.

Case (2) is completely analogous. We have that:

R012 = G2+ 9001+ G+ 020192 + o1 + 92019201
= got++gpg 1+ (u—1)es+ (u— 1)esgo]
+019201 + (g1 + (v — 1)eagr + (u — 1)e29201]
+919291 + [9192 + (u — 1)eagiga + (u — 1)e2g19291]
= gi2+ (u—1)exg1.

In order to prove Case (3) we will use Case (1):

g192912 = g1 (912 + (u—1)eagi )

= 1912+ (u—1)e1 301012 (Lemma 1.1)

= [1+(uw—1e] g2+ (u—1)er3(1 4+ (u—1)e1)gio
[T+ (u—1)e1]gia+ (u—1er13912 + (u—1)%e1 361012 (Lemma 1.1)
— [1 +(u—1)er+ (u—1)er s+ (u— 1)26162} J12.

Case (4) is completely analogous.

3291912 = 9g2(g912+ (u—1)e1g12)

= ¢2912+ (u—1)e1392g12 (Lemma 1.1)

= [1+ (u—1)ex]gr2+ (u—1)er3(1 + (u—1)ez)g1o
[T+ (u—1)es] gio+ (u—1er13912 + (u— 1)%e1 362012 (Lemma 1.1)
= [1+@u—1) e+ (u—1erz+ (u—1)e1e2] g

Finally, for Case (5) we shall use Cases (1) and (4):

919291912 = Gi[l + (u—1)ea+ (u—1)ers + (u—1)%erea]g 2
g1+ (u—1)erzg1 + (u—1eag + (u — 1)%e1e201] 912
T+ (u—1)es + (u— ez + (u— 1)%eres]g191.2
14 (u—1)es + (u—1)ers + (u—1)%eres][gro + (v — 1)eigy o]
T+ (u—1eg+ (u—1)ers + (u— 1)%erea)g1.

+(u = 1ey + (u—1)%erea + (u — 1)%ereq + (u — 1)%e1e]g1
= [+ (u—1(e;+ex+ers)+ (u—1)72(u—2)eres]gro

[
[
[
[
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Lemma 2.5. For the element 112 we have in Y4, (u):

) Girie = [14+( )

) gor1a = [14( )

) qigorie = [14+(u—1)er+ (u—1)ers + (u—1)%erea)ri 2

) G112 = [1+( Jea+ (u—1)ey s+ (u— 1)26162]7"1,2

) 919291112 = [14+( )(e1 + ex 4 e13) + (u — 1)*(u + 2) eres]rio

—~

Proof. In order to prove this lemma we will make extensive use of Lemmas 2.4 and
1.1. For case (1) we have:

g1T1,2 = g1€1€291,2 = €1€1 391912
=erea[l + (u—1)eg]gio
=[1+4 (u—1)ei]erezgi o
=[14 (u—1)ei]riz

In an analogous way we prove case (2). For case (3) we have that:

9192712 = g192€1€2091,2 = €2€1 39192912
=erea[l + (u—1)e; + (u—1)ers + (u— 1)%e1ez]g10
= [+ (u—1)es + (u—1)ers + (u— 1)%eres]ereagn o
=1+ (u—1)e; + (u— ez + (u—1)eiex]r o

In an analogous way we prove case(4). Finally, we have for case (5):

919291712 = g19291€1€291,2
= €1€201929191,2
=erea[l+ (u—1)(e1 +ex +e13) + (u—1)*(u+2) erez] g0
=[1+(u—1)(es +ea+ers) + (u—1)*(u+2)ereereag o
=1+ (u—1)(e1 +ex+e13) + (u—1)>2u+2)eres)ri s

]

To compute a basis for FTLy 3(u), we start from the linear basis of Y 3(u) which
also spans FTLy3(u). We have that dim(Yss(u)) = 48, while from Eq. 2.44 we
deduce that: dim(FTLy3(u)) = 46. Therefore, we have to find two relations of
linear dependency among the elements of Yg3(u). We work as follows. From the
defining relation of the ideal J we have:

T2 = ejezg12 =0 (2.45)

In order to find linear dependencies we consider the following system of equations:
wiry2we = 0 (2.46)

where wy, wy € Yg3(u). From Lemma 2.5 we have that whenever w; or wy contain

a braiding generator, it is absorbed by 712 (after pushing the framing generators
in wy to the right). Therefore it suffices to consider that w; and wy contain only
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framing monomials in Eq. 2.46. Notice also that any framing monomial commutes
with the element e;ezg1 2. We have the following system:

ereagr2 =0

651)6291,2 =0
which is equivalent to:

(1 + tltg + t1t3 + t2t3)gl’2 =0 (247)
(tl + t2 + t3 -+ t1t2t3>9172 =0 (248)

Notice that each framing monomial appears once in the system of equations (2.47)
and (2.48). Choosing one element of each equation and expressing it as a linear
combination of the rest of the elements of that equation will result to a basis for
FTL;3(u). Choosing now the elements ¢1g291 and t1tat3919291 to be linearly depen-
dent. Thus, we have proved the following:

Proposition 2.11. The following set is a linear basis for FTLg3(u):

{181, Lo, t3, taty,  tits, tots, thlots,
91, t191, t291, t301, tatagn, tatzgn, tatsgn, tatalsgn,
92,1192, 2921392, t1l2ga, t1l3ga, latsgatilatsga,
9192, 119192, 129192, 139192, t1t29192, 11t3G1 92, t2l39192, tatatz g1 g,
9291, 119291, 1292091, 39291, t1t29201, t1l3g201, Latsgagr, tatats g2 g1
1919292, 2919291, 13919291, t1t2g19291, tit3g1 921, tatsg19291 }-



Chapter 3

Markov traces on the three
algebras

The following chapter is dedicated to the determination of the necessary and suf-
ficient conditions for the trace tr on Y, ,(u) to pass to the each one of the three
quotient algebras YTLgy,(u), FTLg,(u) and CTLg,(u), in analogy to the classical
case, where the Ocneanu trace on H,,(u) passes to the quotient algebra TL,, (u) under
the condition that the trace parameter ( takes specific values.

It should be clear by now that tr will pass to the quotient algebra if it kills
the generator of the defining ideal of each quotient algebra. We will treat each
case separately and then we will do a comparison of the derived conditions for each
quotient algebra. We start with the Yokonuma-Temperley-Lieb algebra.

3.1 A Markov trace on YTL,;,(u)

We shall find the values of the trace parameter z that annihilate the generator of
the defining ideal of YTLg,,(u). We have the following lemma:

Lemma 3.1. For the element g, 2 we have:
tr(gie) = (u+1)22 +((u—1E+3)z+ 1. (3.1)
Proof. The proof is a straightforward computation:

tr(gi2) = tr(1) + tr(g1) + tr(gz) + tr(g192) + tr(g291) + tr(919291)
=1+2:+22%+ 2+ (u—1)Ez+ (u—1)2°
=(w+1D22+((u—-1)E+3)z+1.

Lemma 3.1, together with the equation:

tr(gi2) =0 (3.2)

give the following values for z:

—((w=DE+3)£/(u—1)E+3)° — d(ut 1)
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We shall do now the analysis for all conditions that must be imposed on the trace
parameters 1, ..., Zq—1 so that tr passes to YTLg,(u). Having in mind Corollary
2.1 and the linearity of tr, it follows that tr passes to YTLgy,(u) if and only if the
following equations are satisfied for all monomials m in the inductive basis of Y, (u).
Namely:

tr(mgy o) = 0. (3.4)

Let us first consider the case n = 3. By (1.36) the elements in the inductive
basis of Y43(u) are of the following forms:

thents,  tiquthts,  tithgats, tigitigats, tithgaqitS, it gagnts (3.5)
Using Lemma 2.4 and the following notations:

Zape = (u+1)222qspre + (0 — DECY) 4 om0+ 320 1c + Teasn) 2 + TapTe

Ve = (u+ 122 T0rpre + (u+ 1)2E(“+b+c) + 2 LqTyse + To BT
Viare = (4 + 1)2%204pre + (w4 D)2ETH) 4 2aya, 4 2, B@TO
Vears = (u+ 122 T0rpre + (u+ 1)zE(“+b+c + 2 TZgrp + BT
Wape = (u+ 1)2%20spre + (u 4 2) 2B 4ty <e§a+b+0)62>

From (3.4) and (3.5) we obtain the following equations, for any a, b, c € Z/dZ:

Zape =0 (3.6)

abc (U ) a,b+c — =0 (37)

abC (u )[ ab+c+‘/ba+c+Wabc]:0 (38)

abC (U )[ ab+c+‘/ba+c+‘/ca+b+wabc]:0 (39)

Equations 3.6-3.9 reduce to the following system of equations of z,zq,..., x4 1 for
any a,b,c € Z/dZ:

Za,b,c =0 (310&)

(2){ Vapse =0 (3.10b)

Wa,b,c =0 (310C)

Notice that for a = b = ¢ = 0 Eq. 3.6 becomes Eq. 3.2. If, now, we require both
solutions in (3.3) to participate in the solutions of (X), then we are led to sufficient
conditions for tr to pass to YTLys(u) (Section 4.2). If not then we are led to
necessary and sufficient conditions for tr to pass to YTLg 3(u) (Section 4.3).

Suppose that both solutions for z from Eq. 3.3 participate in the solution set of
(32). We have the following proposition:

Proposition 3.1. The trace tr defined on Y y3(u) passes to the quotient YTLg3(u)
if the trace parameters x; are d roots of unity (v; = z¢, 1 < i < d—1) and

_ _ 1 - _
=g orz= 1.

Proof. Suppose that tr passes to YTL,3(u) and that (X) has both solutions for z
from Eq. 3.3. This implies that there exists a A in C(u)(zy ..., x4-1) such that:

Za,b,c = )‘ZO,O,O
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From this we deduce that:

A= Tatb+c
Talptre T TpTate + Telarb = 3xa+b+c
Bttt — g E (3.11)
Tasbic = TaTpTe. (3.12)

Since this holds for any a, b, ¢ € Z/dZ, by taking b = ¢ = 0 in Eq. 3.11 we have that:
EYW = z.F (3.13)

which is exactly the E-system. Moreover, by taking ¢ = 0 in Eq. 3.12 we obtain:
Taly = Taip (3.14)

This implies that the x;’s are d* roots of unity which is equivalent to £ = 1 [23,
Appendix]. In order to conclude the proof it is enough to verify that these conditions
for the x;’s satisfy also (3.10b)—(3.10c) of (X). Since the z;’s are solutions of the

E-system, Eq. 3 10b is immediately satisfied. We will finally check Eq. 3.10c. One
has that tr(e 1 62 = 1,,E% as soon as the z,, satisfy the E-system. Once this has
been notlced, Eq. 3.10c becomes the same as Eq. 3.6 using Eq. 3.12 and £ =1. [

Using induction on n one can prove the general case of the sufficient conditions
for tr to pass to YTLg,(u). Indeed we have:

Theorem 3.1. If the trace passes to the quotient for n = 3 then it passes for all
n > 3.

Proof. We shall use induction on n. In Proposition 3.1 we proved the case where
n = 3. Assume that the statement holds for all YTLy(u), where k& < n, that is:

tr(ag g12) =0

for all ay € Ygr(u), & < n. We will show the statement for £ = n + 1. It suffices
to prove that the trace vanishes on any element in the form a,1912, where a,1;
belongs to the inductive basis of Yg,41(u) (recall (1.36)), given the conditions of
the Theorem. Namely:

tr(ans1 g1,2) = 0.

Since a,1 is in the inductive basis of Y,,41(u), it is of one of the following forms:
Un1 = Anln - Gitf  OF  Gpi1 = anlh ),
where a,, is in the inductive basis of Y4, (u). For the first case we have:
tr(any1 912) = tr(angn - - - Gith g12) = 2tr(angn_1 - .. gith g12) = ztr(ag ),

where @ 1= a,g,_1 . gZ . The result follows by induction and thus the statement
is proved. The second case is proved similarly. Hence, the proof is concluded. [

The above theorem allows us to state the following:
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Theorem 3.2. Forn > 3, if the trace parameters x; are d'™ roots of unity, x; = xt,
1<i<d-1, and 2 = —— or z = —1, then the trace tr defined on Y4, (u) passes

u+1

to the quotient YTLg,,(u).

In the proofs of Proposition 3.1 and Theorem 3.1 became apparent that the x;’s
are d roots of unity if and only if the values of z, and z_ satisfy all equations of
(3). Clearly, if we loosen this last condition, then other solutions for the x;’s may
appear such that the trace tr passes to the quotient YTLg,,(u). Indeed, we have the
following:

Theorem 3.3. The trace tr passes to the quotient YTLg,,(u) if and only if the z;’s
are solutions of the E—system and one of the two cases holds:

(i) For some 0 < my < d—1 the z,’s are expressed as:

Ty =exp,, ({) (0<0<d-1).

1

In this case the x;’s are d™ roots of unity and z = —01 orz=-1

(ii) For some 0 < my,ms < d— 1, my # my, the x,’s are expressed as:

v = 5 (XD, (0) o0,y (0)  (0<L<d—1),

In this case we have z = —%.

Note that case (i) captures Theorem 3.2.

Proof. Observe that the z,’s expressed by (i) are indeed solutions of the system
(32). We will now assume that our solutions are not of this form. This implies that
Ty F E@ for some 0 < a < d — 1. This will allow us to have this quantity in
denominators later.

We will use induction on n. We will first prove the case n = 3. Suppose that
trace tr passes to the quotient algebra YTLg3(u). This means that (X) has solutions
for z any one of those in Eq. 3.3, for any a,b, ¢ € Z/dZ. Subtracting Eq. 3.10a from
Eq. 3.10b we obtain:

(a:aa:b+c + TpTase — 2E(“+b+0)) z=— (xaxbxc — xcE(“+b)) ) (3.15)
For b = ¢ = 0 in Eq. 3.15 and since we assumed that there is an a such that
T, # E@ we obtain: z = —%. On the other hand, subtracting Eqs. 3.10a from

Eq. 3.10c we have:

(3E(a+b+c) — LaThye — ToLadc — $c$a+b) 2= TalpLe — tr(€§a+b+0)e2)' (316)

For the value a such that 2, — £ # 0 and for b = ¢ = 0 in Eq. 3.16 we obtain:

Ty — tr(ega)eQ)

3(ry — E@)
By combining Egs. 3.15 and 3.17 we have that:
Ty — tr(ega)eg)
3z, — E@)

(3.17)

z=—

DN —
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or equivalently:
3z — EW) = 2(z, — tr(el¥ey)).

Using Lemma 1.4, this is equivalent to:

3
333—(—[26*33:233——56*33*33.

d2

By taking the Fourier transform (see Lemma 1.5) we arrive at:

Assuming that 7 =} J,_,4_, y,t’ we have the following expression for the cofficients
ye in the expansion of 7:

2 , 3
Ye (ﬁyzg —Eyﬂrl) =0.

So either y, = 0 or y, = d or y, = %d. So if we take a partition of the set {¢: 0 <
¢ < d— 1} into sets Sp, S, S% such that y, takes the value i-d on S; (1 = 0,1, %)
We have from Lemma 1.5 that:

T = Zi_m+% Z i

meSy meSy
P

From zy = 1 we obtain the conditions:
1
1= 2(0) = 8] + 51S4.

This means that either S; has only one element and Sy = 0 or S; = 0 and S1
has two elements. The first case corresponds to the case (i) where the z,’s are d™
roots of unity. In the second case, if S 1= {my, ms} we obtain the following solution
of the E—system:

Ty = (expm1 (€) + exp,,, (@)) , (0<i<d-1) (3.18)

N | —

which corresponds to z = —%.

We can now check that these solutions satisfy the system (X). Since z = —% and
E =1, we have that B = 2,/2, V, 41p = Wyp. = 0, and that Z,. = 0 (Eq. 3.6)
reduces to:

TaTote T ToTate T TeZlatb = Tatbte T 2xaxbxm

which can be checked to be satisfied by the values z, given in Eq. (3.18). The rest
of the proof (the induction on n) follows by Theorem 3.1. O

Remark 3.1. The values for the trace parameter z in Theorems 3.2 and 3.3, z =
—u+r1 and z = —1, in order that tr on Y4, (u) passes to the quotient YTLg,(u) are
the same as the values in Eq. 1.18 for ¢ of the Ocneanu trace 7 on H,(u), so that 7

passes to the quotient TL,(u) (recall Section 1.2).
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3.2 A Markov trace on FTL;,(u)

By Definition 2.3 we have that, if the trace tr passes to the quotient algebra
FTL4,(u), then tr(r;;41) = 0 for all 4, and in virtue of Corollary 2.4 it suffices
that tr(ry2) = 0. In the following lemma we compute the expression for tr(r; ).

Lemma 3.2. For the elements 12 € Yqn(u) we have:
tr(rio) = (u+1)2* + (u+ 2)E 2 + tr(ejey).
Proof. By direct computation we have that:

tr(ri12) = tr(er1ea g12) = tr(eres) + tr(ereagr) + tr(erezgs)
+ tr(ereag192) + tr(ereagagr) + tr(ere2g1g291)
d—1 d—1

1 e
= tr(ereq) + tr(gies) + tr(ersge) + 22° + 7 Z Z 5ty T g1 a0
s=0 k=0

=tr(ejey) +22E 4+ 222 + 2E + (u — 1)2E + (u — 1)2?
= (u+1)2* + (u+2)E z + tr(eses).

m

Thus, the lemma above together with tr(ry2) = 0 imply that the parameters z,
wand xq,..., x4 1 must satisfy the following equation:

(u+ 122+ (u+2)E 2 + tr(ejep) = 0. (3.19)

The solutions of Eq. 3.19 are:

i —(u+2)F £ \/2(1(Lu—|—+21);E2 —4(u+1)A (3.20)

where A := tr(ejes).

Remark 3.2. For d = 1 we obtain from Eq. 3.19 that z = —u+_1 or z = —1. Indeed,
d = 1implies F = 1 and tr(ejes) = 1, thus Eq. 3.19 becomes (u+1)2%+(u+2)z2+1 =
0 which yields the values of Eq. 1.18.

We will see that the above equation involving z, v and xq,...,x4_1 is not a
sufficient condition for tr to pass to FTLy,(u). Thus, the main purpose of the rest
of this section is to find the necessary and sufficient conditions for trace tr to pass
through to the quotient FTL,,(u). For this we recall the discussion in Section 2.5.
We have following result:

Theorem 3.4. For n > 3, the trace tr on Yq,(u) passes through to the quotient
FTLy,(u) if the trace parameters x1, ..., xq-1 are solutions of the E-system and z
takes one of the following values:

1

P = — E or =z
s+ u+1 s

_=-E.

To prove Theorem 3.4 we will need the following lemma:
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Lemma 3.3. The following holds in Y, (u) forl € Z/dZ:
tr (egl)eggm) = (u+ 122z + (u+2)2 EO + tr(egl)ez)
Proof. By direct computation we have:

tr (egl)@gl,g) = tr (e() ) + tr (el 62g1> + tr (el €2g2)

+tr (65)629192> +tr (65 629291) +tr (61 62919291)

d—1 d—1 | d-ld
- Z Ztr (7t a5 ) + 5 Y D (Tt )
s=0 k=0
| 411
d2 Z Z tr tl+st2 s+kt3 9192) + 2 tr(té+st2_s+kt:;k92gl)
=0 ke s=0 k=0
1d—
+ = Z Z tr(tiHt5 " 5  g1gagn) + tr <@§l)€2)
s=0 k=0

= 2zE(l)222xl + 4+2EBY 4+ (u = 1)2ED + (v —1)2%x
= (u+1)2%z;+ (u+2)2E0 + tr <e§)62>
0

The strategy of proving Theorem 3.4 is by proving it first for n = 3 and then
using induction on n.

For the general case, having in mind Corollary 2.4 and the linearity of tr, it follows
that tr passes to FTLg,,(u) if and only if the following equations are satisfied for all
monomials m in the inductive basis of Y4, (u). Namely:

tr(mrl,g) =0. (321)

As usual, we consider first the case n = 3. From Eqgs. 3.5, Eq. 3.21 and from
Lemma 3.3, for [ = a+ b+ ¢, we obtain from four sets of equations, which all reduce
to one single type of equation. Indeed, we have the following lemma:

Lemma 3.4. (a) The case m = t$t5t5. This case yields the equation:

(a+b+c)

tr(mr o) = (u+ 1)22Tarpre + (u+ 2) B2 4 tr(el e2). (3.22)

(b) The cases m = tgt5t5 and m = tt5got5. These cases yield the same equation:
tr(mrys) = u [(u + 1) 2200 pye + (u+ 2) BT tr(egﬁb%)eg)] : (3.23)

(c) The cases m = tithgogit$ and m = %1t gots. From these cases we obtain the
equation:

tr(mry o) = u? [(u + 1)22Tarppe + (u+ 2) BT 4 tr(egﬁb“)@)] : (3.24)
(d) The case m = 41t gogitS. This case yields the equation:

tr(mry o) = u® [(u + 1) 228 ppe + (u+ 2) BT 4 tr(ega+b+c)62)] : (3.25)
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Proof. Case (a) follows immediately from Lemma 3.3 for | = a+ b+ c. For Case (b)

we have that:
tr(t{githtsr2) = tr(t{thtsgir )

Using now Lemmas 2.5 and 3.3 we have:

tr(t‘ftgtg[l + (u—1)ey|ri2) =tr <e§a+b+c)eggl,2> + (u— 1)tr <€§a+b+c)€29172>

=u [(u + 1) 2% Zqippe + (u + 2) 2B 4 tr(egﬁbﬂ)eg)}

In an analogous way, we have for m = tt5g,t5
tr(titsg2t5m1 2) = tr(tit51502m 2)
which is equivalent to:
tr(t5t5t5[1 + (u — 1)eg)ryo) = tr (egﬁbﬂ)@gl,g) + (u—1)tr <e§a+b+c)62g172>
=u [(u + 1) 2280 pye + (u + 2)zE0@F0TO) 4 tr(e§a+b+c)62)}
For case (¢) we have that:
tr(t{git1gatsr2) = tr(t{t5t59192m1 ).
This is equal to:
tr(t§t55[1 + (u — ey + (u — Deps + (u — 1)%ereq)rin) = tr (ega+b+c)eggl72)
+2(u — 1)tr (egﬁbﬂ)egglg) + (u—1)%r (€§a+b+c)€291,2>
= u? [(u + 1) 22T pye + (u+ 2)zE@H0TO 4 tr(egﬁbﬂ)eg)} .
If m = t§t8go9:t5 that:
tr(t5t590011571.2) = tr(t9t5t5 920171 2).
This is equal to:
tr(t§t5t5[1 + (u — D)eg + (u — Deps + (u — 1)%ereq)rin) = tr (egﬁb“)eggm)
+ 2(u — 1)tr <e§a+b+c)eggl72> + (u—1)%*r (e§a+b+c)eggl,2)
= u’ [(U + 1)2% 00 pye + (u+ 2)zEBOTTO 4 tr(egﬁb“)eg)} .
Finally, for case (d) we have:
tr(ti‘glt’{gleterz) = tr(ti‘tgtggngglrm),
Using now Lemmas 2.5 and 3.3 we have:
tr(t§t5t5[1 + (u — 1)(e; +ex +e13) + (u — 1) (u +2) erep)ry o) = tr (egﬁb“)@gl,g)
+3(u— 1)tr <e§a+b+c)62g172> + (u — 1)*(u + 2)tr <e§a+b+6)egg1,2>

=’ [(u + 1) 2280 pye + (u + 2)zE0@H0TO) 4 tr(e%‘”b”)@)} .
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We are now able to prove Theorem 3.4.

Proof of Theorem 3.4. We start by proving the statement for n = 3. As we men-
tioned at the beggining of this section, if tr passes to FTL,,(u) then tr vanishes on
the generator of the principal ideal J = (r15). The equation tr(ry,2) = 0 implies
that 2z takes one of the values z, or z_ of Eq. 3.20. Suppose now that tr passes
to the quotient FTL,,(u). This means that tr vanishes on all elements of J. Us-
ing Lemma 3.4 we see that all elements yield Eq. 3.22. Let [ = a + b 4 ¢, with
0<1<d-—1,and let (X) be the following equivalent to (3.22) system of equations,
with unknowns z,zq,...,z4_1:

) (u+1)2%20 + (u+2)EVz + tr(ego)eQ) =0
(u41)2% + (u+2)EVz + tr(egl)eg) =0 (1<i<d-1)

Recall that zy := 1, £E© = E and 650) = ¢;, for all 4, and denote AY := tr(egl)eg),
for 0 <1< d—1. Note that A® = tr(ejeg) =: A. We then equivalently have the
following system:

) { (u+1)22+(u+2)Ez+A=0 (3.27)

(u+ 122+ (u+2)EV24+ AV =0 (1<1<d-1) (3.28)

Note that Eq. 3.27 is exactly Eq. 3.19. This implies that (X) has z; or z_ (or
both) of Eq. 3.20 as solutions for z. If we require that (X) has both z; and z_ as

solutions for z, then each one of Eqs. 3.28 should be a multiple of Eq. 3.27. In other
words the following should hold:

(w4 1)2%; + (u+2)2E0 + AU = ), [(u+1)2* + (u+2)2E + A],

where \; is in C(u)(xq,...,24-1) and 0 <1 < d — 1. This is true if and only if the
following conditions hold:

)\l = T (329)
EY =3B (3.30)
AD = Ag, (3.31)

Equation 3.30 is precisely the E-system which, in turn, implies that Eq. 3.31 also
holds. Indeed, if the x;’s are solutions of the E—system we have from Theorem 1.8,
for0<!I<d-—1and a= e(ll), that:

tr(egl)eg) = tr(egl))tr(eg) = EVE = 3 E2 (3.32)
On the other hand we also have:
A =tr(erey) = tr(er)tr(ey) = B2 (3.33)

From Egs. 3.32 and 3.33 we deduce immediately Eq. 3.31. From the above (¥) has
the two solutions 2z, and z_ for z if and only if the x;’s are solutions of the E-system.
Then, given a solution X, ¢ of the E-system, Eq. 3.22 becomes:

Tospre [(Uu+1)2° + (v +2)E) z + E*] =0,



60 - MARKOV TRACES ON THE THREE ALGEBRAS

or equivalently:
Tarsre[((w+ 1)z + E)(z + E)] = 0.

That is, given the E—condition, z must take one of the values z, . or z,_ of the
statement.

This concludes the proof for the case n = 3. The rest of the proof (induction on
n) follows the proof of Theorem 3.1. O

Remark 3.3. In the proof of Theorem 3.4 it became apparent that the z;’s satisfy
the E-system and also the system (X) if and only if the values z; and z_ satisfy
all equations of (X). Clearly, if we loosen this last condition, then other values of
the z;’s may appear in a solution of (X), other than a solution of the E-system.
This means that the trace tr also passes to FTLg,,(u) for these other values for the
x;’s. However, for the purpose of constructing framed knot invariants from tr we
have to exclude these values for the x;’s, since they do not permit the rescaling and
normalization of tr (recall Section 1.11.1). In the following theorem we compute all
possible solutions for the system of equations (X). In fact, the set of the solutions
of the E-system is a subset of the set of solutions of () for the z;’s.

Theorem 3.5. The trace tr passes to FTLy3 if and only if the parameters of the
trace tr satisfy:

1
xk2< Z x(km) + (u+1) Z x(km)> and “ 7 T ISupi| + (u+ 1)|Supa]|’

meSup; meSupy

where Sup, U Sup, (disjoint union) is the support of the Fourier transform of x and
x 1s the function complex function on Z/dZ, that maps 0 to 1 and k to the trace
parameter Ty.

Proof. We would like solve the system of equations:
(u+ 1222, + (u+2)2E9 +tr(el?ey) =0, forall0<¢<d—1. (3.34)
By subtracting the first quadratic equation from the others we have the equations:

z(u+ 2) (E(Z) —nE) =— (tr(ege)eg) — 1y tr(€162)> forall0 <l <d-—1. (3.35)

Keep in mind that in the special case we have a solution of the E-system then all of
the above conditions vanish and all equations have two common roots in z.

Assume that this is not the case. In this case we are going to solve the system
given in equation (3.35). In terms of the group algebra it is transformed to the
equation:

(u+2)z Z (E(Z) —zB)th = — Z (tr(egg)@ + tr(eleg))> tt

0<i<d—1 0<e<d—1

Interpreting now the above equation in the functional notation of Section 1.11.1 and
having in mind Lemma 1.4, it follows that Eq. 3.35 can be rewritten as:

1 1
(u+2)z (C—lx * T — Ex) =— (ﬁx T KT — tr(eleg):c)
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applying now the Fourier transform on the above functional equality and using
Proposition 1.5, we obtain:

(u+2)z (%2 - Eaa) _ (”d?—z - tr(eleg)f) (3.36)

Let now = = an_:lo Ymt™. Then Eq. 3.36 becomes:

2 3
(u+2)z (%ﬂ — E?Jm) =— (?Zl—r; — tr(€162)ym>

Hence

2
Ym (Z—’; + (u+ 2)2%” —(u+2)zE — tr(6162)) =0 (3.37)

Now, from (3.34), for I = 0, we have —(u + 2)zF = (u + 1)2% + tr(ejes). Replacing
this expression of —(u + 2)zE in Eq. 3.37 we have that:

yr Ym 2
Ym (ﬁ—l—(u—i-?)z?—i-(u—i-l)z):()

or equivalently:
Ym (Ym + d2) (Ym +dz(u+1)) =0 (3.38)

Denote Sup,; U Sup, the support of Z, where
Sup, :={m € Z/dZ |y, = —dz} and Supy:={m € Z/dZ |y, = —dz(u+ 1)}

hence
T = Z —dzt"™ + Z —dz(u+ 1)t"
meSup, meSupy
Then N R R
T=—dz Z O — dz(u+1) Z Om
meSupy meSupy

thus from Proposition 1.5 we have:

=—z| D it tl) D i

meSup; meSupy

8))

Therefore, having in mind again Proposition 1.5, we deduce that:

Tp=—2 Z x(km) + (u+1) Z x(km) (3.39)

meSup; meSupy

Having in mind that zy = 1, one can determine the values of z. Indeed, from Eq.
3.39, we have that:

1 =z = —2z(|Supy| + (u+ 1)[Sups|)

or equivalently:
1

Zz = — .
[Sups | + (u + 1)|Supy|

(3.40)
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Remark 3.4. We can now determine the values of z, F = d 'z xz(0) and tr(ejes) =
d™%x % x * £(0) using the information zy = z(0) = 1. From Eq. 3.40 we have that:

[S1] + || (1 + )

FE = 22(|Sl| + (U+ 1)2|52|) = (|51| + (u+ 1)‘52’)2

Si| + (u+1)319y)|
A=~ + (w+17|S]) = 12 '
22(151] + (w4 1)°|Ss]) (|S1] + (u + 1)]Ss])?

A simple calculation shows that z, E, A as given above satisfy eq. (3.19).

Remark 3.5. For |S;| = 0 and F = \3_12| one obtains the value z = ——-E, while

for £ = ﬁ and |S2| = 0 the value z = —E of Theorem 3.4.

Using induction on n one can prove the general case of the necessary conditions
for tr to pass to FTL,,(u). Indeed we have:

Theorem 3.6. For n > 3, the trace tr defined on Y4, (u) passes to the quotient
algebra FTLg,,(u) if and only if the trace parameters z and x; satisfy the conditions
of Theorem 3.5.

Proof. The proof is completely analogous to the proof of Theorem 3.1. O

3.3 A Markov trace on CTLg,(u)

We will now present the conditions for tr to pass through to CTLgy,(u). In virtue
of the definition of CTLg,(u), tr passes to the quotient if tr(c;2) = 0. We have the
following lemma:

Lemma 3.5. For the elements c; 2 we have:

tr(cio) = Z ((u + 1222 + (u+2)2E® + tr(egk)eg))
kEZ/dZ

Proof. Using Remark 2.5 we have that:
tr(cio) = Z (tr(egk)ngLg))
keZ/dZ.

= Z (tr(egk)eg) +tr(ePesgr) + tr(ePeags) + tr(eMeagrgn)
keZ/dz

+t1"(€gk)€29291) + tr(egk)€2919291)>

= Z ((u + )22z, + (u+2)2E® + tr(egk)eg))
kez/dz.

O

In order to prove that tr passes to CTL,,(u), we will need the following lemmas.
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Lemma 3.6. For the element 112 we have in Y4, (u):

(1) gicie = [1+ (u—1eilers

(2) 920172 = [1 =+ (U — 1)62]01 2

(3) g192C12 = [1 -+ (U — 1)61 + (U — 1)61 3 + (u — 1)26162]01,2

(4) g291C12 = [1 + (U — 1) €9 + (U — 1)61 3 + (U — 1)26162]01’2

(5) gig2g1c12 = 14+ (u—1)(e1 +e2+e13) + (u—1)2(u+2)eres]e o
Proof. The proof is completely analogous to the proof of Lemma 2.5. [

As we mentioned before, the trace tr passes to the quotient if and only if
tr(aciz) = 0, for all @ in the inductive basis of Y,,(u). Considering for a mo-
ment the case n = 3, we have, using Eq. 3.5 and Lemmas 3.5 and 3.6, the following;:

Lemma 3.7. For any a,b,c € Z/dZ, and m in the canonical basis of Yq3(u), the
equation tr(mey o) = 0 yields the following: (a) For m = t§t5t5:

Z ((u + 122z, + (u+2)zE® + tr(egk)62)> =0 (3.41)
keZ/dz

(b) For m = t3g1t%t5 and m = t3t5gots:

u Z < u+1)2%w, + (u+ 2)2EW +tr(egk)62)> =0
keZ/dz.

(c) For m = tithgog1t$ and m = t3g1t3gats:

u? Z ((u + 1222 + (u+2)2E® + tr(egk)eg)) =0
kEZ/dZ

(d) For m = t4g1t8 920115 -

u® Z ((u + 1)2%2 + (u+2)2E® + tr(egk)62)> =0
k€Z/dZ

Proof. The proof is analogous to the proof of Lemma 3.4. [

Concluding, we have the following theorem:

Theorem 3.7. The trace tr passes to the quotient if and only if the parameter z
and the x;’s are related through the equation:

(w+1)22 3w+ (u+2)z > E® 4+ tr(efVes) = 0. (3.42)

keZ/dZ keZ/dZ keZ

Proof. The proof follows using the same reasoning that was used to prove Theorem
3.1 and having in mind Eq. 3.21, Corollary 2.5, Lemmas 3.6 and 3.7. O]
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3.4 Comparison of the three trace conditions

In this section we will compare the conditions that need to be applied to the trace
paramaters z and x;, ¢ = 1,...,d — 1 so that tr passes to each of the quotient
algebras.

In Theorem 3.3 (see also [8]) we found the necessary and sufficient conditions so
that tr passes to YTLg,(u). The conditions for the z;’s in this case are particular
solutions of the E-system. Thus, the conditions such that tr passes to YTLg,(u)
are contained in those of Theorem 3.5.

Moreover, Theorem 3.5 can be rephrased in the following way:

Theorem 3.8. The trace tr passes to the quotient algebra FTLgy,,(u) if and only if
the parameter z and the x;’s are related through the equation:

(u+1)22x, + (u +2)2E® 4 tr(egk)eg) =0, Vk € Z/dZ

This implies that the conditions such that the trace passes to the quotient algebra
FTLg,(u) are contained in those of Theorem 3.7. All of the above can be summarised
in the following table:

\Yd,n(u) - CTLgn(u) —  FTLgn(u) —  YTLg,(u)
z free
T free

<> Theorem 3.7 <> Theorem 3.8 <~ Theorem 3.3

The first row includes the projections between the algebras while the second shows
the inclusions of the trace conditions for each case.



Chapter 4

Link invariants

We recall now the discussion in Chapter 1 regarding the construction of the Hom-
flypt and the Jones polynomials. One can define the 2—variable Jones or Homflypt
polynomial, P(A,u) [16], by re-scaling and normalizing the Ocneanu trace 7 on
H,, (u). We have:

PO = (~2 ) (V) et

where: a@ € Uy By, A = 17;‘;4, 7 is the natural epimorphism of C(u)B,, onto H,,(u)
that sends the braid generator o; to h; and e(«) is the algebraic sum of the exponents
of the ¢;’s in . Further, by specializing ( to —ULH, the non—trivial value for which
the Ocneanu trace 7 passes to the quotient algebra TL,(u), the Jones polynomial,
V(u), can be defined through the Homflypt polynomial [16]. Namely:

14w

v<u><a>=( . ) (V)™ r(x(a)) = Plu, u)(@).

In Chapter 2 we discussed about the way that the trace tr defined on Yy, (u)
could be re-scaled according to the braid equivalence corresponding to isotopic
framed links [23]. This can be achieved, if and only if the x;’s furnish a solution of
the E-system (recall discussion in Section 1.11.1). Let Xy¢ = (x1,...,X4-1) be a
solution of the E-system parametrized by the non-empty set .S of Z/dZ.

Further, by restricting I'y s(w, u) to classical links, seen as framed links with
all framings zero, an invariant of classical oriented links is obtained, denoted by
Ags(w,u) [22]. Moreover, in [21] the invariant Ay s(w,u) was extended to an in-
variant for singular links. Recall also that for d = 1 the Juyumaya trace tr and the
specialized Juyumaya tracetrg coincide with the Ocneanu trace. For generic values
of the parameters u, z the invariants A, ¢(w,u) do not coincide with the Homflypt
polynomial except in the trivial cases u = 1 and E =1 [2]. Yet, computational data
[5] indicate that these invariants may be topologically equivalent to the Homflypt
polynomial.

4.1 Link Invariants from YTL,, (u)

We shall now define framed and classical link invariants related to the algebra
YTL4,(u). Recalling now the conditions of Theorem 3.3 for the trace tr to pass



66 - LINK INVARIANTS

to the quotient YTLg,(u), we note that in both cases the z;’s are solutions of the
E-system, as required by [20], in order to proceed with defining link invariants.
Further, we do not take into consideration case (i) where z = —1 and the z;’s are
roots of unity (which implies £ = 1), and case (ii) where z = —1 and E = 3, since
crucial braiding information is lost and therefore they are of no topological interest.
Indeed, the trace tr gives the same value for all even (resp. odd) powers of the g;’s,
for m € 29 [23]:

m_ 1 m _ 1
tr(ggn)=<uu+1)z+(uu+l)E+1 if m is even (4.1)

and m_ 1 .
tr(9¢)=<uu_i__1)z+(uu_i__1)E—E if m is odd. (4.2)

The only remaining case of interest is case (i) of Theorem 3.3, where the x,’s are
the d"* roots of unity and z = —u+r1. This implies that £ =1 and w = u in Eq. 1.9.
We know from [23, Remark 5] that the invariant I'y s(w, u) is not very interesting for
framed links when the z;’s are d* roots of unity because basic pairs of framed links
are not distinguished. For classical links, as mentioned earlier, we know from |2,
Corollary 1] that the invariants Ay g(w,u) coincide with the Homflypt polynomial
(case E = 1). More precisely, for E = 1 an algebra homomorphism can be defined,
h:Yqn(u) — H,(u), and the composition 7o h is a Markov trace on Yy, (u) which
takes the same values as the specialized trace tr, whereby the x;’s are specialized
to d™ roots of unity (x; = i, 1 < m < d —1). For details see [2, §3]. The above
discussion leads to the following corollary:

Corollary 4.1. The invariants Vyg(u) := Ags(u,u) coincide with the Jones poly-
nomial.

4.2 Link Invariants from FTL,,(u)

In Section 3.2 we proved that tr passes to FTLg,(u) if and only if the trace pa-
rameters satisfy certain conditions. It is only natural now to discuss the connection
between tr on FTLy,(u) and knot invariants. As it has already been stated, the
trace parameters x; should be solutions of the E—system so that a link invariant
through tr is well-defined. Moreover, the conditions of Theorem 3.6 include these
solutions for the x;’s. In order to define a link invariant on the level of the quotient
algebra FTLg,,(u), we discard any value of the x;’s that does not comprise a solu-
tion of the E-system. Using Remark 3.5 we choose a solution of the E-system and
denote with S the subset of Z/dZ that parametrizes the said solution. This leads
to the following values for z:

B 1 1

T rylsl TSk
In analogy to the invariants from the algebra YTLg,,(u), we do not take into consid-
eration the case where z = —ﬁ and F = ﬁ, since important topological informa-
tion is lost. From the remaining case where the z;’s are solutions of the E—system
and z = —m we deduce that w = u in Eq. 1.9. We then have the following
definition:



4.3 LINK INVARIANTS FROM CTLg4,(u) - 67

Definition 4.1. Let X, ¢ be a solution of the E-system, parametrized byt the non—
empty subset S of Z/dZ and let z = We obtain from I'yg(w,u) the
following invariant for o € Uy, F,:

das(@ = (~025)" (/) tes (7(a) = D, 0) @)

In analogy to the case of I'g(w,u), if we restrict to framed links with all fram-

ings zero, we obtain an invariant of classical oriented links, denoted by 64¢(u) :=
Ad7 S(U, u) .

o 1
(u+1)[5]"

Remark 4.1. If the invariants Ay g(w,u) on the level of the Yokonuma-Hecke
algebras turn out to be topologically equivalent to the Homflypt polynomial [5]
then the invariants 6,4 s(u) will be topologically equivalent to the Jones polynomial,
and the invariants ¥4 ¢(u) framed analogues of the Jones polynomial.

4.3 Link Invariants from CTLy,(u)

The conditions of Theorem 3.7 do not involve the solutions of the E—system at all,
so in order to obtain a well-defined link invariant on the level of CTLg,(u) we must
impose this condition on the x;’s. Recall that the solutions of the E-system can be
expressed in the form:

Ty = Zlk GCCd,
191 £

2mkm
d _|—

and S is the subset of Z/dZ that parametrizes a solution of the E—system

where i = Z;.l;é xk(j)t, and xy is the character that sends m > cos 25

Tkm
d

Let now € be the augmentation function of the group algebra CCy, sending Z i=0 x] tJ
to Z] _o %j. We have that:

i sin Zxkm

e(zg) = 5] e(iy) = B x;(k) = { '%" i 0¢S (4.3)
From this we deduce that:
d—1 P
pl) o (Trey 1 N . :{ pp, i 0€S 4
;0 (1) SE ,;f(lk *1) = g ,;f(l’“) o it ogs Y
and also that:

-, if 0€8
Ztrel er) == () - cF‘ISIBZ BB i) ISP'Z ) { i ogs

kes kesS

Using now Egs. 4.3, 4.4 and 4.5, Eq. 3.42 becomes for the case where 0 € S:

d ( (u +2) 1
(u+ 1)z z+ ) =0.
[Ell 5] |5]?
Therefore, the trace tr passes to the quotient for the following values of z:

(u+1)|5] S|
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1

151
that £ = ﬁ and therefore from Eqs. 4.1 and 4.2 the trace tr gives the same value for
all even (resp. odd) powers of the g;’s. Thus, the invariants that are obtained from
tr on the level of the quotient algebra CTLg,(u) coincide with the invariants Jp and
0p on the level of FTL,, (u). More precisely, the conditions that are applied to the
trace parameters are the same for both of the quotient algebras and, consequently,

so are the related invariants.

The value z = is not taken into consideration, since from Eq. 3.42 we deduce

Furthermore, the solutions of the E-system (which are the necessary and suffi-
cient conditions so that topological invariants for framed links can be defined) are
included in the conditions of Theorem 3.4, while for the case of CTL,,(u) we still
have to impose them. These are the main reasons that lead us to consider the quo-
tient algebra FTLy,(u) as the most natural non—trivial analogue of the Temperley—
Lieb algebra in the context of framed links. The following table gives a full overview
of the invariants for each quotient algebra:

d,D Fan |u | w
Yan(u) I'p |u|w d=1 |B,|u|w
YTLg,(u) | Vp |u | u H, (u) P lul| X
FTLy,(u) | 9p |uw | u TL,(u) | V |u | u
CTLgpn(u) | 9p |uw | u

d,|D|=1 | Fan |u | w d,|D|>1 | Fan | u | w
Yd’n(u) FD u A Yd,n(u) FD u A
YTLgn(u) | Vo |u | u YTLgn(u) | no | — | —
FTLy,(u) | Vo |u | u FTLgn(uw) | Up | v | u
CTLgn(u) | Vp |u | u CTLgn(u) | Up | u | u

Table 4.1: Overview of the invariants for each algebra.

4.4 Conclusions

In this thesis we proposed three possible quotients of the Yokonuma—Hecke algebra,
Yin(u), as framizations of the Temperley—Lieb algebra, the algebras YTLg,(u),
FTL4,(u) and CTLg,,(u). We proved the necessary and sufficient condition such
that the Markov trace tr defined on Y, (u) passes to each of the quotient algebras,
and we defined the link invariants that correspond to each case.

The knot invariants from the algebras YTLg, (u), when restricted to classical
knots, recover the Jones polynomial while the knot invariants for the algebras
FTL4,(u) and CTLg,(u) still remain under investigation. If the invariants from
the Yokonuma—Hecke algebras prove to be topologically equivalent to the Homflypt
polynomial, then the invariants from FTLg,,(u) and CTL,,(u) will be topologically
equivalent to the Jones polynomial. If not, it would be then meaningfull to consider
the corresponding 3—manifold invariants (as obtained from work of Wenzl [36]). In
the case of the algebras YTL,,(u) the Witten invariants of 3-manifolds can be
recovered, since the related knot invariants recover the Jones polynomial [8].
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Finally, some of the most interesting problems that arise from this thesis are the
diagrammatic interpretation of the presentation with non-invertible generators for
each of the three quotient algebras and the study of the Representation Theory of
the algebras FTL,,,(u) and CTLg,,(u).

4.5 Connection with 3—manifolds

It is remarkable that while the trace tr is not local (i.e. multiplicative) in principle,
it becomes so when the x;’s are chosen to be solutions of the E—system. This implies
that there exists a 3—manifold invariant that corresponds to the trace tr. Indeed,
from the following Proposition by H. Wenzl [36] we have that:

Proposition 4.1. (i) There exists a 1-1 correspondence between multiplicative
invariants of framed links L such that £(0 — unknot) # 0 and local Markov
trace tr on F, for all a € F,. It is given by:

L(a)
L(0 — unknot)®

tr(a) =

(ii) There exists a 1-1 correspondence between multiplicative invariants § of closed
connected oriented 3-manifolds with F(S* x S?) = Cy # 0, where multiplicative
here means that F(Mi#Msy) = F(M1)F(Ms), and local Markov trace on Fu

satisfying for any a € F,, and any m < n + 1:
tr(Q(On—mi1 - Ong1) o (Ong1 o Opgn)) = tr(Q)Cy ™ = tr(oz)tr(agm))

and

and such that the corresponding invariant of framed links does not depend on the
choice of orientation of the links. The correspondence is given by:

_ S(M(e,m))
tr(a) = (5T x S2)

where F(S* x §2) = Cy = 20

tr(ot)

We have the following corollary:

Corollary 4.2. Applying Wenzl’s result on the case of the invariants Vys(u) from
the YTLg.,(u) algebras, we recover the Witten invariants for 3—manifolds, since the
invariants Vy s(u) recover the Jones polynomial.

A final remark is now due:

Remark 4.2. Applying Wenzl's result on the case of the invariants 9, ¢(u) from the
FTLg,(u) algebras, we recover topological invariants for 3-manifolds, which remain
to be studied.
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