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HHEPIAHYH

21 Tapouca OIBOKTOPIKN dIaTpIfr) TTpoTeivouue pia véa péBodo yia Tov uttoAoyioud skein
modules 3-TTOAAATTAOTATWY PECW OUAdwY TTAEEIdWY Kal TThAiKa auTwy. Ta skein modules 3-
TTOAATTAOTATWY  OTTOTEAOUV  ONUAVTIKA OaAYERPIKA epyaAeia yia Tnv UeEAETR Twv  3-
TTOAAQTTAOTATWY, KABWG oI I010TNTEG TOUG TTAPEXOUV ONUAVTIKEG TOTTOAOYIKEG TTANPOPOPIES YIa
TIG i01EG TIG 3-TTOAAQTTASTNTEG. AvaTITUOOOUNE AOTTOV OAQ Ta ATTAPAITATA €PYOAELia yia TOV
uttoAoyiopd Tou Homflypt skein module Twv @akoeidwyv xwpwv L(p,q) kai eoTidloupe oTn
mepiTrTwon g=1. Ta amoteAéopara TG TTapouoag diatiBAg opifouv £va opoyevES TTAQICIO yia

TN MEAETN KOPPBWV Kal KPiKwV o€ 3-TTOAAATTAOTNTEG KAl OE OIKOYEVEIEG 3-TTOAAQTTAOTATWV.

ABSTRACT

The present PhD thesis develops an algebraic approach in the computation of skein modules
of 3-manifolds. Its primary motivation is the computation of the Homflypt skein module of the
lens spaces L(p,q). Skein modules are quotients of free modules over ambient isotopy
classes of knots and links in a 3-manifold by properly chosen skein relations. A skein module
of a 3-manifold M based on the Homflypt skein relation is called Homflypt skein module of M.
Skein modules of 3-manifolds have become very important algebraic tools in the study of 3-
manifolds, since their properties renders topological information about the 3-manifolds. In this
thesis we work towards the Homflypt skein module of the lens spaces L(p,1) via braids. The
advantage of the braid approach is that it gives more control over the band moves than the
diagrammatic approach and much of the diagrammatic complexity is absorbed into the proofs

of the algebraic statements.
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The knowledge of which geometry aims

is the knowledge of the eternal.

Plato, Republic, VII.
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The Homflypt skein module of the lens spaces L(p,1)

Toannis Diamantis

Department of Mathematics
School of Applied Mathematics and Physical Sciences
National Technical University of Athens
Athens, Greece
2014

ABSTRACT

The present thesis develops an algebraic approach in the computation of skein mod-
ules of 3-manifolds. Its primary motivation is the computation of the Homflypt skein
module of the lens spaces L(p,q). Skein modules are quotients of free modules over
ambient isotopy classes of knots and links in a 3-manifold by properly chosen skein rela-
tions. A skein module of a 3-manifold M based on the Homflypt skein relation is called
Homflypt skein module of M, also known as Conway skein module and as third skein
module. Skein modules of 3-manifolds have become very important algebraic tools in the
study of 3-manifolds, since their properties renders topological information about the 3-
manifolds. In this thesis we work towards the Homflypt skein module of the lens spaces
L(p,1) via braids. The advantage of the braid approach is that it gives more control
over the band moves than the diagrammatic approach and much of the diagrammatic
complexity is absorbed into the proofs of the algebraic statements.

In Chapter 1 we give introductory notions from Knot Theory and we present an
overview of the subject of Homflypt skein modules of 3-manifolds, giving emphasis
to the mathematical tools needed for this thesis. More precisely, we first present the
Iwahori-Hecke algebra of type A and its properties, and then we construct the classical
Homflypt polynomial for knots and links in S®. We pass to the generalized Iwahori-
Hecke algebra of type B, which is related to the knot theory of the solid torus and which

plays a crucial role for this thesis. We discuss its properties and present the Homflypt
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polynomial for knots and links in the solid torus. Moreover, we describe geometric and
algebraic mixed braid equivalence for knots and links in 3-manifolds obtained from S3
by integral surgery along a framed link and we give the formal definition of the Homflypt

skein module of a 3-manifold.

In Chapter 2 we describe braid equivalence for knots and links in a 3-manifold
M obtained by rational surgery along a framed link in S3. We first prove a sharpened
version of the Reidemeister theorem for links in M. We then give geometric formulations
of the braid equivalence via mixed braids in S® using the L-moves and the braid band
moves. We finally give algebraic formulations in terms of the mixed braid groups B,,
using cabling and the techniques of parting and combing for mixed braids. Our results
set a homogeneous ground for the algebraic braid equivalences for link isotopy in families
of 3-manifolds. We provide concrete formuli of the braid equivalences in lens spaces,
Seifert manifolds, homology spheres obtained from the trefoil and manifolds obtained
from torus knots. The algebraic classification of links in a 3-manifold via mixed braids
is a useful tool for computing the Witten invariants and for studying skein modules of

3-manifolds and of families of 3-manifolds.

In Chapter 3 we give a new basis, A, for the Homflypt skein module of the solid torus,
S(ST), other than the one of Hoste-Kidwell [HK90| and Turaev [Tur88|, conjectured by
J. H. Przytycki. For doing this we use the generalized Hecke algebra of type B, H; ,,,
defined by Lambropoulou [Lam99|, which is isomorphic to the affine Hecke algebra of
type A. In order to show that the set A is a basic set for S(ST) we start with the
well-known basis of S(ST), A’, discovered independently in |[Tur88| and [HK90] with
diagrammatic methods, and a basis ¥, of the algebra H;,. We define an ordering
relation in A’ and prove that the set is totally ordered. We then convert elements in
A’ to linear combinations of elements in the new basic set A. This is done in two

steps: First we convert elements in A’ to elements in Y,,. Then, using conjugation and
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stabilization moves, we convert these elements to linear combinations of elements in A.
Finally, we relate the sets A’ and A via a block diagonal matrix, where each block is an
infinite lower triangular matrix with invertible elements in the diagonal. The infinite
matrix is then invertible and thus, the set A is a basis for S(ST). The new basis is
appropriate for computing the Homflypt skein module of the lens spaces.

S(ST) plays an important role in the study of Homflypt skein modules of arbitrary
c.c.o. 3-manifolds, since every c.c.o. 3-manifold can be obtained by surgery along a
framed link in S with unknotted components. The family of the lens spaces, L(p, q),
comprises the simplest example, since they are obtained by rational surgery on the
unknot. The aim of this chapter is to set a homogeneous ground in computing skein

modules of c.c.o. 3-manifolds via algebraic means.

In Chapter 4 we give a basis for the Homflypt skein module of the lens spaces
L(p,1) using the braid approach and results from [Lam99, LR06, DL15|. We first show
the connection between S(ST) and S(L(p,1)). In particular, we show that S(L(p,1))
is obtained from S(ST) by considering relations coming from the braid band move on
elements in the basis A, where the braid band move is only performed on the first
moving strand of each element. We then study an infinite system of equations coming
from the braid band moves and we show that the system splits into self-contained
subsystems. We investigate other useful properties of the system such as “symmetry”
in equations. We then define an ordering relation on the unknowns that respects the
ordering defined in Chapter 3 for elements in A, and show some combinatorial results
derived by the ordering. In [GM14|, S(L(p,1)) is computed diagrammatically and the
result suggests that the infinite system admits unique solution, leading to the following
basis for S(L(p,1)):

B, = {t%t/" '™ : meNdeNVi:dy<d <.. <dyu<p—1}.

The importance of our approach is that it can shed light to the problem of computing

skein modules of arbitrary c.c.o. 3-manifolds, since any 3-manifold can be obtained by
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surgery on S® along unknotted closed curves. Indeed, one can use our results in order to
apply a braid approach to the skein module of an arbitrary c.c.o. 3-manifold. The main
difficulty of the problem lies in selecting from the infinitum of band moves (or handle
slide moves) some basic ones, solving the infinite system of equations and proving that

there are no dependencies in the solutions.
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IMepiAndn

Y1 mapoloo dwaxtopxt dutpldh mpoteivouue wor véa pédodo Yol TOV UTOAOYLOHO
skein modules 3-tohhamiotAtwy péow ouddwv MAECBwY xar mriixa autwv. Ta skein
modules 3-nollanrotTwV anoteholy onuavtixd oAyeBpd cpyoleior ot UEAETN TV 3-
TOMATAOTATWY, XS oL IOTNTEG TOUS TAREYOLY ONUAVTIXES TOTOAOYIXEC TATPOPORIES
yioe Tic (dteg Tig 3-ntoAhamhdtnTec. O avantioupe dha o amapaiTrTo ahyeBpd epyahela

v Tov unohoytoud tou Homflypt skein module twv gaxoedmv ydewy L(p, 1).

Y10 Kegdhato 1 noagoucidlouue ma ewcaywyr) ot Ocwpio Koufwv divovtog ugao
otov ahyeBpd tpoémo avixtnorng tou Homflypt skein module tou otepeot) tépou yéow
TV yevixeuuévwy ahyeBecdv Iwahori-Hecke timou B. Apywd mopoucidloupe tic dhye-
Beec Iwahori-Hecke tonou A xou xataoxeudlouye 1o toluwvugo Homflypt yio xéufouc
xan xpixoug oty S3, Y1 ouvéyel Topouctdloude T Yevixeuuéveg dhyeBpeg Iwahori-
Hecke t0Onou B, ou omolec cuvdéovton pe ) Yewpla x6uBwv Tou 01EREOY TOEOU XU Ot
omoleg mailouy TpwTaPYXd pOLO oTN TapoVoa BlaTE3Y), avahlOUUE OIOTNTES TOUG oL X0
Taoxeudlouye To tolucdvuuo Homflypt yia xopfouc xau xpixouc otov oteped tépo. Téhoc,
TaEoUGLALOVUE TN YEWUETELXT Xt aAYEBET tooduvapia TAeZdwY Yo xdufoug xou xpixoug
o€ 3-TOAATAGTNTES OL OTOIES TPOXUTTOUY amd TNV oPalpa S3 UECW aXEQUAS YELQOVRYIXNAS
XATE UAXOC EVOC TAUGIWUEVOU xOuBou.

Y10 Kegdhawo 2 napoucidloupe T YEWUETEXT, xou ahyEBpixt| looduvauio mxTt®y TAeE(-
dwv yia x6uPouc xa xpixouc og 3-ToMamAGTNTES 0L oTolec TpoxUTTOLY omb Ty S? pe T
uEDodo NG YELOURYIXTC XATA WAX0S EVOS TAUGIWUEVOL xOuPou ue entd cuvteheotr. H
YELPOUEYXT) OE €V TAUGIWUEVO XOUPBO UE eNTO CUVTEAECTY| ATOTEAEl YEVIXEUOT) TNG OXE-
patog yetpovpyixfic. Mepixd onuovtind mAcovexthuatd tng ebvon 6Tt umopel va meprypdiet
OMNOXANPES OWOYEVELES 3-TOANATAOTHTWY Ol OTOIEC TP YOVTOL Antd TOV (D0 TAUGCLWUEVO

xpixo (UE D1POoPETNd GUVTEREDTY)), OTWC Yot TaEdderyUa ot paxoedeic yhpot L(p, q), xou
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OTL TOMES 3-TOAATAOTNTES EYOUY ATAOUCTERY) TEQLYEAUPY| HECW AUTHS, OTWS Yid ToRd-
detypa ot molhamhotnteg Seifert. Apyuxd avamaplotolye v 3-todhomhotnto M ue plo
ANEWOTH, TAUOLWUEVY, TAEEDa oY S3 xau avamaploTolpe xpixoug oty M ue xhetoTée, wi-
xtéc TAeLdeC oty S3. Y1 ouvéyela yevixelouue To Oedpnua Reidemeister yio xpixouc
oty M, xou amodevioupe wa BekTiwpévn Exdoor autol, otny ool arouteiton uovo ula
ano TIC 0o Véeg uvrioelg wootomiag, band moves. ITo cuyxexptuéva, anodetxvioude OTL
0U0 TpocavatoAouévol xpixol Ly, Ly otnv M etvon wootomixol av xou uévo av avtiotolya
WX T Btary pdUpaTd ToUG Blaépouy xatd TeEnepacUévo TAog xivicewy band moves Tirou
QXA oo XWYVYOELS LOOTOTAG TNV SS\E. 211 GUVEYELX DIVOUUE TNV YEWUETEIXT| LGOBUVOULAL
wx Ty TALIwY yenotonotwvTag tng xwviioelg L xa ti¢ braid band moves. Awtun@vou-
e xa amodexvOoUUE TENOS TNV aAYEBpuxr tooduvopio TAEZBWY PECW TWY OUABY UXTOY
TAEEBWY By, 1, YENOOTOWMVTAC TNV TEYVIXT TNS xaAwdlwone, TNy Teyvixy| standard par-
ting xau tnv TEY Vi) combing. H évvola tng xahwdlwong pog enttpénel va teptypdouue
mo amhd Tic xwvhoelg braid band moves, xaddg pog emtpénel va Yewpolue xdde xahdd0
o ula moyd xhwoth. H egapuoyt tng teyvixrc standard parting oe uio yewuetpixt
wxtr) The€ido oonyel oe wo parted pixtr The€ida, Onhadh oe pior wxtr The€ida oty omoia
€youpe Oryweloet Tic m + n 610 TANYOC XAwoTEC GE 000 PEET: OTIC TEMTEC M XAWOTEC,
oL 0Toleg AVTINPoowREVOLY 10 oTadepd uépog TG Ut TAEZIDag, xar 0T uTGhoLRES N,
ol onoleg anoTeAoUV To xvoUUEVO Pépog authc. Me Ty e@apuoyt Tng TeYVixrc combing
oe wa parted uueth mAeida Staywpetlovue v TAeLida o S0 U€en: 010 aAyefpikd Uépos
apyxd, oo onofo ot otaepéc xhwotée oynuatilouy T Tautotixd TAeEida (xon emouévec
anoteholV oTotyElo xdmolag WX TS oUddac TAeEDwY By.n) %ot 10 omoio TEPLEYEL OAEC TIC
dtaotavp®aoelc Tou xeixou K otny M, xa oto coset pégoc Cp, , 0TI GUVEYELWL, TO OTOLO
Tep aUBdver OheC TIC DLAOTAVEWOELS UETAEY TwY oTadep®V XAwoT®Y TN unomAedidac B
(xou To xwvolpevo pépog aynuatiler v tautotxy| The&ida). Anodetxviouue téhoc HTL 800
TpoGavaToMGpévoL xpixol oty M elvar tootomxol av xou uovo av avtiotoyeg olyePpixéc

wixTéc TAEZIOEC aUTWY dLapépouy xatd tenepacuévo TAdoc twv xwhoewy Algebraic M-
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congugation, Algebraic M-move (1 100d0vayua ue tic ahyefpxéc xwvhoewe L), Combed loop
congugation, Combed algebraic braid band moves.

Ta aroteréoparta Tou Kegahaiou 2 optlouv éva opoyevég alyeloixd meptBdhhov yio
UERETY xpixwY O 3-TOAATAOTNTES XAl GE OIXOYEVEIES 3-TOANATAOTHTOY Y PNOULOTOLWMVTAS
uToAOYIGTIXE epyaieia. Xtnyv § 2.7 napouctdloupe avahutixd TNV Woduvauio TheZBwy
OE OLXOYEVELEC 3-TOAATAOTATOY, OTWS Ol QUXOEDE(S Ypot, ol TolarhotnTeg Seifert, ol
ogaipec opohoyiog ot onoleg Tapdyovtal and Tov xO0US0o TELPUAAL XU 0L TOAATAGTNTES TOU
TepLypdpovtat and torus xouBous. Ilpoteivouue téhog xdmoteg eQugUoYEéS 0TOV UTOAOYIOUO
avahholwtwy x6uPfwy totou Jones oe 3-mohhamAdTnTeS, oTNY PeTd@paor, Tou Rational

Calculus tou Rolfsen ye 6pouc mhe&idwy xou otov urtohoyioud avahhoiwtwy Witten.

Y10 Kegdhouo 3 mapouctdlouvye pio véa Bdom yio to Homflypt skein module tou otepe-
00 t6pou. O Turaev xo aveZdptnta o Kidwell-Hoste édwoav o éon, A’, tou Homflypt
skein module tou otepeot topou S(ST) pe Srypappatinés pedddoue. H Bdon A’ tou
S(ST) etvor xatdhhnhn yio v optotel 1 avodhoiwtn X tne Aournponovhou, ohhd eivo
Toh0 d0oxoho Vo TepLypddel To anotéheoua wag xivnong braid band move, xdtt tou emi-
TUYYdvEL UE QuUOLXO TROTo 1) Véa Bdom mou mpoteivoupe, A. Optloupe apyxd utor Sidtaln
ota oUvoha A xou A" xar amodetxvioupe 6Tt T GUVoha aUTd, odlacuéva e T Stdtaln
Tou oploaye, AmOTEAOVY OMxd Satetayuéva oUvola. Zextvdpe and otoyela tne Bdone A
xou oL EXPEACOUPE WS YRAUUUXO GUVBUUCUS OTOEY TOU GUVOLOU X, TO OTOlO ATOTE-
Ael Bdom g yevixeuuévng dhyePeac Iwahori-Hecke tinou B, Hi (q). Ta otoryeio tou
TEOXUTTOUY EVOEYETAL VoL €YOUY XEVE GTOUG OEIXTES TWV YEVVNTORWY 4 (gaps), ot exVéteg
TWV YEVVNTOPWY aUTQVY EVOEYETAL Vo unv Beloxoviar oe @iivouoa oelpd, xou Téhog, EVOEye-
ot var oxohoudoilvton and ototyeia tne dAyeBpac Iwahori-Hecke timou A, H,(q) (tails).
Xpnowonowwvtog stabilization moves xau conjugation, arodetxvioupe 61t xdde otoiyeio
T0U X, Unopel VoL exppaoTel e YRoUXS ouVdUaoU6S oToLyElwY Tou cuvehou A (Oewpt-
uata Managing the gaps, Ordering the exponents, Eliminating the tails). Téhoc, yia vo

detloupe 6Tt To alvolo A anotehet Bdon tou Homflypt skein module tou otepeot tégou,
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ouvdéouye ta 000 oUvoha A xar A’ pe évay dmelpo, xdtw Tetywvixd Tivoxo ye avtioteégua
otoyela 6T x0pta SLoyVIO YETOWOTOLOVTAC TNV BLdTaly) ToU 0plGaue ot GUYOAA oUTd,
xou Oetyvoupe 6Tt T0 oivoro A eivon ypouuixd avegdptnto. To clvolo A howndy anotehel

Bdon tou Homflypt skein module tou otepeot) tdpou.

Y10 Kegdhawo 4 moagouctdlouue pla véa Bdon yioa 1o Homflypt skein module twv
paxoedwy yoewv L(p, 1), S(L(p,1)). Xtny §2.7.2 nopovoidotnxe 1 ooduvapio TAeEBwy
v x6pPouc otov L(p, 1) xou oto 3.2 mopouctdletar v véa Bdon tou S(ST), n onoia
elvor XatdAANAY va meptypdder Tic véeg awroelg wootorioc braid band moves. Apyixd
anodetxviouue 61t o unohoytopds tou S(L(p, 1)) npoxtntet and 1o S(ST) av avahlcouye
OYEOEIC TOU TPOXUTTOUY UETS TNV e@opuoyt woc (p, 1)-braid band move, cupBolixd:
S(L(p,1)) = % H pédodoc mou axoroudolue eivor vor emBAAOUUE 0TNY avoAhoi TN
X (1.10) tnc Aaungonothou yio x6pPouc xot xpixoug oTov oTeped ToRO, ([Bla Tiur Yo 500
wxtolg xpixoug Tou dlagépouy xatd wia xitvnorn band move, 7 16odUvaya, o 800 UxTEC
mheldeg mou dragégouv xatd pla xtvnor braid band move. Koataoxeudloupe ue autédy tov

TpémO éva dmelpo alotnua, ot MIoElC Tou omolou odnyolv otn Bdon tou S(L(p, 1)):

kO,m
7-O,m

koom -1
PTy 191

Ié /4 4 / / 7 7

Ov dyvewoTol Tou cuUGTRUATOS TEOXUTTOLY and T cuVdETNoTC tyvoug Tne Aaurnpotoliou
xou avuetatideviar. Xenowwonowwvtac T didtalrn oto civoho A, amodetxviouue OTL TO
’ ’ ’ 7 < 79 ’ 7 7

drepo cUGTNUA amoTeRelTol amd UAeloTd’ xan dmelpd 6TO0 TARVOC, TEMEQUOUEVA UTOGU-
OTAUATA, ‘UAEOTE’ UE TNV EVVOold OTL Ol dYVWOTOL EVOC UTOGUGTHUATOS OEY UTOPOUV VoL
EpQAVIGTOOY GE xavEVa dAlo urtoclotnua. Egeuvolue axdua evolagpépouces WOLOTNTES TOU
CUCTAUATOS OTWS 1) ‘ouuueTpla’ Tou epgaviletar o8 CUYXEXQIUEVES ECIOWOELS. XTN Ou-

véyewa opiCoupe 01dTadn 0TOUC AYVWMOTOUS TOU GUOTAUATOC 1) omtolo GEBeTon TNy dLdTaln
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e § 4.3 otoyeiny Tou A, xar Yéow aUTAC ATOBEIXVOOUUE GUVBUNCTIXG OTOTEAECUATOL
TOU 0PopPOUY GTO GUCTAUN UE OXOTO Vo amodECOUYE OTL TO dMEWO aUTO GUCTNUA DEYETL
wovadxr Ao, 1 onola 0dnyel ot napaxdtw Bdorn tou S(L(p, 1)):

B, = {tot/" '™ meNdeNViidy<d <...<dp<p-—1}

poel
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PRELIMINARIES

1.1 Knots and Links in S3

Definition 1.1. A link of m-components is a subset of S3, or R3, that consists of m

disjoint, piecewise linear, simple, closed curves. A link of one component is a knot (see
Fig. 1.1).

Definition 1.2. Two links L, Ly in S? are equivalent (or isotopic), denoted by Ly ~ Lo,
if there is an orientation-preserving piecewise linear homeomorphism A : S® — S2, such

that h(L1> = LQ.

Definition 1.3. A link diagram is a diagram of a link on the plane, where each line
segment of the link is projected to a line segment in R?, such that two segments intersect
ion at most one point, which for disjoint segments is not an end point, and that no point
belongs to the projections of three segments.

Theorem 1.1 (Reidemeister). Two link diagrams correspond to isotopic links if and
only if one can be obtained from the other by a finite sequence of Reidemeister moves
(Fig. 1.2) and plane isotopies (Delta moves) (Fig. 1.3).

Fig. 1.1: A knot and a 2-component link.
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Fig. 1.2: The Reidemeister moves.
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Fig. 1.3: Delta move.

1.2 Braids

Definition 1.4. A braid in n strands is defined as a set of pairwise nonintersecting
descending polygonal lines (strands) joining the points Ay, Ay, ..., A, to the points
By, By, ..., B, in any order, where A; = (i,0,0) and B; = (¢,0,1) fori =1,2,...,n.

Definition 1.5. Two braids are called isotopic if and only if one can be transformed
into the other by a finite sequence of elementary deformations.

The set of (equivalent classes of) braids in n strands has a natural group structure:

The product of two braids a and b is obtained by putting them end to end as shown
in Figure 1.5.

The unit element is the braid consisting of n parallel vertical strands and the inverse
of a braid a, a7, is the mirror image of a in the plane. The set of braids in n strands
under this operation is called the braid group and is denoted by B,,.

Fig. 1.4: Elementary deformations.
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Fig. 1.5: The product of two braids a and b.
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Fig. 1.6: The generator o; and its inverse o; L for B,,.

Theorem 1.2 (Artin). The equivalence relation upon braid words defined by the rela-

tions
00 = 0;0; for ‘Z—j‘ >1

0;0i4+10; = 04410041

15 1dentical to the equivalence relations of braid isotopy upon braids represented by the
braid words.

Because of Theorem 1.2, B, has the presentation:

0i0i410; = 04410041, 1 <1<n—2
oi0j =004, |i—j|>1

Bn:< O1y++-3,0n-1

Definition 1.6. The closure of a braid a is defined as the link @ obtained by joining
the upper points of its strands to the lower ones (see Fig. 1.7).

\

A0

Fig. 1.7: The closure of a braid.



Theorem 1.3 (Alexander). Any link is the closure of some braid.

Theorem 1.4 (Markov). The closures of two braids are isotopic if and only if one braid
can be taken to another by finite sequence of the following moves:

Conjugation: a <> bab™!, a,b € B,

Stabilization : a <> aoc,', a€ B,.

1.3 The Homflypt polynomial of links in S®

1.3.1 The Iwahori-Hecke algebra of type A, H,(q)

A presentation of H,(q) is obtained from the presentation of the braid group B, by
adding the quadratic relation g? = (¢ — 1)g; + ¢, ¢ € C a fixed variable. The algebra
H,,(q) has the following presentation:

9i9i+19i = Gi+19i9i+1, 1 <1 <mn—2
Hn(Q) = 91,92, .- -,9n-1 919] :gjgia |Z_j| > 1 )

Z=q-Dg+q i=12..n—1
that is
Z[qil]Bn
<Uz'2_(q—1)0¢—Q>'

In [Jon87] V.F.R. Jones gives the following linear basis for the Iwahori-Hecke algebra
of type A, H,,(q):

H,(q) =

S = {(Qilgirl Ce gil*k1)<gi2‘gi2*1 . -giszz) . (gipg’ipfl Ce Qip—kp>} s for 1 S il < ... < ip S n—1.

The basis S yields directly an inductive basis for H,(q), which is used in the con-
struction of the Ocneanu trace, leading to the Homflypt or 2-variable Jones polynomial
(dimH,(q) = n!).

Theorem 1.5 (Ocneanu). There ezists a unique linear Markov trace function:

tr U H,(¢) —» C,
n=1

determined by the rules:

(1) tr(ab) = tr(ba) for a,b € H,(q)
(2) tr(1) =1 for all Hy ,(q)
(3) tr(ag,) = =ztr(a) for a € H,(q)



Fig. 1.8: A mixed link in S3.

Theorem 1.6. The function X : L — Z[q¢*!, 2, )]

1 _ )\q n—1 e

XuloN) = [~ (VR) e ),
VA1 —q)

where o € By, is a word in the o;’s, e is the exponent sum of the o;’s in a, and 7 the

canonical map of B, in H,(q), such that o; — g;, is an invariant of oriented links in

ST.

1.4 Knot theory of the solid torus

We now view ST as the complement of a solid torus in S®. An oriented link L in ST
can be represented by an oriented mized link in S3, that is a link in S® consisting of
the unknotted fixed part I representing the complementary solid torus in S3 and the
moving part L that links with 1.

A mized link diagram is a diagram TUL of TUL on the plane of f, where this plane
is equipped with the top-to-bottom direction of I.

Consider now an isotopy of an oriented link L in ST. As the link moves in ST,
its corresponding mixed link will change in S3 by a sequence of moves that keep the
oriented I pointwise fixed. This sequence of moves consists in isotopy in the S and
the mized Reidemeister moves. In terms of diagrams we have the following result for
isotopy in ST:

The mixed link equivalence in S? includes the classical Reidemeister moves and the
mixed Reidemeister moves, which involve the fixed and the standard part of the mixed
link, keeping I pointwise fixed.

1.4.1 Mixed Braids in S®

By the Alexander theorem for knots in solid torus, a mixed link diagram TULof UL
may be turned into a mized braid I U with isotopic closure. This is a braid in S3
where, without loss of generality, its first strand represents I, the fixed part, and the
other strands, [, represent the moving part L. The subbraid g shall be called the
mouving part of I U [.



Fig. 1.9: The closure of a mixed braid to a mixed link.
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Fig. 1.10: The generators of By .

The sets of braids related to the ST form groups, which are in fact the Artin braid
groups type B, denoted B, ,, with presentation:

Bl,n = < t,O’l,...,Un_l

01t0’1t = tO’ltCTl

to, =o;t, 1>1
0i0i+104 = 0i4+10i04+1,
0,05 = 0505, |Z—]‘ > 1

1<i<n—-2 >’

where the generators o; and ¢ are illustrated in Figure 1.10.
Isotopy in ST is translated on the level of mixed braids by means of the following

theorem.

Theorem 1.7 (Theorem 3, [Lam94|). Let Ly, Ly be two oriented links in ST and let
TUBy, TU By be two corresponding mized braids in S3. Then Ly is isotopic to Ly in ST

if and only if I U By is equivalent to I U By in ole By, by the following moves:

(i) Conjugation :

a~ B tap, it o, € By,.

(ii) Stabilization moves: « ~ aor! € By 1, if a € By,.



1.5 The Homflypt polynomial of links in the solid torus

1.5.1 The Generalized Iwahori-Hecke Algebra of type B

It is well known that B; , is the Artin group of the Coxeter group of type B, which is
related to the Hecke algebra of type B, H, (¢, @) and to the cyclotomic Hecke algebras
of type B. In [Lam99| it has been established that all these algebras form a tower of
B-type algebras and are related to the knot theory of ST. The basic one is H,(q, @),
a presentation of which is obtained from the presentation of the Artin group B, by
adding the quadratic relations

g =(q—1)gi+q (1.1)

and the relation t* = (Q — 1)t + @, where ¢,Q € C\{0} are seen as fixed variables.
The middle B-type algebras are the cyclotomic Hecke algebras of type B, H,(q,d),
whose presentations are obtained by the quadratic relation (1.1) and t* = (¢ — uy)(t —
ug) ... (t —ug). The topmost Hecke-like algebra in the tower is the generalized Twahori—
Hecke algebra of type B, Hy,(q), which, as observed by T.tom Dieck, is related to
the affine Hecke algebra of type A, H,(q) (cf. [Lam99]). The algebra H;,(¢) has the
following presentation:

gitgit = tgitgr
tgi=git, 1>1

Hin(q) = < 6 g1y s Gn1 9i9i+19i = Gi+19i9i+1, 1 <1 <n—2 >
9i9; = 9;9i, li—jl>1

That is:

L [qil] Bin
(0} —(¢—1)oi—q)

Note that in H;,(¢) the generator t satisfies no polynomial relation, making the
algebra H; ,,(¢) infinite dimensional. Also that in [Lam99| the algebra H; ,,(¢) is denoted
as H,(q, 00).

In Hy ,,(¢) we define the elements:

Hi,(q) =

ti = gigi-1---g1tg1 ... gic1gs and ] := gigi_1 ... gitgy . ghg (1.2)

as illustrated in Figure 1.11.

In [Lam99| the following result has been proved.

Theorem 1.8 (Proposition 1, Theorem 1 [Lam99]). The following sets form linear bases
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Fig. 1.11: The elements t; and ¢;.

for Hy ,(q):
(i) S, = {2 .t 0o, where 1 <i; <...<i, <n—1},
(i) X = {¢Me. . 4" 0, where 1 <iy <...<i, <n},
where ky,..., k. € Z and o a basic element in H,(q).

Remark 1.1. (i) The indices of the t’s in the set ¥ are ordered but are not neces-
sarily consecutive, neither do they need to start from ¢.

(ii) A more straight forward proof that the sets ¥/, form bases for H; ,,(¢) can be found
in the appendix.

In [Lam99] the basis ¥, is used for constructing a Markov trace on |J,~, Hy ,.(¢).

Theorem 1.9 (Theorem 6, [Lam99|). Given z,sg, with k € Z specified elements in
R = Z[q*Y], there exists a unique linear Markov trace function

tr: U Hi,(q) = R(2,8:),k€Z
n=1

determined by the rules:

4

(1) tr(ab) = tr(ba) for a,b € Hy ., (q)
(2) tr(1) =1 for all Hy ,,(q)
(3) tr(ag,) = =ztr(a) for a € Hy ,(q)
(4)

tr(at'®) = sptr(a)  for a€ Hy,(q), ke Z.

Note that, if a word does not contain any ¢,’s, tr coincides with the Ocneanu trace.
Using tr Lambropoulou constructed a universal Homflypt-type invariant for oriented
links in ST. Namely, let £ denote the set of oriented links in S.T. Then:

Theorem 1.10 (Definition 1, [Lam99]|). The function X : L — R(z, sy)

Xa = {—%} (V) e (@),

8



where o € By, is a word in the 0;’s and t;’s, e is the exponent sum of the o;’s in o, and
7 the canonical map of By, in Hy,(q), such that t — t and o; — g;, is an invariant of
oritented links in ST.

The invariant X satisfies a skein relation [Lam94|. Theorems 1.8, 1.9 and 1.10 hold
also for the algebras H,(q,Q) and H,(q,d), giving rise to all possible Homflypt-type

invariants for knots in ST. For the case of the Hecke algebra of type B, H,(q, @), see
also [Lam94] and |[LG97].

1.6 Knots in manifolds obtained by integral surgery

Let L be an oriented link in M. Fixing B pointwise, L can be represented unambiguously
by a mized link in S* denoted BU L, that is, a link in S® consisting of the fived part B
and the moving part L that links with B. A mized link diagram is a diagram B U L of
B UL on the plane of B, where this plane is equipped with the top-to-bottom direction
of the braid B.

1.6.1 The Reidemeister Theorem for links in 3-manifolds with integral surgery
description

An isotopy of L in M can be translated into a finite sequence of moves of the mixed
link B UL in S? as follows. As we know, surgery along B is realized by taking first
the complement 53\B and then attaching to it solid tori according to the surgery
description. Thus, isotopy in M can be viewed as certain moves in S3, namely, isotopy
in S3\ B together with the band moves in S, which are similar to the second Kirby
move. Isotopy in S3\§ is realized by the classical Reidemeister moves and planar
moves for the moving part together with the extended Reidemeister moves. These are
the Reidemeister II and IIT moves involving the fixed and the moving part of the mixed
link (cf. Definition 5.1 [LRI7]). A band move is a non-isotopy move in S*\B that
reflects isotopy in M and is the band connected sum of a component, say s, of L with
the specified (from the framing) parallel curve [ of a surgery component, say ¢, of B.
Note that [ bounds a disc in M. There are two types of band moves according to
the orientations of the component s of L and of the surgery curve ¢, as illustrated
and exemplified in Figure 1.12. In the a-type the orientation of s is opposite to the
orientation of ¢ (and of its parallel curve ), but after the performance of the move their
orientations agree. In the S-type the orientation of s agrees initially with the orientation
of ¢, but disagrees after the performance of the move. Note that the two types of band
moves are related by a twist of s (Reidemeister I move in S\ B).

The above are summarized in the following analogue of the Reidemeister theorem
for oriented links in M.

Theorem 1.11 (Reidemeister for M = y,(S3, B), Thm. 5.8 [LR97]). Two oriented

links Ly, Ly in M = XZ(S3 A) are zsotopzc if and only if any two correspondmg mized

link diagrams of theirs, BU L1 and B U L2, differ by isotopy in 53\3 together with a
finite sequence of the two types a and 3 of band mouves.
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Fig. 1.13: A geometric mixed braid and the two types of L-moves.

1.6.2 Geometric mixed braids and the L-moves

In order to translate isotopy of links in the 3-manifold M to braid equivalence, we need
to introduce the notion of a geometric mixed braid. A geometric mized braid related to
M = x, (83, B) and to a link K in M, is an element of the group B, .,, where m strands
form the fixed surgery braid B and n strands form the moving subbraid [ representing
the link K in M. For an illustration see the middle picture of Figure 1.13. We further
need the notions of the L-moves and the braid band moves.

Definition 1.7 (L-moves and Z-braid band moves, Definitions 2.1 and 5.6 [LR97]).
(i) Let BB be a geometric mixed braid in S* and P a point of an arc of the moving
subbraid 3, such that P is not vertically aligned with any crossing or endpoint of a braid
strand. Doing an L-move at P means to cut the arc at P, to bend the two resulting
smaller arcs slightly apart by a small isotopy and to stretch them vertically, the upper
downward and the lower upward, and both over or under all other arcs of the diagram,
so as to introduce two new corresponding moving strands with endpoints on the vertical
line of the point P. Stretching the new strands over will give rise to an L,-move and
under to an L,-move. For an illustration see Figure 1.13. Two geometric mixed braids
shall be called L-equivalent if and only if they differ by a sequence of L-moves and braid
isotopy.

(ii) A geometric Z-braid band move is a move between geometric mixed braids which
is a band move between their closures. It starts with a little band oriented downward,
which, before sliding along a surgery strand, gets one twist positive or negative (see
Figure 1.14 (a) and (b)).

Remark 1.2. (i) In [LR97] it is shown that classical braid equivalence in S® is generated
only by the L-moves. This implies that braid conjugation and in particular change of

10
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Fig. 1.14: A geometric, a parted and an algebraic Z-braid band move (top part of (d)).

the order of the endpoints of a braid can be realized by L-moves. A demonstration can
be found in [LRO6| Figure 14.

(i1) A geometric Z-braid band move may be always assumed, up to L-equivalence, to
take place at the top part of a mixed braid and on the right of the specific surgery
strand ([LRO6| Lemma 5).

In [LR97] the following theorem was proved for isotopic links in M = y,(S?, é)

Theorem 1.12 (Geometric braid equivalence for M = y, (53, B), Theorem 5.10 [LRI7]).
Two oriented links in M = x,(S3, B\) are isotopic if and only if any two corresponding
geometric mized braids in S* differ by mized braid isotopy, by L-moves that do not touch
the fixed subbraid B and by the geometric Z-braid band moves.

1.6.3 Algebraic mixed braids and their equivalence

Let M = x, (53, B ). We will pass from the geometric braid equivalence to an algebraic
statement for links in M. An algebraic mized braid is a mixed braid on m + n strands
such that the first m strands are fixed and form the identity braid on m strands and
the next n strands are moving strands and represent a link in the manifold M. The
set of all algebraic mixed braids on m + n strands forms a subgroup of B,,.,, denoted
By.n, and called mized braid group. In [La2| the mixed braid groups B,,, have been
introduced and studied and it is shown that B,,, has the presentation:

oyoj = ojox, |k—j[>1
< 0., OkOk+10k = Ok+10k0k+1, 1 <k<n-—1 >
Bn = a0 = opa;, k>2,1<i<m ) (1.3)
a;014;01 = 010;010;, 1 S 1 S m
ai(ora,07t) = (ora,07 Nag, r<i

where the loop generators a; and the braiding generators o; are as illustrated in Fig-
ure 1.15.

11
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Fig. 1.16: Parting and combing a geometric mixed braid.

In order to give an algebraic statement for braid equivalence in M, we first part
the mixed braids and we translate the geometric L-equivalence of Theorem 1.12 to an
equivalence of parted mixed braids. Parting a geometric mixed braid B|J S on m +n
strands means to separate its endpoints into two different sets, the first m belonging
to the subbraid B and the last n to §, and so that the resulting braids have isotopic
closures. This is realized by pulling each pair of corresponding moving strands to the
right and over or under each strand of B that lies on their right. We start from the
rightmost pair respecting the position of the endpoints. This process is called parting
of a geometric mixed braid and the result is a parted mized braid. If the strands are
pulled always over the strands of B, then this parting is called standard parting. See the
middle illustration of Figure 1.16 for the standard parting of an abstract mixed braid.
For more details the reader is referred to [LR06].

Then, in order to restrict Theorem 1.12 to the set of all parted mixed braids related
to the manifold M, we need the following moves between parted mixed braids. Loop
conjugation of a parted mixed braid 3 is its concatenation by a loop a; (or by a; ') from
above and from a; ' (corr. a;) from below, that is 3 ~ a*'B8a™'. As it turns out, two
partings of a geometric mixed braid differ by loop conjugations (cf. Lemma 2 [LR06]).
A parted L-move is an L-move between parted mixed braids. Further, a mixed braid
with an L-move performed can be parted to a parted mixed braid with a parted L-move
performed. Namely we make the parting consistent with the label of the L-move: an L,
move will be parted by pulling over all other strands, while an L, move will be parted
by pulling under all other strands (cf. Lemma 3 [LRO6|). A parted Z-braid band move
is a geometric Z-braid band move between parted mixed braids, such that it takes place

12
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Fig. 1.17: Combing a parted mixed braid.

at the top part of the braid and the little band starts from the last strand of the moving
subbraid and it moves over each moving strand and each component of the surgery
braid, until it reaches from the right the specific component, and then is followed by
parting (see Figure 1.14(c)). Moreover, performing a Z-braid band move on a mixed
braid and then parting, the result is equivalent, up to L-moves and loop conjugation,
to performing a parted Z-braid band move (cf. Lemma 5 [LRO6]).

Theorem 1.13 (Parted mixed braid equivalence for M = XZ(S?’,E), Theorem 3
[LRO6]). Two oriented links in M = y,(S?, E) are isotopic if and only if any two corre-
sponding parted mized braids differ by a finite sequence of parted mized braid isotopies,
parted L-moves, loop conjugations and parted Z-braid band moves.

We now comb the parted mixed braids in order to translate the parted mixed braid
equivalence to an equivalence between algebraic mixed braids. Combing a parted mixed
braid means to separate the knotting and linking of the moving part away from the fixed
subbraid using mixed braid isotopy. More precisely, let ¥, denote the crossing between
the k' and the (k + 1)* strand of the fixed subbraid. Then, for all j = 1,...,n — 1
and £ = 1,...,m — 1 we have: ¥y0; = 0;2;. Thus, the only generating elements of
the moving part that are affected by the combing are the loops a;. This is illustrated
in Figure 1.17. In Lemma 6 |[LR06] formuli are given for the effect of combing on the
a;’s (see Lemma 2.2 below).

The effect of combing a parted mixed braid is to separate it into two distinct parts:
the algebraic part at the top, which has all fixed strands forming the identity braid, so
is an element of some mixed braid group B,,,, and which contains all the knotting and
linking information of the link L in M; the coset part at the bottom, which contains
only the fixed subbraid B and an identity braid for the moving part (see right hand
most illustration in Figure 1.16). Let now C,,, denote the set of parted mixed braids
on n moving strands with fixed subbraid B. Concatenating two elements of C), ,, is not
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a closed operation since it alters the braid description of the manifold. However, as a
result of the combing, for the fixed subbraid B the set C,,,, is a coset of B, ,, in By, 1.
Fore details on the above the reader is referred to [Lam99|.

Translating the parted braid equivalence into an equivalence between algebraic mixed
braids, we will obtain an algebraic statement of Theorem 1.13. Since loop conjugation
does not take into account the combing of the loop through the fixed subbraid, we
need the notion of combed loop conjugation. A combed loop conjugation is a move
between algebraic mixed braids and is the result of a loop conjugation on a combed
mixed braid followed by combing, so it can be described algebraically as: 3 ~ af'Bp;"
for 3, a;, pi € By, n, Where p; is the combing of the loop a; through the fixed subbraid B.
We also define algebraic M -conjugation of an algebraic mixed braid to be its conjugation
by a crossing o; (or by aj’l). An algebraic M-move is defined to be the insertion of a
crossing o' on the right hand side of an algebraic mixed braid. Finally, an algebraic
L-move is defined to be a L-move between algebraic mixed braids. An algebraic L-move
has the following algebraic expression for an L,-move and an L,-move respectively:

a = o1 ke o; ~loo; talo L U_llailan 1. aio/zan e

_ Lu +1 1,1 -1
a = g ~0;... UnOéle'q - Op—10,, O' 1 .0, 0420' -0,

(1.4)

where oy, as are elements of B,,, and o}, o € B, ,4+1 are obtained from ay, as by
replacing each o; by 041 for j =1¢,...,n — 1.

Note that algebraic M-conjugation, the algebraic M-moves and the algebraic L-
moves commute with combing. Note also that Remark 1.2(i) applies equally to the case
of algebraic mixed braids (cf. Lemma 4 [LR06]).

We finally need to understand how a parted Z-braid band move is combed through
the surgery braid B.

Definition 1.8 (Definition 7 [LR06]|). An algebraic Z-braid band move is defined to be
a parted band move between algebraic mixed braids (see top part of Figure 1.14(d)).
Setting:

-1
n

A—11 i =0p_1...01 and g, =o0,.. .Ulakafl O
an algebraic band move has the following algebraic expression:
Pk
p1Pa ~ ﬁl tkn n 527

where 1,8y € B,,, and (1,5, € By, ,+1 are the words (i, 8y respectively with the
substitutions:

al — (N 10 2\ 11)ak]jEl
a' — (Mot o) et (Vg0 ), i i<k
aj-tl — a;t , if 1> k.

Further, a combed algebraic Z-braid band move is a move between algebraic mixed
braids and is defined to be a parted Z-braid band move that has been combed through
B. So it is the composition of an algebraic Z-braid band move with the combing of the
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parallel strand and it has the following algebraic expression:
BB ~ Bri ont By,

where 7, is the combing of the parted parallel strand to the k'* surgery strand through
the surgery braid.

The group B,,,, embeds naturally into the group B,, ,4+1. We shall denote B,, o =
U2, B, and similarly C, 0o = U~ Crnn-
We are now in position to give the algebraic Markov theorem for M = x, (53, B).

Theorem 1.14 (Algebraic Markov Theorem for M = y, (S?, B), Theorem 5 [LRO6]).
Two oriented links in M = x,(S3, E) are isotopic if and only if any two corresponding
algebraic mized braid representatives in By, « differ by a finite sequence of the following
moves:

(1) Algebraic M-moves: (12 ~ B0 By, for Bi, B € B,

(2) Algebraic M-conjugation: [ ~ Jflﬁafl, for B,0; € By,

(8) Combed loop conjugation: [ ~ aflﬂp;tl, for B,a;, p; € By, n, where p; is the
combing of the loop a; through B,

(4) Combed algebraic braid band moves: For for every k =1,...,m we have:
BBy ~ Bith, o By Ty

where By, By € By, and B, 8y € Bpnt1 are as in Definition 1.8 and where 1y, is the
combing of the parted parallel strand to the kth surgery strand through B.

Equivalently, by a finite sequence of algebraic mized braid relations and the following
mouves:
(1') algebraic L-moves,
(2) combed loop conjugations,
(8) combed algebraic Z-braid band moves.

1.7  Homflypt Skein Modules

Definition 1.9. A 3-manifold M? is a compact, connected, Hausdorff space M each
point of which has a neighborhood homeomorphic to R3. A 3-manifold with boundary
is defined similarly, except that besides neighborhoods homeomorphic to R3, neighbor-
hoods homeomorphic to R} := {(z,y,2) € R*® | z > 0 are also allowed. The set of
points that have only neighborhoods of the second type is called boundary of M? and
is denoted by §M3. A compact 3-manifold with no boundary is said to be closed.

where the finite group Z, acts freely on S*:
A skein module of a 3-manifold M is a module associated to M by considering all
linear combinations of links in M, modulo some properly chosen skein relation.
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Let M be an oriented 3-manifold, R = Z[u*!, 2*!], L the set of all oriented links
in M up to ambient isotopy in M and let S the submodule of RL generated by the
skein expressions u 'L, —uL_ — zLg, where L, L_ and L are oriented links that have
identical diagrams, except in one crossing, where they are as depicted in Figure 1.18.

A X
N/

Fig. 1.18: The links L., L_, Ly locally.

For convenience we allow the empty knot, 0, and add the relation u='0) — ud) = 277,
where T7 denotes the trivial knot. Then the Homflypt skein module of M is defined to
be:

SM)=8(M;Z [u™, 2] ,u™ Ly —ul_ —2Lg) = Rﬁ/S.

Unlike the Kauffman bracket skein module, the Homflypt skein module of a 3-
manifold, also known as Conway skein module and as third skein module, is very hard
to compute.

The linear dimension of S(M) means the number of independent Homflypt-type invari-
ants defined on knots in M. For example, the Homflypt skein module of S? is freely
generated by the unknot (Homflypt polynomial) and the Homflypt skein module of the

solid torus is generated by elements of the set t;lelt?jz ..t mon € Nyg; € Z, where
t; " are shown below.
Equivalently, S(M) means the set of independent Markov traces defined on the quotient

CBraids of M

. __ Markov Equivalence
algebra: S(M) = i

Let us now see how S(ST) is described in the above algebraic language. We note first
that an element « in the basis of S(ST) described in Theorem 3.1 when ST is considered
as Annulus x Interval, can be illustrated equivalently as a mixed link in S® when ST is
viewed as the complement of a solid torus in S3. So we correspond the element o to
the minimal mixed braid representation, which has decreasing order of twists around
the fixed strand. Figure 1.19 illustrates an example of this correspondence. Denoting

N =B e ke 2\ {0} ki1 > ki, Vi, n € N}, (1.5)
we have that A’ is a subset of | J,, Hy . In particular A’ is a subset of (J,, ¥),.
Applying the inductive trace rules to a word w in |J,, £, will eventually give rise to
linear combinations of monomials in Z[¢*!, z]. In particular, for an element of A’ we
have:

ko 4/ k1 A N
tr(e™t ot ) = Sk g - Sk Ske-
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Fig. 1.19: An element of A’.

Further, the elements of A’ are in bijective correspondence with increasing n-tuples
of integers, (ko,k1,...,kn—1), n € N, and these are in bijective correspondence with
monomials in sy, Sk, - - -, Sk, ;-

Remark 1.3. The invariant X recovers the Homflypt skein module of ST since it gives
different values for different elements of A’ by rule 4 of the trace.
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2

I—BRAID EQUIVALENCE IN 3-MANIFOLDS WITH
RATIONAL SURGERY DESCRIPTION

In this chapter we provide algebraic mixed braid classification of links in any c.c.o.
3-manifold M obtained by rational surgery along a framed link in S®. We do this by
representing M by a closed framed braid in S® and links in M by closed mixed braids
in S3. We first prove an analogue of the Reidemeister theorem for links in M. We then
give geometric formulations of the mixed braid equivalence using the L-moves and the
braid band moves. Finally we formulate the algebraic braid equivalence in terms of the
mixed braid groups B,,,, using cabling and the parting and combing techniques for
mixed braids. Our results set a homogeneous algebraic ground for studying links in 3-
manifolds and in families of 3-manifolds using computational tools. We provide concrete
formuli of the braid equivalences in lens spaces, in Seifert manifolds, in homology spheres
obtained from the trefoil and in manifolds obtained from torus knots.

Our setting is appropriate for constructing Jones-type invariants for links in families
of 3-manifolds via quotient algebras of the mixed braid groups B,, ., as well as for study-
ing skein modules of 3-manifolds, since they provide a controlled algebraic framework
and much of the diagrammatic complexity has been absorbed into the proofs. Further,
our moves can be used in a braid analogue of Rolfsen’s rational calculus and potentially
in computing Witten invariants.

2.1 Introduction

In the study of knots and links in 3-manifolds, such as handlebodies, knot complements,
closed, connected, oriented (c.c.0.) 3-manifolds, as well as in the study of 3-manifolds
themselves, it can prove very useful to take an approach via braids, as the use of braids
provides more structure and more control on the topological equivalence moves. After
the construction of the Jones polynomial for links in S®, many mathematicians focused
on expressing link isotopy in oriented 3-manifolds via appropriate braids, using different
approaches, cf. for example [Sko91, Sko92|, [Sun91, Sun93|, [Sos92|, [LRI7, Lam94,



LR06, OL02|.

In [LRI7| braid equivalences have been obtained for isotopy of knots and links in
knot complements and in c.c.o. 3-manifolds with integral surgery description. Integral
surgery covers the generality, since every c.c.o. 3-manifold can be constructed via in-
tegral surgery along a framed link in S®, the components of which may be assumed to
be simple closed curves, giving rise to a closed framed pure braid. So, for a 3-manifold,
say M, a surgery description via a closed framed braid B in 53 is fixed and we write
M = x(83,B). Then, links in M can be represented unambiguously by mized links
in S% (see Figure 1.8 and Figure 1.13), that is, links in S® that contain B as a fixed
sublink. Mixed links are then represented by geometric mized braids which contain B
as a fixed subbraid. Link isotopy in M comprises isotopy in the complement S3\ B to-
gether with the band moves, which come from the handle sliding moves in M according
to the surgery description of M (see Figure 1.12). Isotopy in M is then translated into
mixed link equivalence. For obtaining the geometric mixed braid equivalences in M, the
authors sharpened first the classic Markov theorem giving only one type of equivalence
moves, the L-moves (see Figure 1.13), which are geometric as well as algebraic. Then,
it was proved that link isotopy in M is generated by the L-moves and the braid band
moves (see Figure 1.14). Further, in [LRO6| the geometric statements were reformulated
into algebraic language, via the cosets of the braid B in the mized braid groups B,, ,, (see
(1.3) and Figure 1.15), introduced and studied in [Lam94|, and the techniques of parting
and combing mixed braids (see Figure 1.16). Parting a geometric mixed braid means to
separate its strands into two sets: the strands of the fixed subbraid B and the ‘moving
strands’ of the braid representing a link in M. Combing a parted mixed braid means to
separate the braiding of the fixed subbraid B from the braiding of the moving strands
(see Figures 1.14 and 1.17). The above techniques have been also applied for obtaining
mixed braid equivalences in knot complements and in handlebodies [LR06, OL02]| (see
also [S0s92]).

Integral surgery is a special case of rational surgery. There are c.c.o. 3-manifolds
which have simpler description when obtained from S? via rational surgery. There are
even whole families of 3-manifolds described by rational surgery along the same link.
Representative examples are the lens spaces L(p,q): they are all obtained from the
trivial knot with rational surgery description p/q, while with integral surgery descrip-
tion different, non-trivial links are needed, see for example [Rol76|. Another important
example comprise the homology spheres obtained by rational surgery 1/n along the
trefoil knot: with integral surgery they would be described by more complicated knots
(see |Rol84]). Other known classes of 3-manifolds given by the same surgery descrip-
tion (with different surgery coefficients) comprise the Seifert manifolds ([Sav99]) and
manifolds obtained by surgery along torus knots ([Mos71]). We note that a whole fam-
ily of 3-manifolds described by different framings on the same link, in our setting is
represented by the same cosets of the mixed braid groups B, .

The purpose of this chapter is to provide mixed braid equivalences, geometric as well
as algebraic, for isotopy of oriented links in families of c.c.o. 3-manifolds obtained by
rational surgery along framed links in S3. A simpler surgery description of a c.c.o. 3-
manifold M is expected to induce simpler algebraic expressions for the braid equivalence
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in M. As an example, compare [LR06, §4] with §2.7.2 in this paper for the case of lens
spaces: in this paper the Q-mixed braid equivalence is in the mixed braid groups B; ,
and there is only one expression for the braid band moves, while in [LRO6| there are
many, according to the integer surgery coefficient of each strand of the surgery pure
braid; on top of that combing is also needed. Further, in §2.7 we give the algebraic Q-
mixed braid equivalences for links in all four families of 3-manifolds mentioned above.
In the paper we use the setting and the results of [LR97, LR06| and our results extend
the results of [LR97, LRO6| to rational surgery descriptions and to arbitrary framed
braids. We first formulate the geometric Q-mixed braid equivalence via the L-moves
and the braid band moves and then we move gradually to the algebraic statement by
introducing the notion of cabling and applying the parting and combing techniques of
[LRO6|.

More precisely: let M be a c.c.o. 3-manifold obtained by rational surgery along a
framed link B in S3. Note that the surgery braid B is not assumed to be a pure braid.
Let s be a surgery component of B with surgery description p/q consisting of k strands,
S1,...,8k. When a geometric Q-braid band move on s occurs, k sets of ¢ new strands
appear, each one running in parallel to a strand of s, and also a (p, g)-torus braid d’
wraps around the last strand, s, p times, followed by a positive or negative crossing ¢/,
see Figures 2.10 (shaded region) and 2.7. These moves together with the L-moves lead
to the geometric Q-mized braid equivalence in M (Theorem 2.3) (see also [LR97, Sko92,
Sun93]). The Q-braid band moves are clearly much more complicated than the Z-braid
band moves in [LR97|. However, a sharpened version of the Reidemeister theorem for
links in M (Theorem 2.2; see also [LR97, Sko91, Sun91]), whereby only one type of band
moves is used in the mixed link isotopy (see Figure 2.1), makes the proof of Theorem 2.3
quite light.

In order to move toward an algebraic statement we adapt the techniques and results
of [LRO6| using the notion of a g-strand cable. A g-strand cable represents a set of ¢ new
strands arising from the performance of a geometric braid band move. So, we show first
that standard parting of a ¢-strand cable is equivalent to standard parting of each strand
of the cable one by one; in other words that parting and cabling commute. Treating
now each one of the k ¢-strand cables as one thickened strand leads to the parted Q-
mized braid equivalence (Theorem 2.4), assuming the corresponding result with integral
surgery from [LR06]. We continue by finding algebraic expressions for the loopings of the
cables around the fixed strands of B (Lemma 2.3). Then, after a parted Q-braid band
move is performed (Figure 2.20a), we part locally the (p, ¢)-torus braid d’, the crossing
¢, and the loop generators a; between the moving and the fixed strands obtaining their
corresponding algebraic expressions (see Figures 2.17, 2.18, 2.19 and Definition 6(i)).
In this way we obtain the algebraic expression of an algebraic Q-braid band move, which
takes place on elements of the braid groups B, (see top part of Figure 2.20b) and
Definition 2.4(i)). Finally, we do combing through the fixed subbraid B and we show
that combing and cabling commute (see Figures 2.14 to 2.16). After the combing our
parted mixed braids as well as the Q-braid band moves get separated from the fixed
subbraid B, having picked information from it. So, we obtain the algebraic Q-mixed
braid equivalence for links in M in terms of the mixed braid groups B,,,, and this is our
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main result (Theorem 2.5). Further, in §2.7.2-§2.7.5 we apply Theorem 2.5 to give the
concrete algebraic expressions for the (Q-mixed braid equivalences in the aforementioned
families of 3-manifolds.

Our results set a homogeneous algebraic ground for studying links in families of 3-
manifolds with the computational advantage. Indeed, as we discuss in §2.7.6, our setting
is the right one for constructing Jones type invariants (such as analogues of the Jones
polynomial and the 2-variable Jones or Homflypt polynomial) for links in 3-manifolds via
appropriate quotient algebras of the mixed braid groups B,,, (such as analogues of the
Temperley-Lieb algebras and the Iwahori-Hecke algebras) which support Markov traces.
This topological motivation gives rise to new algebras worth studying. Then one can
derive link invariants in the complement S*\ B, which then have to satisfy all possible
band moves, for extending them to link invariants in the manifold M = y(S3, §) Our
results can be equally applied to the study of skein modules of c.c.o. 3-manifolds, using
braid techniques (see §2.7.6). The advantage of the braid approach is that the algebraic
mixed braid equivalences provide good control over the band moves, better than in the
diagrammatic setting, and much of the diagrammatic complexity is absorbed into the
proofs of the algebraic statements. We only need to consider one type of orientations
patterns and the braid band moves are limited. A good example and the simplest one
demonstrating the above is the case of the lens spaces L(p,1): in [Lam99| a generic
analogue of the Homflypt polynomial for links in the solid torus, ST, has been defined
from the generalized Hecke algebras of type B via a Markov trace constructed on them.
This invariant recovers the Homflypt skein module of ST. In order to extend this to
an invariant of links in L(p,1) in Chapter 3 we solve an infinite system of equations
resulting from the braid band moves and we show that it has a unique solution, which
proves the freeness of the module. In [GM14] the same problem has been solved using
the diagrammatic approach. Finally, our Q-braid band move can be used for providing a
braid analogue of the Rational calculus, which is Rolfsen’s analogue to the Kirby calculus
for manifolds with rational surgery description [Rol84], extending the braid approach
to the Kirby calculus by Ko and Smolinsly [KS92| (see §2.7.7). Then, our results can
potentially lead to a braid computational approach to the Witten invariants.

This chapter is organized as follows. In §2.2 we prove the sharpened version of the
Reidemeister theorem for knots and links in c.c.o. 3-manifolds with rational surgery
description (Theorem 2.2). In §2.3 we derive the geometric Q-mixed braid equivalence
for links in such 3-manifolds (Theorem 2.3) and we introduce the cabling. In §2.4 we
derive the parted Q-mixed braid equivalence using the cabling and in §2.5 we show that
combing and cabling commute. These lead to §2.6 where we give the algebraic Q-mixed
braid equivalence (Theorem 2.5). In §2.7.2-§2.7.5 the reader will find the application
of Theorem 2.5 to the aforementioned families of 3-manifolds. In §2.7.6 we discuss
applications to Jones-type invariants of links in 3-manifolds and to skein modules of 3-
manifolds; finally, in §2.7.7 we discuss the potential application to formulating Rolfsen’s
Rational Calculus in terms of braids and to the computation of the Witten invariants.
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Fig. 2.1: The two types of Q-band moves.

2.2 The Reidemeister Theorem for links in 3-manifolds

>From now on M will denote a c.c.0. 3-manifold obtained from S3 by rational surgery,
that is surgery along a framed link B with rational coefficients, denoted M = XQ(S3, B).
Let L be an oriented link in M. By the discussion in §1.6.1, isotopy in M is translated
into isotopy in S\ B together with the two types, o and 3, of band moves for mixed
links in S 3. The band moves in this case are described as follows. Let ¢ be a component
of B with framing p/q. The specified parallel curve [ of ¢ is a (p, q)-torus knot on
the boundary of a tubular neighborhood of ¢ which, by construction, bounds a disc in
M. Then, a Q-band mowve along c is the connected sum of a component of L with the
(p, q)-torus knot [ and there are two types, a and (3, according to the orientations. The
two types of band moves are illustrated in Figure 2.1, where ¢ is a trefoil knot with 2/3
surgery coefficient and where “band move" is shortened to “b.m.". Clearly, Theorem 1.11
applies also to M = x,(S*, B). Namely:

Theorem 2.1 (Reidemeister for M = x,(S°, B B) with two types of band moves). Two
oriented links Ly, Ly in M are isotopic if and only if any two corresponding mized link
diagrams of theirs, BU L1 and B U Lo, differ by isotopy in S3\B together with a finite
sequence of the two types a and § of band moves.

In this section we sharpen Theorem 2.1. More precisely, we show that only one
of the two types of band moves is necessary in order to describe isotopy for links in
M. The proof is based on a known contrivance, which was used in the proof of Theo-
rem 5.10 [LR97| (Theorem 1.12) for establishing the sufficiency of the geometric braid
band moves in the mixed braid equivalence for the case of integral surgery (see Fig-
ure 2.2). Theorem 2.2 simplifies the proof of Theorem 2.3.

Theorem 2.2 (Reidemeister for M = x,(5*, B B) with one type of band moves). Two
oriented links Ly, Ly in M are isotopic if and only if any two corresponding mized link
diagrams of theirs, B UL and B U Lo, differ by a ﬁmte sequence of the band moves of

type o (or equivalently of type B) and isotopy in 53\B

Proof. Let L be an oriented link in M. By Theorem 2.1, it suffices to show that a band
move of type [ can be obtained from a band move of type a and isotopy in the knot
complement. We will first demonstrate the proof for an unknotted surgery component
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Fig. 2.2: A type- band move follows from a type-a band move in the case of integral surgery
coefficient.
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Fig. 2.3: Twist cancelation.

¢ with integral coefficient p. (Note that integral surgery description can be considered
as a special case of rational surgery description.) We shall follow the steps of the proof
in Figure 2.2 where p = 2. We start with performing a band move of type  using
a component s of the link L. In Figure 2.2 we see the two twists of the band move
wrapping around the surgery curve c in the righthand sense. Then, using an arc of the
same link component s, we perform a second band move of type . This will take place
within a thinner tubular neighborhood than the first band move. So, the two twists of
the second band move, which also wrap around c in the righthand sense, commute with
the two twists of the first band move. We arrange all 2p twists in pairs as follows. We
pass one twist from the second band move (the closest) through all twists of the first
band move, see Figure 2.3. Since all twists follow the righthand sense, the two innermost
twists coming from the second and the first band move, create a little band which can
be eliminated using isotopy in the knot complement of ¢. This is the cancelation of the
first pair of the 2p twists. Repeating the same procedure we cancel all p pairs and we
end up with the component s of the link L as it was in the initial position before the
band moves.

For the more general case of rational surgery along any knot ¢ we follow the same
idea. More precisely, we perform a Q-band move of type 8 along ¢ and we obtain an
outer (p, q)-torus knot. Then, we perform a Q-band move of type « along ¢ and we
obtain an inner (p,q)-torus knot. In Figure 2.4 we illustrate this for the case where
p =2, q=3 and c a trefoil knot.

Without loss of generality (by isotopy in the complement of ¢), the second band move
is performed on the innermost arc of the ¢ arcs parallel to ¢, creating ¢ new parallel
arcs even closer to c¢. After the second Q-band move is performed, the outer arc of the
g new arcs and the inner arc of the ¢ arcs coming from the first band move of type «
form a band (see shaded area in Figure 2.4). Then, using isotopy in the complement
of ¢, we eliminate this band by pulling it along ¢. This will result in the elimination of
p — q pairs of parallel arcs to c. In our example, this is done in Figure 2.5.

As in the case of integral surgery the twists coming from the two band moves com-
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Fig. 2.7: A Q-braid band move locally.

mute. Arranging these 2p twists pairwise, they cancel out by the fact that all twists
have the same handiness, but opposite orientation. In the end, s is left as in its initial
position.

So, a Q-band move of type S can be performed using a Q-band move of type o and
isotopy in the complement of the surgery component ¢. The proof of Theorem 2.2 is
now concluded. O

2.3 Geometric Q-mixed braid equivalence

In this section we extend Theorem 1.12 to manifolds with rational surgery description,
that is M = x,(S?, B), using the sharpened Reidemeister theorem for M (Theorem 2.2).
We first need the following.

Definition 2.1. A geometric Q-braid band move is a move between geometric mixed
braids which is a Q-band move of type a between their closures. It starts with a little
band (an arc of the moving subbraid) close to a surgery strand with surgery coefficient
p/q. The little band gets first one twist positive or negative, which shall be denoted as ¢/,
and then is replaced by ¢ strands that run in parallel to all strands of the same surgery
component and link only with that surgery strand, wrapping around it p times and,
thus, forming a (p, ¢)-torus knot. See Figure 2.7 for local and Figure 2.10 (shaded area)
for global illustration. This braided (p,q)-torus knot is denoted as d’. A geometric
Q-braid band move with a positive (resp. negative) twist shall be called a positive
geometric Q-braid band move (resp. negative geometric Q-braid band move).

By Remark 1(ii) a @Q-braid band move may be assumed to take place at the top part
of a mixed braid and all strands from a Q-braid band move may be assumed to lie on
the righthand side of the surgery strands. We shall now prove the following.

Theorem 2.3 (Geometric braid equivalence for M = x, (S, LA?)) Two oriented links in
M are isotopic if and only if any two corresponding geometric mized braids in S* differ
by mized braid isotopy, by L-mowves that do not touch the fixed subbraid B and by the
geometric Q-braid band mowves.
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Fig. 2.8: A type a band move and its braiding (locally).

Proof. The proof is completely analogous to and is based on the proof of Theorem
5.10 [LRI7] (Theorem 1.12). Let K, and K> be two isotopic oriented links in M. By
Theorem 2.2, the corresponding mixed links B J K, and B J K> differ by isotopy in
the complement of B and Q-band moves of type a. Note that, by Theorem 2.2 we
do not need to consider band moves of type 8. By Theorem 5.10 [LR97|, isotopy in
the complement of B translates into geometric braid isotopy and the L-moves. Let
now BUK1 and B|J K, differ by a Q-band move of type a (recall Figure 2. 1) Let
BJ K, and B|J K, be two mixed link diagrams of the mixed links B|J K and B|J K,
which differ only by the places illustrated in Figure 2.8. As in [LR97], by the braiding
algorithm given therein, the diagrams B UK1 and B UKQ may be assumed braided
everywhere except for the places where the Q-band move is performed.

We now braid the up-arc in Figure 2.8(b) and obtain a geometric mixed braid B by
corresponding to the diagram B|J K, (sce Figure 2.8(a)). Note that Figure 2.8(c) is
already in braided form and let B by denote the geometric mixed braid corresponding
to the diagram B U K>.

We would like to show that the two mixed braids B|Jb; and B b, differ by the
moves given in the statement of the Theorem.

We perform a Reidemeister I move on B J K; with a negative crossing and obtain
the diagram B|J I?/{ Then, the corresponding mixed braids, B|Jb; and B|J#¥), differ
by mixed braid isotopy and L-moves (see Figure 2.9(a) and (b)). We then perform a
positive Q-braid band move on B J ] and obtain the mixed braid B |Jb}. In the closure
of BJb, we unbraid and re-introduce the two up-arcs illustrated in Figure 2.9(b),
obtaining a dlagram B UK} K, with the formation of a Reidemeister IT move. Performing

this move on B U Ké we obtain the diagram B U Ko, which is already in braided form
and its corresponding mixed braid is B b, (see Figure 2.9(c) and (d)). So, the mixed
braids B|J¥, and B|Jby differ by mixed braid isotopy and L-moves. Therefore, we
showed that the braids B Jb; and B (b, in Figure 2.8(a) and (c) differ by mixed braid
isotopy, L-moves and a braid band move. This concludes the proof. O
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Fig. 2.9: The steps of the proof of Theorem 2.3.

2.3.1 Introducing cabling

In order to translate the geometric mixed braid equivalence to an equivalence of algebraic
mixed braids we follow the strategy in [LR06|. Namely, we apply to the geometric mixed
braids first parting and then combing. What makes things more complicated in the
case of rational surgery description is that the surgery braid B is in general not a pure
braid and when we apply a Q-braid band move on a mixed braid, the little band that
approaches the surgery strand is replaced by ¢ strands that run in parallel to all strands
of the same surgery component. In order to proceed we need the notion of a ¢-strand
cable.

Definition 2.2. We define a ¢-strand cable to be a set of ¢ parallel strands coming from
a Q-braid band move and following one strand of the specified surgery component.

Treating the new strands coming from the braid band move as cables running in
parallel to the strands of a surgery component, that is, treating each cable as one
thickened strand, we may adopt and apply results from [LRO6].

2.4 Parted Q-mixed braid equivalence

Let B|J S be a geometric mixed braid and suppose that a Q-braid band move is per-
formed on it. We part B S following the exact procedure as in [LR06]. More precisely,
we have the following.

Lemma 2.1. Cabling and standard parting commute. That is, standard parting of a
maxed braid with a Q-braid band move performed and then cabling, is the same as cabling
first the set of new strands and then standard parting.
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Fig. 2.10: A parted Q-braid band move using cables.

Proof. Let B|J B be a geometric mixed braid on m + n strands and let a Q-braid band
move be performed on a surgery component s of B. Let also sq,...,s: € {1,...,m}
be the numbers of the strands of the surgery component s and let ¢y, ..., c; denote the
g-strand cables corresponding to si,...,s;. On the one hand, after the Q-braid band
move is performed and before any cablings occur, we part the geometric mixed braid
following the procedure of the standard parting as described in §1.6.3 (recall middle
illustration of Figure 1.16). On the other hand we cable first each set of g-strands
resulting from the Q-braid band move and then we part the geometric mixed braid with
the standard parting, treating each cable as one (thickened) strand. Since both cabling
and parting a geometric mixed braid respect the position of the endpoints of each pair
of corresponding moving strands, it follows that cabling and parting commutes. O

Recall from §1.6.3 that a geometric L-move can be turned to a parted L-move. In
order to give the analogue of Theorem 1.13 in the case of rational surgery we also need
to introduce the following adaptation of a parted Z-braid band move.

Definition 2.3. A parted Q-braid band move is defined to be a geometric Q-braid band
move between parted mixed braids, such that it takes place at the top part of the
braid and on the right of the rightmost strand, s, of the specific surgery component, s,
consisting of the strands sy, ..., s;. Moreover, the little band starts from the last strand
of the moving subbraid and it moves over each moving strand and each component of
the surgery braid, until it reaches the last strand of s, and then is followed by parting
of the resulting mixed braid, as illustrated in Figure 2.10.

Then Theorem 2.3 restricts to the following.
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Fig. 2.11: The elements A .

Theorem 2.4 (Parted version of braid equivalence for M = x (5%, B)). Two oriented
links in M = XQ(S3, E) are isotopic if and only if any two corresponding parted mized
braids in Cp, o~ differ by a finite sequence of parted L-moves, loop conjugations and
parted Q-braid band moves.

Proof. By Lemma 2.1 the cables resulting from a geometric Q-braid band move are
treated as one strand, so we can apply Theorem 1.13. Moreover, by Lemma 9 in [LRO6|
a geometric Q-braid band move may be always assumed, up to L-equivalence, to take
place on the right of the rightmost strand of the specific surgery component. O

2.5 Combing and cabling

In order to translate Theorem 2.4 into an algebraic equivalence between elements of
B, o we need the following lemmas.

Lemma 2.2 (Combing Lemma, Lemma 6 [LRO6|). The crossings g, k=1,...,m—1
of the fized subbraid B, and the loops a;, fori = 1,...,m, satisfy the following ‘combing’
relations:

Shap' = Gy S

Eka%l = a,ﬁla,flakHEk o

Elﬁiil _w ik —1y-1 Jigkk+]
kT, T M S

kg T %y s

Y.a; = a; X, if 1#kk+ 1.

Notation: We set A, := 040441 ...0,-10,, for k <r and Ay, 1= 040_1...0,410,, for
r < k. We note that \;; := 0;. Also, by convention we set \g; = Ao := 1.
Then we have the following:

Lemma 2.3. A positive looping between a q-strand cable and the ;' fized strand of the
fixed subbraid B has the algebraic expressions:

q—1 q—1

[T aan =T s —itid =)
AN 1,(g—1) =% M (g=1)—i »

i=0 i=0
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Fig. 2.13: A negative looping between a cable and a fixed strand.

1T...j...m

while a negative looping has the algebraic expressions:

q—1 q—1

-1, -1 _ 1yl
H)‘l,iaj A = H)‘(qfl)f%laj )\(q—l)—i,l :
i=0 =0

Proof. We start with Figure 2.12(a) where a positive looping between a ¢-strand cable
and a fixed stand of the mixed braid is shown. In Figure 2.12(b) the cable is replaced
by the ¢ strands according to Definition 2.2. Then, using mixed braid isotopy, we
end up with Figure 2.12(c), top, whereby we can read directly the algebraic expression
H;]:_Ol i@ A; . The second algebraic expression comes from the bottom illustration of
Figure 2.12. Similarly, in Figure 2.13 we illustrate the case where a negative looping
between a g-strand cable and a fixed strand of the mixed braid occurs. O

Lemma 2.4. Cabling and combing commute. That is, treating a g-strand cable as
a thickened moving strand and combing it through the fived subbraid B, the result is
equivalent to combing one by one each strand of the cable.

Proof. According to the Combing Lemma we have to consider all cases between looping
and crossings of the subbraid B. We will only examine the four cases illustrated in
Figure 1.17 as representative cases. All others are completely analogous. The first case
is illustrated in Figure 2.14, where a positive looping between the cable and the k"
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Fig. 2.14: Combing and cabling commute: Proof of Case 1.

fixed strand of B is being considered and the crossing of the fixed strands is positive.
For a negative looping the proof is similar.

We now consider the case illustrated in Figure 2.15, where a positive looping between
the cable and the (k + 1) fixed strand of B is being considered, and the crossing in B
is positive. We shall prove this case by induction on the number of strands that belong
to the cable, since, as we can see from Figure 2.15, the resulting algebraic expressions
are not directly comparable.

The case where the cable consists of one strand is trivial. For a two-strand cable,
combing the cable first and then uncabling (see top part part of Figure 2.15) results in
the algebraic expression:

ayt (o7raytor) ap (07 aqor) as (07 tawoy),

while uncabling first and then combing (bottom part of Figure 2.15) results in the
algebraic expression:

(ay taan) (o7 ay tayanoy).

We show below that these algebraic expressions are equal, whereby we have under-
lined expressions which are crucial for the next step. Indeed:

“1/ -1 -1 -1 -1y _ -1 -1 -1
Qly (0'1 Qly 0'1)061(0'10(10'1 )Oég(O'lOéQO'l ) = (Oé2 041062)(0'10[2 a0 ) 4
- -1, -1 -1 — -1 -
(07 ‘ag o1)aq(ora10] as(or) = (araz)(or0g ) =
-1 -1 _ 1 -1
01 Qg 0101001101 01 = Q1020104 Q4 <~
-1 -1 T~ _ -1
01 Oy O'lal(O'l 0'1)0420'1 = Q1020104 <~
iy R | -1
01 01010] Qy 0100001 = Q1Q201Q;, =4
- -1 -1 -1
01 Qy 010201 = (20104 ~
0102010 = Q010201
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We ended up with one of the defining relations of the mixed braid group B,,,, recall
(1.3).

We now consider a (¢4 1)-strand cable and we let the first ¢ strands form a g-strand
subcable. We first comb the g-strand cable and then the (¢ + 1)% strand and the result
follows by applying the case of a 2-strand cable and the induction hypothesis for the
g-strand cable (see Figure 2.16). O

2.6 Algebraic Q-mixed braid equivalence

Let now B|Jf be a parted mixed braid and let a parted Q-braid band move be per-

formed on the last strand, si, of a surgery component consisting of the strands sy, ..., sg.
Recall Figure 2.10. In order to give an algebraic expression for the parted Q-braid band
move, we part locally the subbraids d’ and ¢/, and the loop generators a;, i = 1,...,m,

and we use mixed braid isotopy in order to transform d' into d and ¢, into ci. See
Figures 2.17, 2.18, 2.19. Then, d has the algebraic expression:

d = [ Atrg-1nt(k-1)g+1 /\;-il-l,n-i-(k:—l)q An1 )‘;,11 /\;Jlr1,n+(k—1)q [? (2.1)

and c4 has the algebraic expression:
_ +1 ~1
Cx = >\n,n+kq72 Un—l—kq—l )\n,n+kq—2' (22>

We are now in the position to give the definition of an algebraic Q-braid band move.
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Fig. 2.17: Algebraization of the (p,q)-torus braid d' to d after a Q-braid band move is per-
formed.
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Fig. 2.19: Algebraization of the loop generators a; after a Q-braid band move is performed.
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Definition 2.4. (i) An algebraic Q-braid band move is defined to be a parted Q-braid
band move between elements of B,, . and it has the following algebraic expression:

Brdes B
where (' is the algebraic mixed braid § with the substitutions:
a; ' —— ;' fori > sy,
;i — A;il kg1 Antkg1.1 @Gt
/\il 1)‘n41rkq 1nn 11+kq 1An-11, for i < sy,

1 _
s n— 11/\””4"“1 1>‘"+k‘q 1Ln+(j—-1) )\nn-i-] 1)g— 1>‘n—1,1 7y
1

— A,
)‘nll 1/\nn+ﬂ1 1/\n+kq 1n+]q/\7:111+kq 1)‘n 1,1
— )‘ 11)‘nn+k’q l>‘n+kq 1n+.7q)\nn+]q 1)‘n 1,1 a
1 1
)‘ 11)‘nn+(3 1)g— 1)\n+kq 1,n+(j— lq)\n-i-kq 1n)‘n 1,1,
for s; € {s1,..., sk},
~1 - +1
a; > )\n 11)‘nn+kq 1)‘n+kq 1n+(T—1)q)\nn+7' 1)g— 1)‘"*1’1%
1 = .
)\n 11)‘” nt(r—1)q— 1)\n+kq 1,n+(r— l)q)\n n+kq— 1)\n71,17 for Sr—1 <] < Sy
(ii) A combed algebraic Q-braid band move is a move between algebraic mixed braids
and is defined to be a parted Q-braid band move that has been combed through B.

Moreover, it has the following algebraic expression:

B ~dcy 8 combg(cy,. .., c),

where combg(cy, ..., cx) is the combing of the parted ¢-strand cables ¢y, ..., ¢, through
the surgery braid B (see Figure 2.20).

We are, finally, in the position to state the following main result of the paper.

Theorem 2.5 (Algebraic mixed braid equivalence for M = x,(S?, é)) Let s1,..., Sk
be the numbers of the strands of a surgery component s and let cq,...,c, be the corre-
sponding q-strand cables arising from a Q-braid band move performed on s. Then, two
oriented links in M are isotopic if and only if any two corresponding algebraic mixed
braid representatives in By, o differ by a finite sequence of the following moves:

(i) M-moves: (12 ~ 1o Ba, for B, B2 € Bn,

(i) M-conjugation: [ ~ Oflﬁa;-d, for B,o; € By,

(i4i) Combed loop conjugation: 3 ~ oF'p pj-tl, for B € By, where p; is the combing
of the loop «; through B,

(iv) Combed algebraic braid band moves: B ~ d cx ' combp(ci,...,ck), where the
algebraic expressions of d and cy are as in Eqs. (3) and (4) respectively, B’ is [ with
the substitutions of the loop generators as in Definition 2.4 and combg(cy, ..., cx) is the
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Fig. 2.20: Combing a parted Q-braid band move results in an algebraic Q-braid band move
followed by its combing.

combing of the resulting q-strand cables ¢y, . . ., ¢ through the fived subbraid B. Equiva-
lently, by the same moves as above, where (i) and (ii) are replaced by algebraic L-moves
(see algebraic expressions in Eqs. 2).

Proof. The arguments for passing from parted braid equivalence (Theorem 2.4) to al-
gebraic braid equivalence are the same as in those in the proof of the transition from
Theorem 1.13 to Theorem 1.14 in the case of integral surgery. The only part we need
to analyze in detail is the algebraization of a parted Q-braid band move. Namely, we
will show that the following diagram commutes.

Cm,n > B U 6 M B U 6/ € Cm,n—l—kq

H H

combgp(B) combp(B')

l l

Algebraic Q-b.b.m.
B > algp(B) — algs(B') € Biin+k

In words, we start with a parted mixed braid BJ 5 € C,,,, and we perform on it a parted
Q-braid band move (Definition 2.3) obtaining a parted mixed braid BJ " € Cpyntkgs
where k is the number of strands forming the surgery component. We then comb both
parted mixed braids obtaining combg (/) and combp(f’) respectively. We will show that
the corresponding algebraic parts, algp(f) € By, and algg(f8') € B nikg differ by the
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algebraic braid equivalence given in the statement of the theorem. We apply Lemma 8
in [LRO6|, where the ¢ strands of a braid band move are placed in the cable and the
cable is treated as one strand. More precisely, we note that the parted Q-braid band
move takes place at the top of the braid, so it forms an algebraic Q-braid band move.
We now comb away (3 to the top of B and on the other side we comb away (3. Since the
g-strands cable of the parted Q-braid band move lie very close to the surgery strands,
this ensures that the loops ajd around any strand of the k strands of the specific surgery
components get combed in the same way before and after the Q-braid band move. So,
having combed away [ we are left at the bottom with the identity moving braid on
the one hand, and with the combing of all cables of the braid band move on the other
hand, which is precisely what we denote combg(). Finally, by Lemma 2.4, combing and
cabling commute. Thus, the Theorem is proved. O]

2.7 Applications

In this section we give the braid equivalences for knots in specific families of 3-manifolds
that play a very important role in 3-dimensional topology, such as the lens spaces L(p, q),
homology spheres and Seifert manifolds. It is worth mentioning, in general, that any
framed link gives rise to a whole family of 3-manifolds obtained from different rational
surgeries along the link. This approach sets the ground for a homogeneous treatment
for studying the knot theory of 3-manifolds, for example the skein modules of oriented
3-manifolds with or without boundary.

2.7.1 Illustrations for an abstract generic example

Let M be the manifold obtained by rational surgery along a framed link Bin S3. Let
also B|J [ be a parted mixed braid representing a link in M. In Figures 2.21 to 2.26
we illustrate step-by-step the algebraization of a geometric Q-braid band move. More
precisely, in Figure 2.21 a geometric Q-braid band move takes place on the last strand
of a surgery component (si,...,s;) of B. In Figure 2.22 we part all cables ¢, ..., ¢
arising from the geometric Q-braid band move, turning the initial geometric Q-braid
band move to a parted Q-braid band move. In Figure 2.22 we also part locally the
(p, q)-torus subbraid d’. This leads to the algebraic expression d of d', illustrated in
Figure 2.23, where the local parting of the crossing subbraid ¢/, is also initiated. In
Figure 2.24 the algebraic expression cy of ¢, is illustrated and the local parting of
all loop generators is also initiated. This leads to the algebraic expressions of the loop
generators, in Figure 2.25, where also the preparation for combing of the cables ¢y, . . ., ¢
through B is illustrated. Note that the top part of Figure 2.25 (above the dotted line)
illustrates an algebraic Q-braid band move. Finally, in Figure 2.26 the combing of
the cables ¢y, ..., ¢, through B is performed and the final result is a combed algebraic
Q-braid band move.
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Fig. 2.21: A geometric Q-braid band move.
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2.7.2 Lens spaces L(p,q)

It is known that the lens spaces L(p, ¢) can be obtained by surgery on the unknot with
surgery coefficient p/q. So, the fixed braid B that represents L(p, ¢) is the identity braid
of one single strand and thus, no combing is needed. We have the following (compare
with [LR0O6, §4]):

Two oriented links in L(p, q) are isotopic if and only if any two corresponding algebraic
mized braids in B differ by a finite sequence of the moves given in Theorem 2.9,
where in particular:

(iv) Algebraic braid band moves:  For B € By, we have:  ~ dcy 5, where:

+1 A_l

_ -1 —
d = [)‘n—l-q—l,l ar A » C+ = /\n,n+q—1 Ontq—1 Mntq—1>

1,n+q—1]p

and where ' € By y4q is the word B with the substitutions:

—1 —1 —1 —1 —1
a1 < (AZ11 A1 Angg-11) a1, and ar <= a1 (Ag11 Apnggo1 An-1,1)-
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Fig. 2.28: An algebraic Q-braid band move in L(2, 3).

In Figure 2.28 the case where p = 2 and ¢ = 3 is illustrated.

2.7.3 Homology spheres

It is known that a Dehn surgery on a knot yields a homology sphere exactly when
the surgery coefficient is the reciprocal of an integer (see [Rol76] p.262). For example,
surgery on the right-handed trefoil, with surgery coefficient —1 yields the Poincare
Manifold also known as dodecahedral space (for the algebraic braid equivalence in this
case see [LROG6, §4|). In this subsection we give the algebraic braid equivalence for knots
in a homology sphere M obtained from S® by surgery on the trefoil knot with rational
surgery coefficient 1/q, where ¢ € Z. As explained in [Rol84] if one used integral surgery
description, one would need a different knot for each q.

Two oriented links in M are isotopic if and only if any two corresponding algebraic
mized braids in By differ by a finite sequence of the moves given in Theorem 2.5,
where in particular:

(iv) Combed algebraic braid band moves: B ~ d cy [ combg(cy,cs), where:
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B € BQ,TL:
—1 —1
d = (At2g-1ntqr1 Mttnig M) @2 (Ap1 Antintg),

— +1 -1
C+ = )\n,n+2q—1 Ont2g—-1 /\n,n+2q717

B’ is the word 3 with the substitutions:

—1 —1
a1 (AZ11 Amnd2g-1 Ant2g-1mtg Mgt An-11)01,

-1 1 (y-1 1 1
a, — 0y (An—l,l >‘n7n+q—1 )\n+2q—1,n+q An,n—f—?q—l An_lﬂ)?
-1
az < (/\,%1,1 Ann42g—1 Ant2g-1,1) @2
~1 -1 1
(An—l,l )\n,nJrqfl >\n+2q—1,n+q )\n,n+2q—1 An*Ll)?
-1 -1 -1 -1
ay' < (AZ11 Annr2g-1 Ant2g-1in4q Apngg1 An—1,1) G

- -1
( n+2q—1,1 )‘n,n+2q—1 )\n—Ll)’

and combp(cy,ca) is the combing of the q-strand cables (c; and c3) through the fized
braid:

combp(cy,ca) = H?;S Antil Q2 )‘;ii,l HZ-’;S Ant2g-1-i,1 a;l /\;Jerqflfi,l
1_[;‘1:_01 Antq+il A1 )‘;—iqu—i-i,l Antq1 G2 )‘r_z,ll Ant1n4q
Hg:_ll /\n+q+i,1 a2 )\;11 /\n+1,n+q )\7:—‘,1—q+i7n+q+1
Hg:_é >‘n+q71*i71 Q2 )‘;L-Il—q—l—i,l H?:_& >‘n+i,1 ai ;ii,l
?;& Antil G2 A;im ?;3 Antinl Q1 r_LJlri,l

q—1 -1 q—1
Hi:O /\n+i71 a2 /\n+i,1 Hi:o )‘n+q+i,n+1+i-

2.7.4  Seifert Manifolds

It is known that a Seifert manifold M ((p1,¢1), .- -, (Pm-1,¢n—1)) has a rational surgery
description as shown in Figure 2.29 (see [Sav99], p.33).
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Two oriented links in a Seifert manifold M ((p1,q1), - - -, (Pm—1,@m—-1)) are isotopic if
and only if any two corresponding algebraic mized braids differ by a finite sequence of
the moves given in Theorem 2.5, where in particular:

(tv) Combed algebraic braid band moves:  For 8 € B,,,, we distinguish the cases:

o If a Q-braid band move is performed on the j™* strand of the fived braid with
rational coefficient p/q (see Figure 2.30) then: f ~ d cy ' combg(c;), where combg(c;)
is the combing of the c; cable through B,

_ L e 1
d = P‘TH‘(]—Ll Q /\n—l,l] and Cx = >‘nn+q 1 On+q 1 Ann—i—q 1

and where 3’ is 3 with the substitutions:

Fori > j : a' +— af!

(2 7 Y

- S 4l 1
Fori < j : q — A, 1,1 Anntq—1 Antq—1,1 a )‘n—l—q 1,1 )\n n+q—1 An—1,1,
. . . 1
Fori =35 : a; <— A 211 Mntg-1 Anyg-11 @4, and
-1 o= 1
a; - = a7 A 10 Annggo1 A1

e If a Q-braid band move is performed on the last strand of the fixed braid with surgery
coefficient 0, then: B ~ o' 8, where 3 is B with the substitutions:

(lil — >\n 110’ )\n 11@

+1 -1
; A

~1 ;_
w1 On Anoay, for j=1,....m—1,

-1 2
Ay,  — /\,%171 0 Ap—11 Gm,

—1 -1 -1 -2
a S )\n—l,l g, )\nfl’l.

m

2.7.5 Rational surgery along a torus knot

It is well-known that a manifold M obtained by rational surgery from S® along an
(m, r)-torus knot with rational coefficient p/q is either the lens space L(|g|, pr?), or the
connected sum of two lens spaces L(m, r)§L(r,m), or a Seifert manifold (for more details
the reader is referred to [Mos71]). For links in M we have:

Two oriented links in M are isotopic if and only if any two corresponding algebraic
mazed braids differ by a finite sequence of the moves given in Theorem 2.5, where in
particular: (i) Combed algebraic braid band moves: For € B,,,, we have:

!
B ~dcy B combg(cy,...,cm),
where
B 1
d = [ )‘n-I—mq 1n+(m Dg+1 /\n n+(m—1)q An-11 Q; )‘nflyl A”v”+(m_1)q ]p’
C+r = )\n n+mqg—2 0n+mq 1 >‘n n+mqg—2»
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Fig. 2.30: A Q-braid band move in a Seifert manifold and its algebraic expression.

combg(cy, ..., cn) is the combing through the fized braid braid of the parted moving cables
parallel to the surgery strands and B’ is the word [ with the substitutions:

1 1
a; (/\n 1,1 >\n ;n+mg—1 /\n+mq Ln+(5— 1)(1 >\n n+(G—1)g—1 A”_lvl) a;
A

( 1

n—1,1 >\n n+jg—1 )\nerq 1,n+jq nn+mq—1 )‘n 1,1)
a;t — (A A At A1) @;
J 1,1 Anndmg—l Antmg—lntjg Anntjg-1 An=11) 4
(/\nfl,l An,n-}—(j—l)q—l An—&-mq—l,n—i—(]—l) )\n n+mg—1 An—l,l)a fO’f’ J € {17 cee 7m}‘

In Figure 2.31 we illustrate an example where the (m, r)-torus knot is the (2, 3)-torus
knot, p = 2 and ¢ = 3 (see Proposition 3.1 in [Mos71| for details about the manifold
obtained).

2.7.6  Jones-type invariants and skein modules of 3-manifolds

Our braiding approach is particularly useful for constructing Jones-type invariants and
for computing skein modules of 3-manifolds. Jones-type invariants (such as analogues
of the Jones polynomial and the 2-variable Jones or Homflypt polynomial) for links
in 3-manifolds can be constructed via Markov traces on appropriate quotient algebras
(such as analogues of the Temperley-Lieb algebras and the Iwahori-Hecke algebras) of
the related mixed braid groups B,, ,, which support Markov traces. This topological
motivation gives rise to many new algebras worth studying. From the Markov trace
rules one can obtain link invariants in the complement S\B. These invariants can be
then extended to link invariants in the manifold M = x(S®, B) by forcing them to
satisfy all possible band moves. Now, these are more limited if one uses the braiding
setting and our Theorem 2.5. A good example and the simplest one demonstrating the
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Fig. 2.31: Turning the geometric (2, 3)-braid band move into a combed algebraic (2, 3)-braid
band move.

above is the case of the lens spaces L(p,1): in [Lam99| the most generic analogue of
the Homflypt polynomial, X, for links in the solid torus ST has been derived from the
generalized Hecke algebras of type B via a unique Markov trace constructed on them.
Hence, X is appropriate for extending the results to the lens spaces L(p, q), since the
combinatorial setting is the same as for ST, only the braid equivalence includes the
Q-braid band move, which reflects the surgery description of L(p,q). For the case of
L(p,1), in order to extend X to an invariant of links in L(p,1) in [IDP]| we solve an
infinite system of equations resulting from the braid band moves. Namely we force:

Xz = Xbbm(&))

for all o € |J_ B, and for all possible slidings of o. The above equations have partic-
ularly simple formulations with the use of a new basis A for the Homflypt skein module
of ST, that we give in [DL15]. These handle sliding equations are very controlled in the
algebraic setting, because they can be performed only on the first moving strand. Fur-
ther, the infinite system of these equations splits into finite self-contained subsystems.
In future work we will use §2.7.2 on the general case of L(p,q) where we have to solve
equations of the invariant X which derive by attaching anywhere on a link a 2-handle
along a (p, ¢)-curve. Further, in [KL] the authors are working on connected sums of two
lens spaces, constructing the appropriate quotient algebras of the mixed braid groups
B, ,, and a Markov trace on these algebras.

Our results can be also applied to the study of skein modules of c.c.o. 3-manifolds,
using braid techniques. A skein module of a 3-manifold, characterized by a given prop-
erty, is equivalent to finding all possible knot invariants in the 3-manifold characterized
by the same property. We are particularly interested in Homflypt skein modules of
3-manifolds, although our approach can be also used for computing other skein modules
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of 3-manifolds such as Kauffman bracket skein modules. We note that the computation
of a Homflypt skein module of a 3-manifold M with the use of diagrammatic methods
is very complicated. The advantage of the algebraic setting is that it gives more control
over the band moves than the diagrammatic approach and much of the diagrammatic
complexity is absorbed into the proofs of the algebraic statements. We only need to
consider one type of orientations patterns and the braid band moves are limited. To
draw the analogy in the simplest situation: in [Lam99| the Homflypt skein module of the
solid torus S(ST) ([Tur88, HK90|) has been recovered from the invariant X mentioned
above. S(ST) is related to S(L(p, q)). The unique solution of the infinite system of the
sliding equations satisfied by X reflects the freeness of S(L(p,1)). As a consequence of
the above, in [?] we work on computing S(L(p, q)) in the general case using our results
of §2.7.2.

2.7.7 Application to the equivalence of 3-manifolds

In [KS92| the authors prove a braid version of the Kirby calculus, namely an equivalence
relation between framed braids that represent homeomorphic 3-manifolds. As mentioned
in the introduction, although every c.c.o. 3-manifold can be obtained by integral surgery
along a link L in S3, it is sometimes more convenient to consider rational surgery
description for a c.c.o. 3-manifold. Rolfsen [Rol84| extended the Kirby calculus to
rational surgery coefficients, giving rise to the Rational calculus and introducing a handle
sliding move called Rolfsen twist. It would be useful to extend the result in [KS92| and
derive the braid analogue of the Rolfsen calculus. The braid analogue of the Rolfsen twist
is precisely the Q-braid band move (Definition 2.4). The difference here is that there
are no fixed and moving strands in the setting; all braids involved are surgery braids.
Moreover, when applying a Q-braid band move along a component, the framings of the
strands involved, will change, as shown in [Rol84|. The braid moves reflecting framed
link isotopy in S® as well as the blow up move are the same as in [KS92|. The difficulty
in carrying through the braid analogue for the Rational calculus lies in the following:
Since Kirby calculus as well as Rational calculus are applied to non-oriented links in S3,
and since the orientation of a link L is crucial in order to obtain its braid representation,
one has to consider additionally how the change of orientation of any component of L
would alter the surgery braid. For the case of integral surgery, as shown in [KS92],
one may unknot the component that the change of orientation will occur, by applying
Fenn-Rourke moves, then change the orientation of the component, and finally undo
all Fenn-Rourke moves applied before. The result is a link L', that differs from L by a
change of orientation of one component. For the case of rational surgery, this is a very
complicated problem and will be the subject of future research.

Combining the above with the Kauffman bracket skein module of a 3-manifold, our
results could potentially lead to a uniform algebraic approach to the Witten invariants.
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3

LA NEW BASIS FOR THE HOMFLYPT SKEIN MODULE
OF THE SOLID TORUS

In this chapter we give a new basis, A, for the Homflypt skein module of the solid
torus, S(ST), which topologically is compatible with the handle sliding moves and
which was predicted by J.H.Przytycki. The basis A is different from the basis A’,
discovered independently by Hoste-Kidwell [HK90| and Turaev [Tur88| with the use
of diagrammatic methods, and also different from the basis of Morton-Aiston [MA97].
For finding the basis A we use the generalized Hecke algebra of type B, H; ,, which is
generated by looping elements and braiding elements and which is related to the affine
Hecke algebra of type A [Lam99|. More precisely, we start with the well-known basis
A’ of S(ST) and an appropriate linear basis ¥,, of the algebra H;,,. We then convert
elements in A’ to sums of elements in ¥,,. Then, using conjugation and the stabilization
moves, we convert these elements to sums of elements in A by managing gaps in the
indices, by ordering the exponents of the looping elements and by eliminating braiding
tails in the words. Further, we define total orderings on the sets A’ and A and, using
these orderings, we relate the two sets via a block diagonal matrix, where each block is
an infinite lower triangular matrix with invertible elements in the diagonal. Using this
matrix we prove linear independence of the set A, thus A is a basis for S(ST).

S(ST) plays an important role in the study of Homflypt skein modules of arbitrary
c.c.o. 3-manifolds, since every c.c.o. 3-manifold can be obtained by integral surgery
along a framed link in S® with unknotted components. In particular, the new basis of
S(ST) is appropriate for computing the Homflypt skein module of the lens spaces. In
this paper we provide some basic algebraic tools for computing skein modules of c.c.o.
3-manifolds via algebraic means.

3.1 Introduction

Let ST denote the solid torus. In [Tur88|, [HK90] the Homflypt skein module of the
solid torus has been computed using diagrammatic methods by means of the following



Fig. 3.1: A basic element of S(ST).

theorem:

Theorem 3.1 (Turaev, Kidwell-Hoste). The skein module S(ST) is a free, infinitely
generated Z[u*!, zF-module isomorphic to the symmetric tensor algebra SR7°, where
70 denotes the conjugacy classes of non trivial elements of m(ST).

A basic element of S(ST) in the context of [Tur88, HK90], is illustrated in Figure 3.1.
In the diagrammatic setting of [Tur88| and [HK90|, ST is considered as Annulus X
Interval. The Homflypt skein module of ST is particularly important, because any
closed, connected, oriented (c.c.o.) 3-manifold can be obtained by surgery along a
framed link in S® with unknotted components.

A different basis of S(ST), known as Young idempotent basis, is based on the work
of Morton and Aiston [MA97] and Blanchet [Bla00].

In [Lam99], S(ST) has been recovered using algebraic means. More precisely, the
generalized Hecke algebra of type B, Hy ,,(q), is introduced, which is isomorphic to the

affine Hecke algebra of type A, H,(¢). Then, a unique Markov trace is constructed on
the algebras H; ,,(¢) leading to an invariant for links in ST, the universal analogue of
the Homflypt polynomial for ST. This trace gives distinct values on distinct elements of
the [Tur88, HK90|-basis of S(ST). The link isotopy in ST, which is taken into account
in the definition of the skein module and which corresponds to conjugation and the
stabilization moves on the braid level, is captured by the conjugation property and the
Markov property of the trace, while the defining relation of the skein module is reflected
into the quadratic relation of Hy ,(¢). In the algebraic language of [Lam99| the basis of
S(ST), described in Theorem 3.1, is given in open braid form by the set A’ in Eq. 1.5.
Figure 1.19 illustrates the basic element of Figure 3.1 in braid notation. Note that in
the setting of [Lam99] ST is considered as the complement of the unknot (the bold
curve in the figure). The looping elements t; € H; ,,(¢) in the monomials of A’ are all
conjugates, so they are consistent with the trace property and they enable the definition
of the trace via simple inductive rules.

In this chapter we present a new basis A for S(ST), which was predicted by J.H.
Przytycki, using the algebraic methods developed in [Lam99|. The motivation of this
work is the computation of S (L(p,q)) via algebraic means. The new basic set is de-
scribed in Eq. 3.1 in open braid form. The looping elements t; are in the algebras
H; ,(¢) and they are commuting. For a comparative illustration and for the defining
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Fig. 3.2: An element of the new basis A.

formulas of the ¢;’s and the ¢’s the reader is referred to Figure 1.11. Moreover, the ¢;’s
are consistent with the handle sliding move or band move used in the link isotopy in
L(p,q), in the sense that a braid band move can be described naturally with the use of
the ¢;’s (see for example [DL15] and references therein).

Our main result is the following;:

Theorem 3.2. The following set is a Z[q*', z1]-basis for S(ST):
A= {tkotllﬂ .. .tfbn, k)l S/ \ {0}, k’z Z ki+1 VZ, n e N} (31)

Our method for proving Theorem 3.2 is the following:
e We define total orderings in the sets A’ and A,

e we show that the two ordered sets are related via a lower triangular infinite matrix
with invertible elements on the diagonal, and

e using this matrix, we show that the set A is linearly independent.

More precisely, two analogous sets, ¥, and X/ | are given in [Lam99| as linear bases
for the algebra Hy,(¢q). See Theorem 1.8 in this paper. The set [J, 3, includes A as
a proper subset and the set | J,, >/, includes A’ as a proper subset. The sets ¥, come
directly from the works of S. Ariki and K. Koike, and M. Broué¢ and G. Malle on the
cyclotomic Hecke algebras of type B. See [Lam99| and references therein. The second
set |, 2, includes A’ as a proper subset. The sets X! appear naturally in the structure
of the braid groups of type B, B ,; however, it is very complicated to show that they
are indeed basic sets for the algebras Hj ,,(¢). The sets X, play an intrinsic role in the
proof of Theorem 3.2. Indeed, when trying to convert a monomial A" from A’ into a
linear combination of elements in A we pass by elements of the sets 3J,,. This means that
in the converted expression of ' we have monomials in the ¢;’s, with possible gaps in
the indices and possible non ordered exponents followed by monomials in the braiding
generators g;. So, in order to reach expressions in the set A we need:

e to manage the gaps in the indices of the t;’s,

e to order the exponents of the t;’s and

e to eliminate the braiding ‘tails’.

This chapter is organized as follows. In Section 4.3 we define the orderings in the
two sets Y, and Y | which include the sets A and A’ as subsets, and we prove that

n’

53



these sets are totally ordered. In Section 3.3 we prove a series of lemmas for converting
elements in A’ to elements in the sets ¥,. In Section 3.4 we convert elements in X,
to elements in A using conjugation and the stabilization moves. Finally, in Section 3.5
we prove that the sets A’ and A are related through a lower triangular infinite matrix
mentioned above and that the set A is linearly independent.

The algebraic techniques developed here will serve as basis for computing Homflypt
skein modules of arbitrary c.c.o. 3-manifolds using the braid approach. The advantage
of this approach is that we have an already developed homogeneous theory of braid
structures and braid equivalences for links in c.c.o. 3-manifolds ([LR97, LR06, DL15]).
In fact, these algebraic techniques are used and developed further in [KL]| for knots and
links in 3-manifolds represented by the 2-unlink.

3.2 An ordering in the sets A and A’

In this section we define an ordering relation in the sets ¥/ and ¥,,, which include A’
and A as subsets. Before that, we will need the notion of the index of a word in A’ or

in A .

Definition 3.1. The indez of a word w in A’ or in A, denoted ind(w), is defined to be
the highest index of the ¢/’s, resp. of the t;’s, in w. Similarly, the index of an element
in ¥ or in X, is defined in the same way by ignoring possible gaps in the indices of the
looping generators and by ignoring the braiding part in H, (¢). Moreover, the index of
a monomial in H,(¢) is equal to 0.

For example, ind(t'*¢/* . /") = ind(t* .. .t") = n.

Definition 3.2. We define the following ordering in the sets X! .

Let w = t;lklt;;@ . .t;uk“ and o = t;l’\ltgz)a . .t;y’\“, where k;, A\s € Z, for all ¢, s. Then:

(a) IEYH ki <D0 oA, then w < 0.
(b) If Y0 ki =D 7 o A, then:
(i) if ind(w) < ind(o), then w < o,
(i) if ind(w) = ind(o), then:
(@) if i1 = 1,09 = o, -1 is1 = js_1,is < js, then w > o,

(6) if it = jt Vt and k’u = >\M7kﬂ—1 = )\u—la-“ki-‘rl = >‘i+17 |k’l| < |>\7,|, then
w < o,

(’7) if it = jt Vt and ]C“ = )\/“ ]{Z/,L,1 = >\H,1, . kiJrl = /\7;+1, |l€z| = ‘)\1’ and k?z > /\i,
then w < o,

(0) if iy = jy Vt and k; = \;, Vi, then w = 0.
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(c) In the general case where w = t;lklth»ka . .t;uk“ By and 0 = t;l’\ltg-g’\Q . .t;-UA” - Ba,
where 1,82 € H,(q), the ordering is defined in the same way by ignoring the
braiding parts 31, 5.

The same ordering is defined on the set A’ by ignoring the braiding parts. Moreover,
the same ordering is defined on the sets ¥,, and A, where the ¢;’s are replaced by the
corresponding t;’s.

Proposition 3.1. The set ¥, equipped with the ordering given in Definition 3.2, is a
totally ordered set.

Proof. In order to show that the set ¥, is totally a ordered set when equipped with
the ordering given in Definition 3.2, we need to show that the ordering relation is anti-
symmetric, transitive and total. We only show that the ordering relation is transitive.
Antisymmetric property follows similarly. Totality follows from Definition 3.2 since all
possible cases have been considered. Let w,o,v € ¥, such that:

_ ot ki ke 1 km

w — tzl t22 .. .th * /61,
4 A1y A2 ! An

g — t]l t]2 .. 'tjn ° 62,
o My pe2 AT

v — t¢1 t¢2 .. ‘t(bp /837

where f31, fs, B3 € H,(q) and let w < ¢ and 0 < v. Since w < o, one of the following
holds:

(a) Either > k; < >, A; and since o < v, we have that > A\ < > | 1, and
so > " ki <P pi. Thus w < w.

(b) Either ", k; = > | A; and ind(w) = m < n = ind(c). Then, since o < v we

have that either >0 | A, < D7 p; (same as in case (a)) or >0 A = D0 1
and ind(c) < p = ind(v). Thus, ind(w) = m < p = ind(v) and so we conclude
that w < v.

(c) Either Y7 ki = >0 N, ind(w) = ind(o) and iy = ji,...,05-1 = Js—1,0s > Js-
Then, since 0 < v, we have that either:

o> " N <> P, i, same as in case (a), or
o> " N =>" wandind(o) < ind(v), same as in case (b), or
e ind(c) = ind(v) and j1 = ¢1,...,Jp > @p. Then:
() if p = s we have that is > js > ¢, and we conclude that w < v.
(i1) if p < s we have that i, = j, > ¢, and thus w < v and if s < p we
have that 75 > j, = ¢s and so w < v.
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(d) Either > k; = >0 N, ind(w) = ind(0) and k,, = A, ..., |k, < |Ag|. Then,

since 0 < v, we have that either:

e > " A <> P i, same as in case (a), or

o> " A=>" wand ind(o) < ind(v), same as in case (b), or
e ind(c) =ind(v) and j1 = ¢1,...,J; > @4, same as in case (c), or
® j, = pn, for all nand p, = A\, ..o, fles1 = e, |fte] = |Ae| for some ¢, then:

(1) If |pe| > |Ael, then:
(1) If ¢ > q then |k.| = |A¢| < |pe| and thus w < v.
(1) If ¢ < ¢ then |k,;| < |A\;] = |q] and thus w < v.
(i73) If ¢ = q then |k,| < [N\, < |pq| and thus w < v.
(2) If |pe| = |Ac], such that p. < A., then:
(1) If ¢ > q then |k.| = |A¢| = |pe| and k. = A. > pe. Thus w < v.
(1) If ¢ < g then |k,| < |A\;] = |iq| and thus w < v.
Either >  k; =Y 1| A, ind(w) = ind(0) and k, = A, ..., |k,| = |\y], such that
kq > Ag. Then, since o < v, we have that either:

o> " N <> P i, same as in case (a), or

o> " N =>" wandind(o) < ind(v), same as in case (b), or
e ind(c) =ind(v) and j1 = ¢1,...,J; > @4, same as in case (c), or
® j, = n, forall nand p, = Ay, ..., fler1 = Aexs [fe] = |Ae] for some ¢, then:

(1) If |pe| > |Acl, then:
(i) If ¢ > g then |k.| = |Ac] < ||, thus w < v.
(1) If ¢ < q then |k, = |A;| = |1g| and k; > A\, = py, thus w < v.
(2) If || = |Ae| such that A\, > ., then:
(i) If ¢ > g then |k.| = |A\c| = |ue| and k. = Ae > pe, thus w < v.
(1) If ¢ < g then |k,| = |Ag| = |uq| and k; > A\, = pg, thus w < v.
(i73) If ¢ = ¢, then |k,| = |\;| = |1q| and k, > Ay > py, thus w < v.

So, we conclude that the ordering relation is transitive. n

Remark 3.1. Proposition 3.1 also holds for the sets %, A’ and A.

Definition 3.3. We define the subset of level k, Ay, of A to be the set

m

> ki=k, ki € Z\{0}, ki > kiyy Vi}

1=0

Ay o= {thodfr L ghe
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and similarly, the subset of level k of A’ to be

= {ton™ Y Tk =k, ki€ Z\ {0}, ki > ki Vi),

=0

Remark 3.2. Let w € Ay a monomial containing gaps in the indices and u € A, a
monomial with consecutive indices such that ind(w) = ind(u). Then, it follows from
Definition 3.2 that w < w.

Proposition 3.2. The sets Ay are totally ordered and well-ordered for all k.

Proof. Since Ay, C A, Vk, Ay inherits the property of being a totally ordered set from
A. Moreover, t* is the minimum element of A and so Ay is a well-ordered set. O

We also introduce the notion of homologous words as follows:

Definition 3.4. We shall say that two words w’ € A" and w € A are homologous,
denoted w' ~ w, if w is obtained from w’ by turning ¢ into ¢; for all 7.

With the above notion the proof of Theorem 3.2 is based on the following idea:
Every element w’ € A’ can be expressed as linear combinations of monomials w; € A
with coefficients in C, such that:

(i) 3 j such that w; ~ v/,
(i) w; < w, for all ¢ # j,

(ili) the coefficient of w; is an invertible element in C.

3.3 From A to ¥,

In this section we prove a series of lemmas relating elements of the two different basic
sets 3, 2, of Hy ,(¢). In the proofs we underline expressions which are crucial for the
next step. Since A’ is a subset of ¥/ | all lemmas proved here apply also to A’ and will
be used in the context of the bases of S(ST).

3.3.1 Some useful lemmas in Hy ,,(q)

We will need the following results from [Lam99]. The first lemma gives some basic
relations of the braiding generators.

Lemma 3.1 (Lemma 1 [Lam99]). For e € {£1} the following hold in H, ,(q):
(i) g = (@' —q" P+ A ()" g+ (@ =g (1))
G = (=g~ ) g+
+ (" =g (=) T (=)
(ii) g (9 gty - 97") = (gl 9 g, for k>i>j,
99 o) = (9700 g, for k> >,
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where the sign of the =1 exponent is the same for all generators.

(i1i) gigi—1 o Giragigitt 9= 950541 Gin1GiGiot - Gl
9 9 91959 i = G55 Gi19i i - G5
y € € € € € n—i+1 € €Epr ~ET € € €
(ZU) gi ---Gn-1 gn2 n—1 ---Gi = Er:0+ (q - 1) q (gz e On—r .- Gi );

where e, =1 if r<n—1i and €, ;11 = 0. Similarly,

(V) G g2 %o g5 = S0 (@ = 1)TqT (i Grr2 Gri1Grrat - - Gi),
where e, =1 if r<i—1 and ¢ =0.

The next lemma comprises relations between the braiding generators and the looping
generator t.

Lemma 3.2 (cf. Lemmas 1, 4, 5 [Lam99]). For ¢ € {£1}, i,k € N and A\ € Z the
following hold in Hy ,,(q):

(i)  taitg = gitgith
(ZZ) tegletekgls gletekglete + (qe o 1)t5gletek’ + (1 o qs)tekglete
t—egletekgle gletekglet—e 4 (qe _ 1>t‘e(k—1)gle 4 (1 _ qe)glete(k—l)

(iti) g t% g = gitFgit? + (¢" — 1) 325, 1Y getettizi) 4
+ (1—¢9) Z;;% pe(ktd) gepe(i=d)

gt = gttt + (qe - 1) 23;1 D ggtmei=d
+ (1—¢°) 23:1 t€(Z—J)git€(k—J)

The next lemma gives the interactions of the braiding generators and the loopings
t;s and t/s.

Lemma 3.3 (Lemmas 1 and 2 [Lam99|). The following relations hold in H ,,(q):

(1) gity® = tfg fork>i k<i—1
git; = qti1gi+ (¢ —1)t;
-+ — g .0 -1 _ 1t = t.g7 !
gition = 4 i9i + (q )t = tig;
gz’ti_? = qti g+ (g—Dtia™! o
git;: = ¢ MiaTlg (T =Dt = g
(i) thg, = (¢—1) Zz;é ¢ty aty? +qgaty_y, ik EN
thon = (1—q) X5 @t ath? +dvguth 1, ifk€Z-N

(i6i) tFt;*
(i) gity”

t; % fori#j and k,\€Z
g fork>i, k<i—1

giti: = ti g+ (- D+ (1 —q)ti
giti" = g
(v) ték = gi...qt*qi ... ¢, for k € Z.

Using now Lemmas 3.1, 3.2 and 3.3 we prove the following relations, which we will
use for converting elements in A’ to elements in X,,. Note that whenever a generator is
overlined, this means that the specific generator is omitted from the word.
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Lemma 3.4. The following relations hold in Hy ,,(q) for k € N:

. _ _ _ k_ _ 14 _ . k_‘
() gmeath, = ¢V g+ Y D (g = D
P 1)y k=1 (k—1—j (k=g
(“) gm}&-ltmk = q(k l)tmlj—lgm-i—l + Zj:l q(k ! J)(q - 1)tmjtm(+1 ])'
Proof. We prove relations (i) by induction on k. Relations (ii) follow similarly. For

k = 1 we have that ¢, 1t,, = tm+1g;£r1, which holds from Lemma 3.3 (i) . Suppose
that the relation holds for £ — 1. Then, for k£ we have:

4, dnde (vl
Gmitth, = Gmarth o, :%pq = gt it +
k=2 (h—o—iy, — k1
+ 24 B2 (g™ = Dty Tt =
= kg _ k=2 (o, — 1 k—1—j
= ¢ Fgmiatm + (g = Dtti ) + 20 g 20 (g7 = D
(b _ ko o (he1ei)/ — o k—j
= g 1)tm+19m£rl + Zj:lq (=129 (g™! — D)t te i1 u
| | | |
| _ _ L
g t2 = t gt = qt’ g + q-1tt

m+1 m m+17m+1 m m+17m+1 mm+1

Fig. 3.3: Illustrating Lemma 4(i) for k = 2.

Lemma 3.5. In H; ,,(q) the following relations hold:

(i) For the expression A = (g;gr—1-..9r—s) - tx the following hold for the different
values of k € N:

(1) A = tp(9r...9r—s) fork>rork<r—s—1

(2) A te (g7t gt) fork=r—s—1

(3) A qtr—1 (97“ s gr—s) + (C] - l)tr<gr—1 cee gr—s) for k =r

(4) A = gtrs1(gr--gros) + (=Dt (97" .9 040) fork=r—s
(5) A = tm1(gr. . -gr—s)+ (¢ —1t, (gr_l - -g;zirl) (Gm-1---Gr—s)

fork=me{r—s+1,...,r—1}

(ii) For the expression A = (grgr_1...9r_s) - t; " the following hold for the different
values of k € N:

(1)
(2)
(3)

= t;.'(gr-..grs) fork>rork<r—s—1

t;flsfl (gr s grferlg;—ls) for k=r—s

= 771171 (grgr—l s gm-&-lg;ngm—l . -gk—s)
fork=me{r—s+1,...,r}

4) A = ¢ (g gems) + (= D) @I

(Gr - Gr—jr2Gr—j .- gr—s) fork=r—s—1.

SN N
|
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Proof. We only prove relations (ii) for £ = r — s — 1 by induction on s (case 4). All
other relations follow from Lemma 3.3 (i).

For s = 1 we have:

grgrflt;—lz = gr[qt;—llgrfl + (q - 1)t;—12] = qgrt;—llgrfl + (q - 1)97‘75;—12
qlat; " g + (g — Dt 21]gr (g = 1. 297»1
= ¢t grge) + (0= 1) [t g1 + P L0

and so the relation holds for s = 1. Suppose that the relation holds for s = n. We will
show that it holds for s = n + 1. Indeed we have:

(G- Gren-1)t 0 = (Gr - Gren) (Gron1t; ' o) =
(gr- - Grn) [qtr w1 Orn1 (= Dt ] =

= (g - Grnty )t (@ = D (gr e gty "
= ¢""t7 g Gron—1) +

+ (q 1) Z?Jrll qn J+2t ! (gr co - Gr—jr289r—j - - - gr—n—l) +
+ ( 1) r—mn— %( < Gr— n) = qn+2t;1<gr' . 'gr—n—1)+
+ (-1 Q"“) T (gr - Grmj42Gr—j - Grn1)- O
1T ... rs ..rrl ...n 1T ... rs ..rrtl ..n
I
(¢ I 'gr-s) t:s t:H 9,91+ 9641) g:s

Fig. 3.4: Nllustrating Lemma 5(ii) for k = r — s.

Before proceeding with the next lemma we introduce the notion of length of w &
H, (¢). For convenience we set dy, := grGk—1 - - . gr+19, for k > r and by convention we
set Ok 1= G-

Definition 3.5. We define the length of ¢, € H,(¢) to be the number of braiding
generators, that is, [(0g,) ==k —7r+1 and since every element of the Iwahori-Hecke
algebra of type A can be written as [[}_, (Sk » so that k; < kj11 Vj, we define the length
of an element w € H,(q) as:

n—1 n—1

(w) = Li(Bkm) =D ki—ri+1.

i=1 =1

Note that {(gy) = (k) =k —k+1=1
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Lemma 3.6. For k > r the following relations hold in Hy ,,(q):

k—r
U0k, = Z q'(q— D)0y 7 pth—i + ¢Syt 1,
i=0
where 0y, 5= = GkGk—1 - - - Gk—it19k—i~1- - Gr = Gk - - - Gk—i - - - Gr-
Proof. We prove relations by induction on k. For k = 1 we have that t;g; = (¢—1)t; +
qgi1t, which holds. Suppose that the relation holds for (k — 1), then for & we have:

tlkr = gk 01, = (¢ — D)tulr—1, + qOrti—10k—1, =

(¢ — 1)0k—1,tx + qx Zi:ol_r q'(q = 1),y g th-1-i+

ql(ikil'r)%lgké‘k—1,7"t7“—1 =
= Y0 d'(q— 1)5k,k—l—i,rtk717i + ql(akm)ék,rtrfl-

+ |l

Lemma 3.7. In H, ,(q) the following relations hold:

(1) For the expression A = (GrGri1---Grss) - tx the following hold for the different
values of k € N:

(1) A = tp(gr- - Grys) fork>r+s+lork<r—1

2) A = i1 (9 GGpt1 Gt - - - Grrs)
forr—1<k<r++s

3) A = (¢—1) Z::: i (G Gie - Grs) ¢y (9r- - Gres)
for k=r+s

(ii) For the expression A = (grGri1-.-Gris) -ty the following hold for the different
values of k € N:

(1) A = t.'(gGrs1--Gres) fork>r+s+lork<r—1

(2) A = gt (g grs) Fa—1) 62 (07" 95 Ghra - Gris)
forr—1<k<r+s

3) A = ' (9" ...97%) fork=r+s

Proof. We prove relation (i) for r + s = k by induction on k (case 3). All other relations
follow from Lemmas 3.1 and 3.3.
For k = 1 we have: gi1t; = g?tg1 = qtg, + (¢ — 1)t;. Suppose that the relation holds
for k = n. Then, for k = n + 1 we have that:
ind.step

Gr - Gniitnss = 4(gr - Guln)gnir + (@ = 1)(gr - g)tnpn =

(q—=1) >, a" g Gio o gn) + " 1(Gr - - - Gn)] Gnar+

q¢— Dtnia(gr---gn) =

(=10, ¢ i(gr - Gio o Gngnr) + (@ = Ditnga(gr - gn)) +
et (G GnGng1) =

— )Y et (g T Gu) T (g Gag). O

—~ —~Q

=+ 1+ 1
L)

—~
L)
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Lemma 3.8. The following relations hold in Hy ,,(q) for k € N:

(i) (91 - -91'719?91'71 cag1)t =
(¢q—1) 22:1 gt (91 Y/ '91_1) + q't
(it) (97" 99 2 g ) T =
(' =) g I (0 g ke 1) g
(111) (g/,;1 09 g )t =
(@ = DX ¢ (g giagimgivn - 0k) + 0 Tt
(iv) (g,;l gy g gyt .g,;l) =
VRt el (7 B /R P
+ Zi:ol t g g =Ygt g g g
[ @ = D20 g e g+
+ ¢ (g — g+ 1)].

Proof. We prove relations (i) by induction on i. All other relations follow similarly. For
i =1 we have: g2t = gigitgi97 " = git19; - = (¢—1)t1g; ' +qt. Suppose that the relation
holds for ¢ = n. Then, for ¢ = n + 1 we have:
(91 9nGiiGn---01) -t = (@=1) (91 Gnt1Gn---91) - +

+ (91 Gn1GiGnr - q1) -t =

= (¢=Dg1- - Gntni1Gnir- - 91 + 4oy " (g — Vi

(91 gragr oo ) + g7 =

= (¢= D1 (91 9nGnir---01") + Zpmy "7 F (g — Dty

(91 gerge - o0t) +q™ Mt =

+1 k . »
= ZZ:l Qn+1 (q - 1)tk (91 s k19, - ) + qn—&—lt' -
= + + I
@og)t = @@Nt@gg)+ aadtg + t

Fig. 3.5: Illustrating Lemma 8(i) for i = 2.
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3.3.2 Converting elements in A’ to elements in ¥,

We are now in the position to prove a set of relations converting monomials of #’s to
expressions containing the ¢;’s. In the appendix we provide lemmas converting mono-
mials of ¢;’s to monomials of ¢;’s in the context of giving a simple proof that the sets 3/,
form bases of H; ,,(q).

Lemma 3.9. The following relations hold in Hy ,,(q) for k € N:
() 6% = " e - l)t‘jt{*k g1

(i) #F = g E + Y g E D (g = e g

Proof. We prove relations (i) by induction on k. Relations (11) follow smularly For k = 1
wehave: /7' =gt g7t = qglt T g + (-1t gt = gttt + (-1t g
Suppose that the relation holds for kK — 1. Then, for k we have:

fo = T g Ty
step
+ T - Ve g =
k— 1 — i g—(k—-1),1 —
_ qktk_'_qk lt lt( z—i_)z:jlqkl](q_l)t]tjl( )t 1911
= gD gt
k’ 1) —
+ Z] llqk 1 ](q 1)t j— 1tJ ( )gll —

_ E o
AR S L VR § Ul P

Lemma 3.10. The following relations hold in H; ,,(q) for k € N:

k—1

= ¢t 4 (=)D " (g g - g2 9 - G G-
=0

7 —1
tk

Proof. We prove the relations by induction on k. For £k = 1 we have:

=gttty =gt g+ (-t gt =gt + (Dt
Suppose that the relations hold for £ = n. Then, for Kk = n + 1 we have that:

’ -1 ;) —1 —1 ind. step

tn+1 = 9n+1 tn In+1 -

= Gu1 [q"rf‘1 + (q — D)t G G20 - 0] Gty =
0" Gni byt gt + (0= 1) X0 dgnsaty  (gn - - gz+zg;11---g;19;i1) =
= q [qtn+1gn+1 + (¢— 1) }gn+1 + (¢—1) Zz 0 qlt_l
(Gn+1-- - Git2Gir - nt1) =
= "+ - Ditgah + (a—1) X gt
(Gnt1 - gi+2gz‘_+11 - -9;+11> =
= q”“tflil + (q - 1) Zz -0 q (9n+1 gi+29i_+11 .- '9;+11>‘ [

Lemma 3.11. The following relations hold in Hy ,,(q) for k € Z\{0}:

63



k -m m
t, = ¢ "ty + Zfi(Q>t7]:zwi + Zgz‘(@tmﬁl---t;\n U

where w;,u; € Hp1(q), Vi, >omghi =k and \; >0, Vi, if k > 0 and X; <0, Vi, if
k <0.

Proof. We prove relations by induction on m. The case m = 1 is Lemma 3.9. Suppose
now that the relations hold for m — 1. Then, for m we have:

k _1 ind. m— _
= Gulit 9t = " gty g5+ X fil@) gt wigy! +

step
L.4
+ Y gt TR gt g ()

m— e - j —j -
= ¢RI g+ S T (g = Dt gy
= g+ Y @t + Y g . O

Using now Lemma 3.11 we have that every element u € A’ can be expressed to linear
combinations of elements v; € X,,, where 3 j : v; ~ u. More precisely:

;1 k
tm

Theorem 3.3. The following relations hold in Hy ,,(q) for k € Z:
thogh g Fmo = gm Enankn ghoht [ ghmo g S (q) - tRogkt
+ 229175 -y,

where w;, u; € Hy,11(q), Vi, 7, € X, such that 7; < thotht  thm v/

Proof. We prove relations by induction on m. Let k; € N, then for m = 1 we have:
tk‘()tllk’l (L:Q) qfkltkotkl + Zkl — (k1 ])(q _ 1)tko+jfltlf1+1_jgl—l —

AL e 1)t’“°t’flgf L+

+ 2l q M (g = DR g

=2

On the right hand side we obtain a term which is the homologous word of t#/* with
scalar ¢~F1 € C, the homologous word again followed by g; € Hy(q) and with scalar
g *=D (g7t — ) e C and the terms t*t7=1¢M177 which are of less order than the
homologous word 0% since ky > ky +1—j, for all j € {2,3,...k;}. So the statement
holds for m =1 and k; € N. The case m = 1 and k; € Z\N is similar.

Suppose now that the relations hold for m — 1. Then, for m we have:

ko ¢! k1 rokmooindo S molap ko km—1 4 km
L Sin=y Phn L gho | gmot oyt Bmg

+ Y fulg) oty 8,
+ 30Ty,

Now, since w;, u; € H,,,(q), Vi we have that wit;nkm = t’mk’"wi and uit;nk’” =t/ Fmo, Vi
Applying now Lemma 3.11 to t;nk we obtain the requested relation. O]

64



AT A>T ~T

Fig. 3.6: Illustrating Theorem 3.3.

Example 3.1. We convert the monomial tt,t,”> € A’ to linear combination of elements
in ¥,. We have that:

tll 5 = q_ltl _'_ (q_l_l)tlgl_lv (Lemma 39)7
th? = g% + qgg(qu)tfltz?lg;l + q21(q:1)1t*1t519291‘19£1 o
+ Plg—Dt%g + qlg—1%t g g0 + (¢ — Dt %g2091 95
(Lemma 3.10),

and so:
ity = @ttty + ¢ g = 1)ttty gt 1t

tty ! ((q—l)(q —q+1)-95 (q—1)2-919291‘1951)+

tty" (g —1) 95" +alg— 1) g3 —Q(Q—1)2'929f192_1)+

tity ' (qlg—1) - 9291 gzl—q(q—l) gy e ) +

7 (—(a—1) 9201 "9 —q g —1)? g7 gr )

+ 4+ 4+

where u = (g —1)%0,70," — (4= 107702 —q "4 — 1’0200 05" + 0 g —1)°g;

We obtain the homologous word w = tt;t, 2, the homologous word again followed
by the braiding generator g;' and terms in 3, of less order than w, since either their
index is less that ind(w) (the terms t¢;', 1 and ¢t~'¢,), either they contain gaps in the
indices (the terms tt," and t,t;").

3.4 From X, to A

In order to prove Theorem 3.2 we need to show that the set A is a spanning set of S(ST)
and also that is linear independent. In this section we show that every element in A’
can be expressed in terms of elements in the set A. Linear independence of the set A is
shown in the next section.

Before proceeding we need to discuss the following situation. According to Lemma 3.9,
for a word w’ = t*¢#, ™ € A’, where k, A\ € N and k < X we have that:

w o= TN = Tl My R M 20, L+
+ tOtlf)\Jrkak + t*ltlf)\+k+1ak+1 4+ o+ t*)\+ka)\7
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f 1 2 ... i+ L
12 ... i1 ... n + n 1 2 ... i1 ... n

>

Fig. 3.7: Conjugating t; by gl_1 gt

)

where «; € H,(q), Vi. We observe that in this particular case, in the right hand side
there are terms which do not belong to the set A. These are the terms of the form ¢9¢7,
where p > ¢ and the term ¢7". So these elements cannot be compared with the highest
order term w ~ w’. The point now is that these terms are elements in the basis X,
on the Hecke algebra level, but, when we are working in S(ST), such elements must be
considered up to conjugation by any braiding generator and up to stabilization moves.
Topologically, conjugation corresponds to closing the braiding part of a mixed braid.
Conjugating t; by g;' we obtain tg? (view Figure 3.7) and similarly conjugating 7
by g;' we obtain tg?tg?...tg?. Then, applying Lemma 3.3 we obtain the expression

?_11 tktm kg, where v, € Hy(q), for all k, that is, we obtain now elements with
consecutive indices but not necessarily with ordered exponents.

We shall first deal with elements where the looping generators do not have con-
secutive indices, and then with elements where the exponents are not in decreasing
order. For the expressions that we obtain after appropriate conjugations we shall use
the notation =.

3.4.1 Managing the gaps

We will call gaps in monomials of the ¢;’s, gaps occurring in the indices and size of the
gap tf’it? the number s;; = j —i e N.

Lemma 3.12. For ko, ki ... ki €Z, e =1 or e = —1 and s, ; > 1 the following relation
holds in Hy ,(q):

k}i, 7 € =~ ki* 7 € € € € _€ €
thon ~ti711tf b= thon . 'tiflltf “liva (9i+2 - -gj_19]2' 9j—1-- 'gi+2) :
Proof. We have that t; = (g§ . .gf+2) 5y (gf+2 . gj) and so:

ki* i4E ki* i € € € € €
thotlt s = ot T (g5 g5 ey (05 - - 95)

€ € ki ki ye € €
(gj . -gi+2) tkotlfl . 'ti—llti ti+1(9¢+2 - ~9j)

ki— ki
tho .. 4L t?+1(9§+2 - -95_1932'695_1 . -gf+2)-

1l

[P

]

In order to pass to a general way for managing gaps in monomials of t;’s we first
deal with gaps of size one. For this we have the following.
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Lemma 3.13. Fork e N, e=1ore= —1 and o € Hy ,,(q) the following relations hold:

e

~1
th.oa = g )(q — D)ttt e(k_u)(oégf) + qe(k_l)tgﬁl(gfagf)‘
1

IS
Il

Proof We prove the relations by induction on k. For &k = 1 we have ¢ - a = g{t5_ g5 -
a =1t5_,g5 -« gf. Suppose that the assumption holds for K —1 > 1. Then for k we have:

)

t;’“- ~ te(k 1)(t§ La) (t5a = B) ts(k—l) g =

%

ind. step

e(u— € eu pe(k—1-u) € k 1)/ ¢

= T = ST (B0 + a2 D (g6
k— 2 eu € euv pe(b—1—u) ¢ € k—1 €€

= Lo a0 - et Vei(agh) + ¢ jt;_l ><gtagz> -
= S — 1t 5 (agh) + g Vsags +
+ q e(k— 1)t k 141) ( eteagi) —

(u— eu ge(k—u € €
= ST (g — D T (agl) + ¢ BV (gfag)). O

We now introduce the following notation.

Notation 3.1. We set 7; ;fjnm = tlfll . fﬂ?’ where m € N and k; # 0 for all j and

5 — {gigi-i-l e giagy if i<y o {gigi-i-l o Gk1Gkt1 - Gim1gy 1f 1<
" 9iGi-1---Gjr1g; if i>77 "Bk 9iGi-1- - Gk+19k—1- - Gj4195 f 1> ]
We also set w; ; an element in H;;;(¢) where the minimum index in w is i.

Using now the notation introduced above, we apply Lemma 3.13 s; j-times to 1-gap

monomials of the form T(Ii o -t?j and we obtain monomials with no gaps in the indices,
followed by words in H,,(q).

Example 3.2. For s;; > 1 and o € H,,(q) we have:

(Z) Tos t-a = Tos * tivt - (5”27], & (5j7i+2
.. L 9 -~ L o .
(17) To,i * t]. = Toge tig - 6i+2j o 5j it2 T Toi- tiv1tiso - B, where
B = (q - 1) 2 q 351‘—‘,—3,55@‘-}-275_1684_17]‘ o 5j,i+25s,i+3
s=i+
ki 43 = —(i42)+1 ki 43
(ii) 757 = [T } T Lig1 - Oit2,j @ Ojia +
ki 42 k; 9
+ Topctiative B+ Tohtiptig oy +
ki
+ 7o tipitivativs - g, where
— —(i4+3)+1
Y= qJ (z+ )+ (q —1)0i13,0i425-10s+1j @ 0ji+20si+3, and

_ 2j—r—s 2
o= 3 T (g = 1040261611641
J s 2j—r—s 2
a 6j77'+2(sszz+357‘77'+4 + ZS:’L+2 ZT:Z+3 q / (q - 1) '
6i+4,r5i+3,7"715r+1,36i+2,57155+1,j « 5j,i+2§s,i+3-
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Applying Lemma 3.13 to the one gap word 7'00 "t ki , where k; € Z\{0} and o € H,,(q)

we obtain:
ko iy Nit1 t>‘i+’<j

P
A T0i tlJrl... o lfk’j<8i7j

_ i+k;
Téﬂzl ~tfjoz§ J )
AT;gltjiﬁl .. t])\JB/ if k’j > Sij
where o/, 5" € H,(q), Z;ﬁ;@l A = kj, Ay >0, Vpand if A\, = 0, then A\, = 0,

Yv > u.
More precisely:

Tod -tfj -, where o € H,,(q) we have:

Lemma 3.14. For the 1-gap word A =

I

b+
M/‘\
@

1 1 k() k.
)] (+1) Zl i1 Oip2y @ Ojita +

k‘o z 'L+1 'L+k /
0,7 z+1 i+k; 60&5 .
1) ko
( )J D700 427 Giog @ Ojiga +

Z
k:
VT Bad

(¢) If |kj| <s;j, then: A

(i1) If |kj| > s;4, then: A

_l’_
M
@

where  and B are of the form w11 € Hj11(q), Zk f(q, )ré“ilrzj;’fki? means a sum

of elements in X, such that in each one them, the sum of the exponents of the looping
generators tiy, ... tiyy, is equal to kj, and such that k1| < |k;|. Moreover, if k, =0,
for some index u, then ks =0 for all s > p.

Proof. We prove the relations by induction on k;. Let 0 < k; < j — 1.

For k; = 1 we have A = [q(lfl)]j_(iﬂ) ng’i - tit10i+2,; @ 0j;10 (Lemma 3.12). Suppose

that the relation holds for k; —1 > 1. Then for k; we have:

_ _koy ki1 ~ kj—219=(+1) ko ki1
A = 17 - (tja) = [¢"77] Toq *tiy1 Oit2j b @ 050 +
ind.step —_— ,
WV
B

ko,: Kiy itk
+ Z fa)mo:" z+1z+k-—15t g

kzl 7,+k —1
N

J/

'

c

We now consider B and C' separately and apply Lemma 3.4 to both expressions:

B (B34
_91i—(i+1) _koq kj—1

- [qkj 2]j Z 70,2 tigy

[(q —1) i+i+2 qj_ktk5i+2,k—15k+1,j + qj_(i+2)+1ti+16i+2,j] djiy2

91— (241 k. 2 . .

= [¢42) ¢ )(q D) 7o tigt = 2 prin @ tr0itok—10k41,005i40 +
_17d=G+1) koq  k;

+ [qkj 1]J v )To,(z)’ “ti110i42,/00; it 2.

We now do conjugation on the (j — (i + 3))-one gap words that occur and since ty, -
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B = tiya - 0iysk B Okips We obtain:

~ ki—119—0+1) _koi k;
B = [q ! } Toi *tit10i425 @ Ojiv2 +
ko, 7
+ To,i tz+1tz+2 Zk:i+2 f<Q7 Z) i+3, k51+2k' 15k+1,ja5 z+25k,z'+3 =
_ i+1 ki i k;
[qk 1} —OH) ko ks

0,i it10it2,) @ Ojita + To,z' Liyitize - P,
where 31 € Hj11(q).

k'L K3 _ .
Moreover, C' = >, f(q )Téc(;l Tzﬁlz:kkqlﬁ t; B and since 8 = wjy,—1,5, we have that:

(L. 3.4) ; ~ k. i Vi i
Bty = iszrl ts-7s, where v, € Hj1(¢) and so: C' = ZUT f(q )7'02 Tz++111++:J - Ba,

where £y € Hj11(q).
This concludes the proof. O

We now pass to the general case of one-gap words.

Proposition 3.3. For the 1-gap word B = 7'(?21 i,

Jgtm where o € H,,(¢q) we have:

Y o . ko i k"' m
B2 g gyt
H (5Z+m+2 s,g—i-S) tQ H5:0(6j+8,i+m+2—8) +

+ Y P @y () o
where o € Hy,(q), > uim = k; such that uy < k; and if u, =0, then us = 0,Vs > p.

Proof. The proof follows from Lemma 4.3. The idea is to apply Lemma 4.3 on the
. 0 ,Kj _ ki1 4m . koi Lk
expression 7,;" - t;" - p1, where p; = 7,37 70 and obtain the terms 75" - ;34 - p2 and

ko, Kit1,i4q

Toi *Tit1itq - P2 and follow the same procedure until there is no gap in the word. [

We are now ready to deal with the general case, that is, words with more than one
gap in the indices of the generators.

Theorem 3.4. For the ¢-gap word:

o ko,; Kitsy itsy+u1 Kitsq, itsgtusg k7'+5¢ itsgthe .
C = 70 T ireiim " Titeritomimm Titsgitsgtny O where k; € Z\{0} for all 1,

a € H,(q), s;,n; € N, such that s1 > 1 and 5; > sj_1 + pj—1 for all j we have:

. j—1
& Five —1 Sj *J*Z;ﬂ Hp ) 1+¢7+2p 1 Hp
Hj:l q : Hp 0 Xp—p )| Q"

0 7«+¢+Zp 1 Hp

(Hﬁzl O‘%) + 3, ful@)mos” - wy, where

. W .
(Z) @ = )\j—O 5l+]+1+21 1 HE= A, Gsti—As7 J = {1’ 2, 7¢}’
(i) 0 = T Boeprrnsi iy, ey § = L2500},

(ZZZ) 0i+¢+z —1 Hp _ kol H z+s Jitss +,u,]
7o, +¢+z¢’ J=1 z+g+2’ AR ED DA
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(i) i <

T, Py for all v,

(v) w, of the form Wit2,its5+uy € Hiysy4us+1(q), for all v,
(vi) the scalars f,(q) are expressions of ¢ € C for all v.

Proof. We prove the relations by induction on the number of gaps. For the 1-gap word

k‘o 2 ki+s,i+s+p, .
Toi " Titeirsrs = @ where a € H,(g), we have:

=~ H Kivsia—1 s—1 ko,i . Kits,itstp . I . . ..
A = [H,\:o (q e ) “Toi " Titlitl4p IT5—0 Givoruritstpnr -

Hﬁzo Sivotptritsir + 2o, fo(q) - Tou%u - Wy,
which holds from Proposition 3.3.

Suppose that the relation holds for (¢ — 1)-gap words. Then for a ¢-gap word we

have:

( ko, ki+sl,i+sl+u1 ki+52,i+s2+y.2 ki+s¢,1,i+s¢,1+u¢,1 ) ki+3¢7i+8¢+#¢ ~

70,i i+51,i+81+u1 i+89,i+sa+pu2 " Ti+8¢_1,i+8¢_1+u¢_1 Ti+8¢,i+5¢+u¢ z’nd—step

s Nl _
H(]b—l k7;+3].—1 S5—7J Zk:1 1223 . Tuo i+d— 1+Ek % HE 1—[ a k'z+s¢ z+s¢+p,¢ H a
=1\ 0145071y LLk=0 X1k " Tidesyitso g * k=1 Q% T

k ; S$>S +
uo,v itsgpsitsptrg Sp7So—1THe—1
Zv fv(Q) ' 7—0,1; “w - Tz+5¢ z+s¢.+u¢ -

8502 ke Mk ; ¢—1 Kits, i
o—1 kips. —1 J k 1 0 Jitp— 1+E 1 P itsg,itsythug
[T5=) (a7 : : H O‘¢1kaHk10‘k+

T. .
0itdp—14+30 1 up  TSeitsetis
(Prop. 3.3)

U kits yitsgtH
Zv f”U(q) 7—OEL))U ' z+s¢¢z+s¢¢+uj

PR i
o1 (qkwrsjil) e luk Ko <qki+5¢+pil>s¢ = Mk

HJ:I p=0 0,i+¢— 1+Zk 1 Mk
kH—s i+s 4+ kz+s i+s 4+
é ¢ ke U0, itsethg
o - o), + Tow " Tite. s .
Z+¢+Z =1 #k,l+¢+z #k+u¢ Hk 0 Qo—1-k ° ch 1%k Z f’U( ) 0,v i+5g,i+Sp+1e
(Prop. 3.3)

h—o (qk””rl)s_l} 52 z’ﬁzﬂiﬁ 20 Oivrzru—nitstu—x - TTh—g Girarprrivsia +
>0 fol@) 1ol - we 0
All results are best demonstrated in the following example on a word with two gaps.
Example 3.3. For the 2-gap word tot¥t5t2t; ' € ¥, we have:
Pobtgitts = tobgutagy ity = gt ity gy 2 ot @ =
ot totststs g3 = 1Rty agsgatsgagststs ' g7 =
= gsgat™ ot tatsgagststy g3 = tR0t) batsgagststs 930591 =
= thot oty [qPtsgags + q(q — Vtags + (¢ — 1)tsgal ts 930501 =
= Pt tat3gugsts  gigson + alq — D)tFot tatstagsts ' g3gsga +
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+ (g — DtFoti totstsgats 939591 = Pt tat3ts 9195939594 +

+ (g — Dkt totststs " 91939590 + qlq — 1)t*t tatstaty 95939594 =
= Rt tat3gs 95 'ty 05 g6 1 9495939594 +

+ q(q — D)ot tatstagg 5" 95 95959594 + (q — 1)t*t) tatagstagsts
(94939594) = @°95 g5 O at3ty 95 g5 1 9495939594 +
+q(q—1)gs 1tkotll752153754755 96 95939594 +

+ (g — 1)gst™t{ tatstats 9594939594 =

= Pt a3t 95 96 1 949593959196 195 1 +

+ qlqg — V)Pt totstats g5 9593959496 - + (q — DtMot tatstats  gs-
(9493959495) = Rty tat3t, 05" 95 949593959495 95 | +

+ qlq — Dt tatstats g5 9593959496+

+ (g — Dkt totstags 't5" 95 ' 959493959295 =

= Pt at3t, " 95 g5 ' 949593959495 195 +

+ q(q — Dt tatstats g5 9593959496 - +

+ (g — Dtt totstats " g5 9592939591959 -

3.4.2 Ordering the exponents

We now deal with elements in 2,,, where the looping generators have consecutive indices
but their exponents are not in decreasing order. More precisely, we will show that these
elements can be expressed as sums of elements in the |, H,(¢)-module A, namely, as
sums of elements in A followed by a braiding tail.

We will need the following lemma.

Lemma 3.15. The following relations hold in Hy ,,(q) for A € N:
tk tf:l/\ = Ztujtwrl W

where u; +v; =2k + X\, u; > v; andijH (q), ¥
L.

Proof. We have that tF - t#} = ¢k t1+1t7,+1 213
=ty tH—l (q Yot} g + Z] oqj( 1)t3+1t;\+11 ]> =

ket i1 b A—1—
= QU gt} i + Zj:O ¢ (q — Dty * tis .

We obtained the term ¢¥ - ¢# W gis1t)gir1, terms where the exponent of ¢; is greater than
the exponent of ;11 and terms of the form #'¢*,, where k < p; > po < k+ A. We
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apply Lemma 3.13 on the terms of the last form and repeat the same procedure until

there are only elements of the form ¢#;%?,, u; > uy left in each sum. Note that each

time Lemma 3.13 is performed, a term of the form ¢;*' - ¢} - g;+11;"* gi4+1 appears. For
these elements we have:L , 4 '

G gt i =T <(q - DX AT + qmlgz‘ﬂt?l) g =
(¢ — 1) 0 eI T gy g gt g

We have obtained now elements where the exponent of ¢; is greater than the exponent
of t;y1 and the term ¢ - gi 187" - gipy “Gip1t] " Gi1 b2

= ¢t (q_’”l“tﬁﬁg;}l + Z;n:ll_l g ™I (g7 — 1)t{tﬁ1fj> and this concludes the

proof. ]

~ ymi+m
:tz’1+2

kO,m

Remark 3.3. Let T(i?;{" € X, such that k; < k;11. Applying Lemma 3.15 on Tom  We
obtain a sum of elements 7; € X,, such that 7; < 7, Vj, since the exponent of the
generator t; 1 in 7; is less than k;; for all j (see Definition 3.2).

Example 3.4. Consider the element ¢t2t3 € 3, and apply Lemma 3.15 on the first
“bad” exponent occurring in the word, starting from right to left.
85 = fi(q) - 1513 - wi + falq) - thits - wy.
The terms obtained are still in Y, but they have one “bad” exponent less. We apply
Lemma 3.15 again and obtain:
e
i

f3(q) - 312wz + fi(q) - 2342 - wy
f5(q) - thtats - ws 4+ fo(q) - 33t - we

All terms obtained now are in the |J, H,(¢)-module A except from the element ¢3¢;¢3.
We apply Lemma 3.15 again and obtain:

~
-~

t3t2 = f(q) - P13ty - wy.

So:
t2ts = gi(q) - ity -uy + golq) - 23432 - uy + g3(q) - 'ty - ug
where uy,...,us € H,(q) and ¢1(q), ..., g5(q) € C.

Theorem 3.5. Applying conjugation on an element in 3, we have that:
To - w = D105y,
J
where T(ig-’j € A and w,w; € H,(q), Vj.
Proof. We prove the statement by induction on the order of T(i(;;lm -w € X,, where

order of an element in Y, denotes the position of this element in ¥, with respect to
total-ordering.
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The base of the induction is Lemma 3.15 for ¢ = 0. Suppose that the relation holds

k;() m

for all 7; - u; € X, of less order than 7'(;9 -w. Then, for 7y, - w we have:
Let ko > ky > ... > k; < kjx1. Applying Lemma 3.15 on T(f -w we obtain:
T(I)C,?%Lm W= tlgotl . tk fcﬁ1 ot w Z teotht At wy, where uy >

vj < ki1, Vj, that is, a sum of lower order terms than T(Iim -w (see Remark 3.3). So,
by the induction hypothesis, the relation holds.
O

3.4.3 FEliminating the tails

So far we have seen how to convert elements in the basis A’ to sums of elements in 3,
and then, using conjugation, how these elements are expressed as sums of elements in
the |, H,(g)-module A. We will show now that using conjugation and stabilization
moves all these elements of the J, H,(¢)-module A are expressed to sums of elements
in the set A with scalars in the field C. We will use the symbol >~ when a stabilization
move is performed and =~ when both stabilization moves and conjugation are performed.

Let us consider a generic word in Hj ,41(¢). This is of the form T(i O™ Wpy1, Where
wWpy1 € Hyi1(q). Without loss of generality we consider the exponent of the braiding
generator with the highest index to be (—1) when the exponent of the corresponding
loop generator is in N and (+1) when the exponent of the corresponding loop generator
is in Z\N. We then apply Lemma 3.3 and 3.4 in order to interact t=*» with ¢! and
obtain words of the following form:

(1) T[i;’p v, where TOAp" < 7'0 " and v € H,11(q) of any length, or
(2) T(ioq’q -u, where T(iqq < T(If(;" and u € H,(¢q) such that I(u) < l(w).

In the first case we obtain monomials of ¢;s of less order than the initial monomial,
followed by a word in H,,11(q) of any length. After at most (k, + 1)-interactions of ¢,
with g,,, the exponent of ¢,, will become zero and so by applying a stabilization move we
obtain monomials of ¢;s of less index, and thus of less order (Definition 3.2), followed
by a word in H,(q).

In the second case, we have monomials of ¢;s of less order than the initial monomial
followed by words v € H,(q) such that [(u) < [(w). We interact the generator with
the maximum index of u, g,, with the corresponding loop generator until the exponent
of t,, becomes zero. A gap in the indices of the monomials of the ¢;s occurs and we
apply Theorem 3.4. This leads to monomials of ¢;s of less order followed by words of
the braiding generators of any length. We then apply stabilization moves and repeat
the same procedure until the braiding ‘tails’ are eliminated.

Theorem 3.6. Applying conjugation and stabilization moves on a word in the |, Hy(q)-
module, A we have that:

kOm UO“
T()m wn — § fj Q7 TOUJ 9
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VO,u.; .
such that ) vou, = Y kom and TO’(ZJ_J < T(i%m, for all j.

The logic for the induction hypothesis is explained above. We shall now proceed
with the proof of the theorem.

Proof. We prove the statement by double induction on the length of w, € H,(q) and
on the order of Téi o e A, where order of 7'(’; ™ denotes the position of T(i o™ in A with

respect to total-ordering.

For I(w) = 0, that is for w = e we have that T(f%” = T(i%m and there’s nothing to

show. Moreover, the minimal element in the set A is t* and for any word w € H,(q) we
have that t* - w ~ f(q,z) - t*, by the quadratic relation and stabilization moves.

Suppose that the relation holds for all Téf 7 - w', where Téf or < 75 o and [(w') =1,

and for all 75" - w, where 75" < T(i(;’,:” and [(w) = [+ 1. We will show that it holds for
kO,m

Toam - w. Let the exponent of ¢, k, € N and let w € H,;1(¢q). Then, w can be written
as w' - g, ' 0,_14, where w’ € H,(¢) and d < r. We have that:

ko,m kor—1 k. —1,_kr4+1,m / -1 _
7—0,m W= 0,r—1 trr 7—7"—1-1,m T w 'tTgr 5r71,d =

kO,'r‘—l kr—1 kr-{»l,m / L_6
= Tor—1 trr Try1m W 'grtrflérfl,d =

ko,r—1 4k —1 _Kr+1,m
0,r—1 t'r Trilm ~W " Gr
r—1—d ; s ~
J(q — _ . 1.4 =
(Zj:o ¢’ (q 1>57~_17r_1_j,dtr—1—3 + q( ! )5r—1,dtd—1) =
~ r—1—d ; kor—1 4k, —1 _krt1,m /
= J(g — ’ T e - . J—
- Zj:o q (q 1>T0,r—1 tr Trt1m tT*I*J w g”(;r—l,r—l—j,d +

1(8,— kor—1,4k.—1 _kri1,m
+ q (6 1’d)TO,T’—l trr Tr+lm lg—1 - w.

We have that <T(i(;‘:’11tf7*17'ff171$ -t,,_l_j) < (t’g?;,;"), forall j € {1,2,...r —1—d}

and l(w’ “ 90,1 T d) = [ and (T(]i?:flltﬁT_leH;;’l" 'td,1> < (t’gom) So, by the
induction hypothesis, the relation holds.

Example 3.5. In this example we demonstrate how to eliminate the braiding ‘tail’ in
a word in XJ,.

U gt = Mty g = it it S Gt = g =
= (¢—Dhty" + qty' gt = (g — Dty 'gF + qity'g1 =

= (¢—Dtt7'gy gyt + atti ey gigs "

We have that:

9 019" = 2090 + ¢ = Dgn + ¢ (¢ - Dgge +
+ (¢7'—1)%g,

9:'919:" = a*(a—Dngg — (' =120 — (' —1)%q19: +
+ (=D ' =120 + ql¢ =g + 1,
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and so

(=D +qMg—17°) -t —q3(g7 = 1)%2% 1+
3¢7%q—1'2-1—q¢(¢g—1)2-1-q (g —1)"-1,
zott;t g N g -2 14+ 2(¢7 - 1)z - 14
gt —1)°- L

(g — Dty g5 g9y

qtti '3 193"

+ 1O+

3.5 The basis A of S(ST)

In this section we show that the set A is a linearly independent. This is done in two
steps:

e We first relate the two sets A and A’ via an infinite lower triangular matrix with
invertible elements in the diagonal.

e Then, using the matrix mentioned above, we prove that the set A is linearly
independent.

3.5.1 The infinite matrix

With the orderings given in Definition 3.2 we shall show that the infinite matrix con-
verting elements of the basis A’ to elements of the set A is a block diagonal matrix,
where each block is an infinite lower triangular matrix with invertible elements in the
diagonal. Note that applying conjugation and stabilization moves on an element of
some Ay followed by a braiding part won’t alter the sum of the exponents of the loop
generators and thus, the resulted terms will belong to the set of the same level Aj.
Fixing the level k of a subset of A’, the proof of Theorem 3.2 is equivalent to proving
the following claims:

(1) A monomial w’ € A} C A’ can be expressed as linear combinations of elements
in A, C A, v;, followed by monomials in H,(q), with scalars in C such that
djiv,=w~w.

(2) Applying conjugation and stabilization moves on all v;’s results in obtaining ele-
ments in Ay, u;’s, such that u; < v; for all 7.

(3) The coefficient of w is an invertible element in C.
(4) Apd>w<ue Ak+1-

Indeed we have the following: Let w’ € A}, C A’. Then, by Theorem 3.3 the
monomial w’ is expressed as a sum of elements in 3,,, where the only term that isn’t
followed by a braiding part is the homologous monomial w € A, C A. Other terms in
the sum involve lower order terms than w (with possible gaps in the indices and possible
non ordered exponents) followed by a braiding part and words of the form w - 8, where
B € Hy(q). Then, by Theorem 3.4 elements in 3, are expressed to linear combinations
of elements in ¥, with no gaps in the indices of the looping generators (regularizing
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ANar TBT A 4 5 flee)row + % glez)meow
Asr ~ 7 Asr ~ it Tedn & Vi
¢ e C file.2) € Cvi gilg,z) € C,Vi

w; € Hulg), Vi U; £ Hylq).¥:
| \
Thm.10 Thm.8
i ¥
Thm.10 A
2% filg:z) - I; = b gi(g.2) T - vy
—
Y 2T < T,V3 Yaddy < T,V
filg.z) € C¥j gilg.z) € CVj
u;j e H,(qg).¥;
|
Thm.9
i
S b Ty
S— —
AT, < TV
v € H,lq),Vj
hilg,z) €  C.¥j
Thm.10 : Thm.9
&
> Fila.z)- A

Fig. 3.8: From A’ to A.

elements with gaps) and obtaining words which are of less order than the initial word
w. Then, by Theorem 3.5 we express these elements to linear combinations of elements
in the H,(¢)-module A, again of less order than w. In Theorem 3.6 all elements that are
followed by a braiding part are expressed as sums of monomials in ;’s with coefficients in
C. It is essential to mention that when applying Theorem 3.6 to a word of the form w-
one obtains monomials in ¢;’s that are less ordered that w. Some of these monomials in
t;’s are in A and some have their exponents in non decreasing order, but all monomials
are of less order than w. We apply again Theorem 3.5 on these monomials 7 that don’t
belong in the set A and obtain words of less order than 7, followed by a braiding part.
We only consider now the monomials not in A and perform Theorem 3.5. We obtain
elements in the H,(g)-module A of less order than the initial monomials, followed by
a braiding part. Eventually this procedure stops at the lower order term of Ay, t*. So
we have obtained elements in A of lower order terms than the initial element w, and
thus, we obtain a lower triangular matrix with entries in the diagonal of the form ¢~
(see Theorem 3.3), which are invertible elements in C. The fourth claim follows directly
from Definition 3.2.

If we denote as [Aj] the block matrix converting elements in A} to elements in Ay
for some k, then the change of basis matrix will be of the form:
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0 0o 0 0 0
Aro) O 0 0 0
0 [Awa] O 0 0
S = 0 0 [Ad O 0
0 0 0 [Aea] O
0 0 0 0 [Ane]
i 0 0o 0 0 0 |

The infinite block diagonal matrix

3.5.2 Linear independence of A
Theorem 3.7. The set A is linearly independent.

Proof. Consider an arbitrary subset of A with finite many elements 7, 7, ..., 7%. With-
out loss of generality we consider 7 < 7, < ... < 7 according to Definition 3.2. We
convert now each element 7; € A to linear combination of elements in A’ according to
the infinite matrix. We have that

= / /
T, = AT+ E Ayt
J

where 7] ~ 7;, A; € C\ {0}, 77 < t; and A; € C,Vj.
So, we have that:

= / /
= A+ Zj Ay
= / /
Ty = A+ Zj ATy,
~ / !
Teor = ApaTiog + 205 Aw-)iT )
= / /
Tk =~ Aka+Zj Aijk:j

Note that each 7/ can occur as an element in the sum i Apjy; for p > 1. We

consider now the equation Zle A1 = 0, )\ € C,Vi and we show that this holds
only when \; = 0, V. Indeed, we have:

k k
Z)\Z Ty = 0 & )\kAk'T’/C + ZZ)\ZAUT’ZJ == 0,
i=1 i=1 j

!.,Vi,7. So we conclude that A\, = 0. Using the same argument we have

where 7, > 7,
that:

. 1 k-1
DAem =08 Y Nom =08 Madamio, + > NAyT; =0,
i=1 i=1 =t
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where 7, _, > 7/

zj,‘v’i,j. So, \,._1 = 0. Retrospectively we get:

k
Z)\lﬂ =0 )\ = 0, VZ,
=1

and so an arbitrary finite subset of A is linearly independent. Thus, the set A is linearly
independent. O

3.5.3 The proof of the main result

By Theorems 3.3, 3.4, 3.5 and 3.6 the set A is a spanning set of S(ST). By Theorem 3.7
the set A is also linearly independent. Thus, it forms a basis for S(ST) and the proof
of Theorem 3.2 is now concluded. QED

3.6 Appendix

In this section we prove a series of lemmas converting elements in ¥, in sums of elements
in 3/ . The results presented in this section are used in Chapter 4 towards the computa-
tion of S(L(p,1)). Moreover, they can be used in order provide a more straightforward
proof that the set ¥/ forms a basis for Hy ,,(¢), given that the set ¥, is a basic set.

3.6.1 From ¥, to X,

Following notation 3.1, we denote by T’(’J\ﬁ;@m the element t* - #/ *» € A’. The following
lemma is analogous to Lemma 3.11.

Lemma 3.16. Fori € N, k € Z, the following relations hold in Hy ,,(q):

ik Q0. j
tr = ¢t + ij(q,z)'ﬁl),j >
J

where 327 _ A\ = k such that \; < k.
Proof. The proof is by induction on k£ and is analogous to that of Lemma 3.11. n

Theorem 3.8. The following relations hold in Hy ,,(q) for k € N:

thog g b = gEnmnhe ghogr kg e Zfi((b 2) - 7%
where T’Sg’i < thog kot R W, Z;:o A=Y ki, Nj € NV, such that N\, < ky,
and if v : A\, =0, then \; =0 V5 > v.

Proof. The relations are straightforward from the change of basis matrix. Alternatively,

induction on the order of T(]i o™ could also be applied. O
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3.6.2 Useful lemmas
Lemma 3.17. For ¢ = %1, the following relations hold in Hy ,,(q):

(Z) gitltiklgi!zltil — tilgitltik’igitl + (1 o q:':l)tikgitltil + <q:|:1 o 1)gi|:1ti(k‘+1)
(i) gitfg 't = Tlatfgrt o+ (L—g et 4 (¢ = D¢
(i) t7'gr 't = gttt (L= Dttt 4 (¢ 1)t

Proof. We only prove relations (i) for ¢ = 1. Relations (ii) and (iii) follow similarly.

atta't = ¢ tattat + (¢ —1)git*Y =
= ¢ ' tgthg — (¢ — Dtgth — 1 —@)tFgut] + (¢7' — Dguth™ =
= ¢ Mtgttg + A= tgt" + ¢ Hg—DtFgit + ¢ (1 - @)ttt =
= tgitfgr + (1= g Dtgit" + (¢ = Dtgut* + (1 — ¢ )tFgut + (¢ = Dgut"t =
= tgit*q + (L—q DtFgrit + (¢ — D)t

m
Lemma 3.18. For ¢ = %1, the following relations hold in Hy ,(q):
A A
gftekgfatd _ takgftekgfa + (1 o q—a) Z ta(k—i—)\—j)gi:taj + (q—l . 1) Z ta()\—j)glata(n—l—j).
j=1 j=1
Proof. We only prove the case where ¢ = 1 by induction on A:
For A =1 we have:
gitfgr Mt = tgith gy + (1 — ¢ tFgit + (71 — 1)gat*HY.
Suppose that the relation holds for A =i. Then for A =i + 1 we have:
gt = (gitfg e TE
tigithg ™t + (1— ¢ )Y tF gt + (¢ = 1) Y 10 gyttt =
ttg ™ + (L—q )t gt + (7! = Dttgitt™ +
+ (1 —=q™" 2221 tlFi=D g i+l 4 (g7 = 1) 23:1 =0 g ¢ttt =
g ithg =L + (1—q7Y) Z;‘ill th+i-DNg i + (g1 —1) Zj‘ill #i=9) gy (s +d) n

Lemma 3.19. For the expression A = (g;gi—1 - - .gj+2gj+1gjjr12 ..g; D, the following
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relations hold for the different values of k € N:

1) A = t}(9igi-1 - Gi+29519542- - 9 ) for k> i or k <j
(2) A = (¢—= V)t +qti(gigi1- - giv29i+19542 -~ 95 ) for k =
3) A = ti(9i9i-1 - 99+293+1g]+2 g7, for k =
(4) A = (q_l)tg+1(gzgz 1- g]+29]+1g]+29j_4:3-~gi_1)+

+ (¢ —1*ti(gigi1 - gmgmgmg;ﬁg 9 h)—

- (q—l)%ﬂ(gzgz - g]+3gg+1gj+zg]+13 g+

+ qlqg — 1)ti(gigi-1 - gg+29]+3 91 D+

+ qtj(gigi-1 - - 9;+293+193+13 g+

+ (1 = )ti(9igi-1 - gj+zgj+13 9, for k=j+1<i.
(5) A = (q_l)t;g(gigifl 9g+2gy+19j+12 91;11gl;+2 g9 ')+

+ (= 1)*(9igi-1- - - Gj429i+19542 - - - Gp 1Tt - 91 )=

- (q—1)2t2(9igi 1- 9]+293+19]+12 9k119k+2 1)+

+ qt;(gigi—1...gj+2gg+1g +12 o G 1gk gkiQ - 9; 1)—I—
+ q(g — Dti(gigi-1 - gk—i-llgk-i-l2 - 9; 1)
— qlqg = V)(9igi-1 - G Gria--- 97 ), for j4+ 1<k <.

Proof. The first three relations come from the definition of t;. We prove relations (4)
and (5), which are more complicated.

(4) A = gigio1..-gj+29541954099, 05 - 9 iy =

= Gigi-1---Gj2950195a0t 51 Gz - 07 ) =
9i9i—1 - - - 954+295+1 ((q 1)t j+297+2 +qt]+1) (gj_+13---9i ) =
(¢ —1)gigi—1 - 9]+2t]+29g+1g]+29j+13 . 9; 14

+ q9igi-1- gmgﬁltﬁlgjﬁg g =

= (q - 1>t]+1 (gzgz 1- g]+29]+19]+29j+3 971)4’
+ (¢ —1)*(gigi-1 - - 93+2gy+193+2g]+13 g7 ) —

- (¢— 1>2t;+1(gigz 1- gj+q3gj+lgj+2g]+3 g7+
+ q(q — 1)ti(gigi—1 - g]+29j+3 9 D+

+ qti(gigi-1 - 9;+29]+19]+3 g7 )+

+ a1 = )t (gigi1 - Gj+2954s - - 97 ")
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(5) A = Gigi-1-..gj+29i+1954297 13 - gfltﬁgz

GiGi-1 - - - Grs19kTh1 - - - Gj429j1105 42 - - g,;llgk‘ Yty -0t =

= GiGi-1- - Gkr19kGh1 - gg+zgj+1gj+12 G0 (Gepth) 0 =
GiGi-1- - - Grs19kGh1 - - - Gi419742 - - 95 ((q 1)tk+1gk+qt’) 97 t=

(¢ —1)gigi-1 - 9k+1tk+1gkgk .- gg+zg]+1g]+12 gk L9, 9k9k+2 9+

+ 49i9i-1- - - Gk+19kGk—1 - - ‘gj+29j+lgj_-|}2 - 1g/€tkgk+2 g =

= (¢ —1)gigi—1-- - GrrotiGrs1+

+ (¢— 1)t;€+1 + (1 — @)t grgr—1 - - g;+29]+19]+2 G- 1gk_+2 -0 L+
+  499iGi—1 - gk+1gk9k—1~--gj+29]+1g]+2 Gp— 1tk 19k 19/«&2 9=
= (¢— 1)tkglgz 1+ 9k+19kGk—1 - - -9j+293+19j+2 s 9k+2 Lg; '+
+ (q — 1) lgzgz 1+ 9k+19k9k—1 - gj+2gj+1g;+12 -9k 119;#2 971_
— (¢ —1*,9i9i-1 - - - Grr2969k— 1 9J+299+193+12 - Gg 1191~c+2 9_1+
T 49i9i-1-- - gj+2 (9]+1tg+1) 93+2 Nt gkiz 9=

= (¢-— 1>tk(glgz 1- g]+291+1gg+12 gk—119ki2 Lg; )+

+ (q—1)2t(gigis - gg+2g]+1gj+12 GGk 9 )~

— (¢ = D*t(9i9i1 - - Giv2950195 42 - - Gp 1 Grga - i )+

+ qtj(9igi-1- - gjr2gi19; o Gk G 9_1)+

+ q(q = D991+ GiaGr - 9 )

— qlg — Dti(gigi-1 -- gk-&-lgk—iQ 9.

Lemma 3.20. The following relations hold in Hy ,,(q):

(Gi-- gt g)t; = tgi- .- gt - 9) + 4N — g+ 1)t - )+
Sl gie (k+1)(q_1)(152_t)(gi...gkﬂg,;}Q...g[l)(gk...g%...gk)—k
)

+
+ ;;1 ¢ (g — 12t — ) gk ... 2. gi)

Proof. We prove the relations by induction on i. For i = 1 we have: ¢?t] = tg? + (¢* —
q+ 1)(t} —t). Suppose that it holds for i = A € N*. Then, for i = A + 1 we have:

(Gr1---97 - 9 ) D1l =

= (gap1---GF---90) (a1 + (@ — Dy — (@ — 1)ty) =

=o1(gr- g1 - th) (91 — (@ = 1) + (¢ = Dgaath 1 (gr-- - 97 - 9n) =
=t(grs1--- 91 1) — (@ = Dt(gagr g1 gn) + M@ — g+ 1)ty — )+

ot oy @ (g = D)t — ) (9x - GrrrGita - 93 )Gk - G- G)aGna
toner Sy (g = D2t — 1) (gk - - 97 - 90)09h + (@ = Dthgasr - g3 ot
+(g — 1)2tx+19A G — (= 1)thgx .. g7 ga =

=197 1) H(@=1) (A =) (grg1--- g7 - 92)+

+(q — 1) ( A+1 t/,\) (9rg1 - .g% g
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+qZ gD (g — 1) (), — 1) (gat1 - - - GrarGiodn - 9 )Gk - gF - - gr)+

+ 300 g EED (g — 128 — ) (k-G ) F NP — g D)t —t) =

= t(gm g ) H TP — g+ 1)t — )+

30 gD ED (g — ) (= 1) (gagr - - Ghr1 Tt - - Do) (k- GF o )+

+ 3y g E (g = 12 (g — ) (9 61 gh)- O

Lemma 3.21. The following relations hold in Hy ,,(q):

(9i--- g8 gt = tk(gz.. gl g)+qi‘1§q —q+ 1)t =)+
+ Z k“ g —1)(t), /\—t)‘)/\(g,...g;ﬁQ...gfl)(gk...g%...gk)jt
+ Y d ('““)(q D2t = 6. gk - g7 - - - gn)-

Proof. We prove the relation by induction on A. For A =1 we have:
(9i - g% gt =tgi .. gt 9) + ¢ @ —q+ Dt )+

+ 3 @ E g = D) = (g grrgils 07 gk 0T g)+
50 G (g — D2t — ) (gk - - - g3 - - gr), Which holds.

Suppose now that the relation holds for A = v € Z. Then, for A = v 4+ 1 we have:

(gl C. g% .. 'gz)tly+1 4 ind.:step

(9i--- gt - gt
=t"(g; . g% LGt NP = g+ DT = )+
30 (g = D =) (g GerrGte - 95 )Gk -G+ grth)+
+ 30 @ (g = 12— 6 ) gk 07 git)) =
= t”“(gz i) TN — g (- T+

+3 0 1q (g = D)t = ) (g G Tt 9 F

+3 e flq 0D (g — 12— ) (gk - g3 gk) @@ — g+ DT — )+
3 D (= D — )9 GrrTtn - 97 V(G- G+ o)+

+3 o d " (g - D2 = )89k 91 - 90) =

=t (gi... g .. gz) ¢ — g+ D) =)+ D @ (g D)2 — vt
+t”’“—t’ ”t’(gk gk ¢ (g - 1)(t”t2—t”+1)(9i---9% COhGria -9 )
+ 3 ’““)( 1)(2?2” —t) ((q— D, + gt (gi - - GrvaGotr - 07 ) (G- G- ) =

= t”“(gz G g) NP g DT =+

> i q "“*”(q D27t — 7t + 67 =670 (g - - g7 - gr)+

_|_Z k+1)(q 1)(t"t), —t"“)(gi...g%...gkg,;iz...g;l)+

3 D (g = D2t — ) (g - g7 - gk)

+Zk Vg (g = Vgt = 0 (9 ghraGipa - 90 ) Gk 01 gr) =
= t”“(gz G g) TP g DT =+

+3 ’““)( — 2t =) (gk - 97 - )+
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TS = D ) g0 gl o)
+ S = DET ) 0ot 9 )
+ i = DX =) (o0 o) =

_ t”“(gz g+ PR =g+ DT =+
+ 30, "“*”( = DX =4 (g 9T )+
+ 3 dF (@ = DG =Y (g gE e hgids 97

Lemma 3.22. The following relations hold in Hy ,,(q):

@) tt, = t;t;1+ (1 - Qq_l)t’t/(gz. gmgﬁ% g7 )+
Gy e E?At’k:rl)ti (9i - Gi+19540 -9 )
A IRz
(1- q_l) Zm 1 t;k+)\ "t (gi - -9j+1g;4r12 . -9;1)4‘
+ (g =) T g giagily - 0)

+

+

Proof. We only prove relation (i). Relatlon (ii) follows similarly.

t;t;—gl...gltgl GG aitgy ...gj_lz
—1

gi--oitor g7 g 0 g itg gy =

gi...gltgfl...g;lg;jlgj...gltgfl...gjflg;é...gjl =

i g1t(gi1 - 9207 'y gt g g g =
9i9i-1- - 9i+1(9igi—1 - 1tgagi - 92)91r (92" giatgr 97 Vg =
(9iGi-1 - - - 9j+2)(9j+1979541)(95-195) - - - (9293) (q192)tg1 (g5 91 ") - - (9]+19] )
(9 - 9i+2)(9395+1)(9395-195) - - - (192)tgr t(ga ' o t) -+ (95195 ) (G542 - - 0;
(9 - 95+2)(959541) - - (9298) (929192)tg7 t(95 91 ") - (9509, ) (Giha -9 1) =
(9i - - 95+2)(959541) - - (9298) (9192) (grtgr ") (95 91 1) - (9570195 W giia - 95 ) =
(

(

{

gi - gg1+z)(gggg+1) 1 (9203)(192) (tartgr " + (1 — g Dtgit + (¢ — Dgat?) (g5 97" - -
gj+lg] )(gj+2 g
Gi - 95+2)(9595+1) - - - (9293) (g192)tgrtgy (g5 i) - (97has D grls - 97 )+

v~

A
(1=q (g g=2)(g59541) - - - (9295) (rg2)tont(gz "9 ") - (9597 Wgida - g7 )+

~~

B

(" = 1)(gi- - gj=2)(g59541) - - - (9295) (g1929)t7 (92 g7 ") - - (9595 D g5ts - 97h).

v~

C

A=gi .. oitgi-..g;--git(g9: 95 Dgr (g5 92 ") - (9509, N oyle -0 ') =

Gi-itgi- g oitgy 9 (95 95 95 ) - (9hg )G9 ) =
Gi---gitgi- g5 9192 91 9592 ' (9591 95 ") - (9795 Ngjia -0 ) =
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1

Gj-91lGi - Gir- - G105 Gyatgr g =
Gj- 9t (Gi- - Gira)(gr g5 ) Gi - gitgr g =t

B=01-q¢"g.-9)tgi..q195" .97 Vtlgi"...g;7") =

(T—=q g 90tlgr " - 9 09i9i1 - g)tgr - g7 1) =
(1= (g - 9991 qutgr . g;") =

(1= g Y95 - 99191 - g+1)g5 - - gitgr . gt =
(=g Vg gim1(g5ls -9 )G ontgr gyt =
=g g g1 ity 97 0 g7 =

(1 =gVt gigils- 97"

C=(" =g 9039 " g7 )" ...g;7" =
(' =D(g5---9)(gr" - 90991 g0 'gj_l =
(¢ = Dgigigir ... quit?gr " .g; ' =
(7" = 1)gigi19; 'Gia- - nt?gr " gy =
(¢ = Dgigio1...qt?g0 g7 g7 =
(¢ = DE(9igi1 - 1 G542 - - 90

Using the lemmas above we have the following relations in Hy ,(q):

(id) 67 = tit(gi--. 97 9:) +

g7 )

+ qH(q 4 + 1) —tt) (g7 gi)+

+ 2 d D (g — D), — ) (g Gt - -
(9K - - g gk g1 gi)+

+ St qi—<k+l>(q — 122 =) (g - G2 gr)-

(gi...g,;jQ...gi_l
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4

I_THE HOMFLYPT SKEIN MODULE OF THE LENS
SPACES L(P,1) VIA BRAIDS

In this chapter we propose a new method for computing skein modules of 3-manifolds
via braids and we demonstrate this approach in the case of the Homflypt skein module
of L(p,1), S(L(p,1)). The computation of S(L(p,1)) is equivalent to constructing all
possible analogues of the Homflypt or 2-variable Jones polynomial for knots and links
in L(p,1), since the linear dimension of S(L(p,1)) means the number of independent
Homflypt-type invariants defined on knots and links in L(p,1). In |[GM14] a basis
for S(L(p,1)) is presented using diagrammatic methods. The diagrammatic approach
could in theory be generalized to the case of arbitrary c.c.o. 3-manifolds, but the
diagrams become more cumbersome to analyze and several induction arguments fail.
The advantage of the braid approach is that it gives more control over the band moves
than the diagrammatic approach and much of the diagrammatic complexity is absorbed
into the proofs of the algebraic statements. We only need to consider one type of
orientations patterns and the braid band moves are limited.

The importance of our approach is that it can shed light to the problem of computing
skein modules of arbitrary c.c.o. 3-manifolds, since any c.c.o. 3-manifold can be obtained
by surgery on S® along unknotted closed curves. Indeed, one can use our results on
S(L(p, 1)) and our results of braid equivalence in arbitrary c.c.o. 3-manifolds (Chapter 2,
[DL13]) in order to apply a braid approach to the skein module of an arbitrary c.c.o. 3-
manifold. The braid approach is based on the knowledge of the Homflypt skein module
of the solid torus ST [HK90, Tur88, Lam99, DL15|. The main difficulty of the problem
lies in selecting from the infinitum of band moves (or handle slide moves) some basic
ones, solving the infinite system of equations and proving that there are no dependencies
in the solutions. It may be worth adding that the Kauffman bracket skein module of the
lens spaces L(p, q), any g, is far easier to compute and has been done long ago by J. H.
Przytycki and J. Hoste [HP93, HP95|. Finally, it is worth mentioning that knowledge of
the skein modules of a 3-manifold renders topological information about the 3-manifold.



4.1 Introduction

The Lambropoulou invariant X (recall Theorem 1.10) for knots and links in ST recovers
the Homflypt skein module of ST since it gives different values for different elements
of A’ by rule 4 of the trace (recall Theorem 1.9). This invariant is appropriate for
computing the Homflypt skein module of L(p,1). Indeed, we first show that a braid
band move may always be assumed to take place on the first moving strand of a mixed
braid in By ,. Then, we show that it suffices to consider braid band moves performed on
elements in the linear basis ¥, of the algebra H; ,,(¢q), and this is the first step in order
to restrict the performance of braid band moves only on elements in an expanded set L
(see Notation 4.1). Note that the expanded set L has the basis of S(ST), A :=J,, Aw),
as a proper subset, and elements in A describe the braid band moves naturally. In fact,
this important property of the set A reflects the initial motivation behind the results
presented in Chapter 3. Then, using the technique of cabling, we show that it suffices
to consider elements in the basis ¥,,. Note that elements in ¥, may have gaps in the
indices of the looping generators t;. So, for T - w € ¥,,, where T is a monomial of the
t;’s and w € H,(q), we obtain the following equations:

—

) o
P wy4 01
X% :{ X ()

tPT+~w+-ol_1

Finally, we show that equations of type (<)) reduce to equations of the same type
with T" € A, but with the performance of braid band move on any moving strand of
T - w. Then, we show that these equations are equivalent to equations obtained from
elements 7 in L, where the performance of the braid band move is only taking place on
the first moving strand of 7. Namely, we show the following:

X~ = X — & E Xz = X —
tPT+-ojoj71.“azcrf[102_1.‘.oj_l - i tPTi_,_-olil !
1

N

where the braid band move on T € A, C A is performed on the j-moving strand and
7; € L such that , < T, Vi.

We work towards solving an infinite system of equations coming from the braid band
moves, by showing first that the system splits into infinite self-contained subsystems.
We then present some combinatorial results in order to show that each subsystem admits
unique solution and translate this difficult problem to a simple conjecture, a solution of
which leads to the following basis for S(L(p,1)):

Bpy={to.. .t i p—1>ko>...>k, >0, k; €Z" V i}.

4.2 Topological steps towards S(L(p, 1))

In [LRO6, DL15| the braid band move (denoted by bbm) is defined from the last strand.
We show that this is equivalent to performing a bbm on the first moving strand of a

86



Fig. 4.1: Proof of Lemma 4.1.

mixed braid in B;,. We denote the result of a positive or negative braid band move
performed on the i"-moving strand of a mixed link 3 by sli;(3).

Lemma 4.1. A braid band move may always be assumed to be performed on the first
moving strand of a mized braid.

Proof. In a mixed braid B U 8 consider the last strand of 8 approaching the surgery
strand B from the right. Before performing a bbm we apply conjugation (isotopy in

ST)

and obtain an equivalent mixed braid where the first strand is now approaching B.

In terms of diagrams we have the following:

g ~ (Ji_l...alal_l...ai__ll)-5~£01_1...0i__11)~B-(Ui_1...012 = «
! ) !
slei(B) slai (@)

Our method for computing S(L(p, 1) is the following:

1.

We start with diagrams in ST and perform bbm'’s on the first strand and we reduce
to working with elements in ¥/ .

. We impose on the Lambropoulou invariant X for knots and links in ST the rela-

tions Xz = X ——, and obtain an infinite system.
sl ()

. We show that the equations obtained only from elements in the basis A of S(ST),

but with the bbm performed on any strand, suffice to compute S(L(p,1)).

. We then show that the equations obtained from elements in an expanded set

L, where the bbm is only performed on the first strand, are equivalent to the
equations described in step 3.

. We finally work towards the solution of the system, which is equivalent to com-

puting S(L(p, 1)).
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4.2.1 From diagrams in ST to elements in 3,

In this paragraph we show that it suffices to perform bbm’s on elements in the linear
basis of Hy ,,(¢q), X,. This is the first step in order to restrict the performance of bbm’s
only on elements in A. For this we need the following lemma:

Lemma 4.2. Braid band moves and skein relation are interchangeable, that is, for
w € H,(q) the following diagram commutes:

, (£)(p,1)bbm , +1
T w D Ty W+G1
l quadratic l quadratic
( (p,1)bbm,

il w ———— ¥, filo)7s - wi g

Proof. Let 7{ a monomial in #;’s, w € H,(q) such that w = > | fi(¢)w;, where w;
are words in canonical form and f;(q) a one parameter expressions in C for all i. We
perform a braid band move on 7] - w and obtain:

/ (£)(»,1) / +1
W —>bbm To WGy,

where wy = > | fi(¢)w;,. Then:

Zfz Wy (IL Té ’ Zfi(q)wi+gli1'

i=1
We also have that:

Low —>(i;b(p’1) 75w, gi V¥ j, and thus
Ty Z fil@wigt" = 75 wigi,
and this concludes the proof. O

Proposition 4.1. It suffices to consider the performance of braid band moves only on
elements in the linear basis X, .

Proof. By Artin’s combing we can write words in B, in the form 7" - w, where 7’ is a
monomial in #’s and w € B,,. By Lemma 4.2 we have that:

quad.rel.
X = = =
T'w /gt wy
Zi AZ ) Xﬁ - z A tp‘l'”;i\lwi+7
where w; are words in reduced form in Hy ,(¢), Vi and A; € R. O
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4.2.2 From the set ¥ to the set ¥,

In this paragraph we show that it suffices to perform bbm’s on elements in the linear
bases of the algebra H; ,,(¢), ¥,, which include A,y as a proper subset.

Let 7" - w € 3. We have that:
Tow o= (ont ) w = g ) (g g g g ) e =

~
T

= T-w

Perform a bbm on the first moving strand of both 7/ - w and 7 -w and cable the new
parallel strand together with the surgery strand. Denote the result as cbl(ps). Then:

bb
ow 5 cbl(ps) T -w - of!

| I
row 2% chl(ps) -7 -w - ot

So: X = Xsm) S X = Xsm). But since 7-w € H; ,,(¢), we can express 7-w
as a sum of elements in the linear basis of Hy ,,(¢), ¥, that is 7-w = ). a,T; - w;, where
T; - w; € ¥, Vi, T; a monomial in ¢;’s with possible gaps in the indices and unordered

exponents, and a; € C, Vi.

Xepg = Xi— = a-tr(t-w) = b-tr (cbl(ps)T-w-gi")

Tw T sl(T-w)
= oy a-tr(T; - w) b- tr (ai - ebl(ps)T; - w; - gfcl)

We conclude that:

7w o chl(ps) -7 w-oft (%)
| I
Tow o chl(ps) -7 -w- ot

I I
bb
a1y w; = >oiai-tPTi, - wi+9fcl ()

The above are summarized in the following proposition:

Proposition 4.2. The equations X5~ = result from equations of the

tP'T”-gitl-er
form Xor' = tiT@.w+, where T -w € ¥, Vi.
Elements in Y, consist of two parts:

e A monomial in t;’s with possible gaps in the indices and unordered exponents,
followed by

e a braiding “tail” in the basis of H,(q).
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In order to prove that the system obtained from elements in 3, is equivalent to
the system obtained from elements in A(,), we first manage the gaps in the indices in
the monomials in ¢;’s, we then order the exponents and finally we eliminate the tails.
The procedure is similar to the one described in Chapter 2, but in this case we do that
simultaneously before and after the performance of a braid band move and show that
the equations obtained from elements in the sets X,, and A, are equivalent.

4.2.3 From ¥, to the H,(q)-module A(,y: managing the gaps and ordering the
exponents

In order to restrict the bbm’s only on elements in A we need first to introduce the
expanded set L:

Notation 4.1. We denote by L), the set:
L(n) = {tkotllﬂ .. .tf;", k; € Z*},
L =, L), and the subset of level k, Ly, of L:
Ly = {trtft i |y ki =k, ki € Z°}.
i=0

We now show that equations of type (x*) reduce to equations of the same type, but
from elements in the set A (i.e. no gaps in the indices). We will need the following
lemma:

Lemma 4.3. The equations X5 = X ——, are equivalent to the equations
1 201
)(tuflgl\u1 = titl()tul +1 v UO,UI < k : u() + U = k,
‘XVtA’C tptlfg:tl )
X- = —
tk tptkagolilcr2

Proof. We have that:

= tloter = (a— 1) X e gt oy + ¢ loythoy
tpt’;alil = i logtioaot! = (¢— 1)L @t oot + ¢ HPouthosoi!
Now,

qk—lﬁtkzal ~ qk—lth% skein qk—l(q _ 1)tk0.1 1 gFek
¢ HPosthoyott = WPtk oyoil oy kv thoyotloyt ¢ (g — 1)tPthoyo!
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and by applying a stabilization move we have:

g — Dtboy + ¢t~ ¢ lg—1)atP + gttt
!

¢ tPthoyoitost + ¢ (g — Ditrthoyot ~ 5 g — DtPtheft + FtPthoyoitoy?

Moreover,
k=2 iyig1k—1—j
(¢—1) ijo A ' ‘o =

R R DSt R (1D v ad s P P
_ (q_l)QZ Zk 2— qu+¢tj+1+¢t’€ 1-j—¢ + <q_1) Zk qu 1t]+1to. th=1-j ~
~ (q— 12500 Sate T @t (g = 1) (k — 1)gh etk

and
(q_ 1) Zk 2qjtptj+ltk 1— ]0_20.1il —

= (- DX @™ - | (a— 1) S50 ¢t T ot ot =
= (q_l)Qz Zk 2— qu+¢tptji+1+¢t§flf¢o.1il_|_<q 1) Z] qu ltpt]+1t0_ tk 1=, il ~
~ (¢ =100 es T T T 0 (g = 1)(k = D et

So we have the following:

bbm 15t —str. tptk :tl

1) <%

N

k2 ~k—2—7 i, k—1—j—
(g—1)? Zj70 Z¢:0 3q1+¢t1+1+¢t1 j=¢

(¢ —1)(k = 1)g"'t*

k—2 —k—2—3 4 j+14+¢ k—1—j—¢ +1
(q—1)2 S2h23 Sou o @it e T 00

(g —1)(k —1)g" 'atrthof

(¢ — 1)g*tat? — (q - 1)qk‘lzt""t’f<71il
m 279 —str.,

O

Proposition 4.3. It suffices to consider monomials in L) followed by braiding tails in
H,.(q) and perform a braid band move on any strand, in order to obtain an equivalent
infinite system to the one obtained from elements in X,,.

Proof. Let Ty4ps a word containing gaps in the indices but not starting with one. We
use Lemma 13 and 14 in [DL15]. The point is that when managing the gaps, the first
part of the words (before the first gap) remains in tact after managing the gaps and the
same carries through after the performance of a braid band move. That is, the following
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diagram commutes:

15t str.
T-w — Ty - erglil
bbm
man.gaps man.gaps

15t sty 11
> AT w; —>bb > AT - wi, i
m

where 7-w € X, and 7; € L, Vi.

In the case where the word 7 - w € X, starts with a gap, we show that equations
obtained from 7 - w are equivalent to equations obtained from elements 7; - w; € %,
where 7; are monomials in ¢;’s not starting with a gap, but with the bbm performed on
any strand. We prove this by induction on the strand m where the first gap occurs and
the order of 7 in X,,;:

The case m = 1 is Lemma 4.3. Suppose that it holds for all elements where the first
gap occurs on the m'-strand. Let 7-w = t¥ ., - . Then, using Lemma 13 and 14 in
[DL15], for m 4 1 we have:

k bbm 15t —str. pik 41
b1 @ — Pt 420107

k=1 -1 kb bbm 15t —str. k=1 -1 ke 41
(¢ =1) > a0 d" Tty 100ma — (¢ =1) > o q" Pt 1t 204 0mr10

k—1.k bbm 15t —str. k—1 k +1
q tm0m+1a0m+1 — q tptm+10-m+2a+0-m+20-1

Interacting now on the left part the braiding generator o,,,1 with the looping gener-
ators in «, we obtain words in Y,, where the first gap occurs on the m‘*-moving strand.
We follow the same procedure on the right part and the result follows by the induction
hypothesis. [

We also have the following more explicit formula:

Definition 4.1. (i) Let t¥ i,k € N*. We call the corresponding mazimum word of
th . denoted by cor(t¥), the word tt; .. .ti_ltf_z if k>, and tty .. . ty_q, if k <i.

(ii) We define cor,,(t¥) to be the corresponding mazimum word of t¥, where the first
looping generator in corp, (t¥) is ty. 1.

(iii) We define the map f on arbitrary monomials in t;’s to be f(tf-t3) = f(tF)- f(£}),
where f(tF) = cor(t}) and f(t}) = corn(t}), and m is the mazimum index in
cor (tF).
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Let now T -w € ¥,,, where T is a monomial in ¢;’s with possible gaps in the indices.
We set as Ar all elements in Ay, of less or equal order than the corresponding maximum
word of T'; f(T') = cor(T). Then, the equation obtained from 7" - w by performing a
bbm on the first strand is equivalent to equations obtained from elements in Ar by
performing bbm’s on any strand.

Example 4.1. Let t3-t € 33,,. The corresponding maximum word of 3-¢2 is f(t3-12) =
ttlt%tgtgl. Then,

e 12 +1
. 442
ty-ty tP-t3-t5-07

Zi Xﬁ- = Zz] X

k1 -1 1y9
tP-1it1:(05...0207 05 .05 )

where 7; € Ag : 73 < ttitotsty, Vi and j the strand where the bbm is performed.

We now order the exponents and show that equations obtained from elements in the

H,(g)-module L), reduce to equations obtained from elements in the H,(¢)-module

Proposition 4.4. Equations of the infinite system obtained from elements in L, fol-
lowed by braiding tails in Hy ,(q) are equivalent to equations obtained from elements in
Ay followed by braiding tails, where a braid band move can be performed on any moving
strand.

Proof. Tt follows from Theorem 9 in [DL15], since all steps followed so as to order the
exponents in a monomial in ¢;’s, remain the same after the performance of a bbm. [

4.2.4  From the H,(q)-module Aw,y to A,: eliminating the tails

We now deal with the braiding tails and prove that equations obtained from elements
in A, followed by words in H,(¢) reduce to equations obtained from elements in L)
by performing a bbm on any strand.

Proposition 4.5. Equations of the infinite system obtained from elements in A, fol-
lowed by words in Hy,(q) are equivalent to equations obtained from elements in L, by
performing a braid band move on any moving strand.

Proof. We perform a bbm and we cable the parallel strand with the surgery strand. We
then apply Theorem 3.6 before and after the performance of the bbm and uncable the
parallel strand. The proof is illustrated in Figure 4.2. O
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[N
]

bbm/ \ bbm
| |
r : %J
= | >ﬁ 2 uncable | i
Fig. 4.2: Proof of Proposition 4.5.
Example 4.2.
15t str.
ttits - g19201 — tPtrtats - g2g3gagy
| |
el.tails el.tails
{ {
15t st
(¢ —1)(¢* — g + L)ttits ?;3 (g —1)(¢* — g+ D)tPtitatsgi!
+ +
15t str.
q(q — 1)zt — q(q — 1)%2tPtyt397"
+ +
st sty
a2t 1?% a- Pty
+ +
15tstr.
(g = D@ —q+ 121 = [¢*(q = 1)(¢* — ¢+ 1) tigy"

where a = ¢z + ¢*(q — 1)? + 2¢*(q¢ — 1)%2 + q(q — 1)*2

Following the exact same procedure as explained in § 3.5.1 and as illustrated in

Figure 3.8, we have the following:

Theorem 4.1. It suffices to consider elements in the basis of S(ST), A, and perform
braid band moves on all strands in order to obtain the equations needed to compute the

Homflypt skein module of the lens spaces L(p,1).

Proof. The proof is based on Theorems 4.3, 3.5 and 3.6 and the fact that the braid band
moves commute with the stabilization moves and the skein (quadratic) relation. The
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fact that the braid band moves and conjugation do not commute, results in the need of
performing braid band moves on all moving strands of the elements in A. O

We have shown so far that it in order to compute the Homflypt skein module of the
lens spaces L(p, 1), it suffices to:

(i) consider elements in A and

(ii) perform bbm’s on any strand.

4.2.5 From A to L: restrictions on the braid band moves

We now pass to the expanded set L. The advantage of this is that we restrict the
performance of the braid band moves only on the first moving strand of elements in L
and thus, we obtain less number of equations for the system.

Let now 7 € A;, and perform a braid band move on the j*-strand. Then, we obtain
the equations:

X@ (775 g5.gE g7 )
that is:
1 e1—e2 -~
tr(r) VA (T g gt g ") (4.1)

- =

where e; = "7 2ik;, since 7 € Ay, is of the form #%o¢}* .. Fm and
eo =y vy 2(i+ 1)k; £ 1. Substituting to Equation 4.1 we have:

tr(r) = X tr(tPre g .91 g ") for pos. bbm
t?"(T) — A’:l . t?“(tp7'+ G- _gl_l .. ,gj_l) for neg. bbm

Let now 7; € L, such that 7; < 7,V 7. Performing a bbm on all 7;’s on the first
moving strand, we obtain the equations:

tr(t;) = % . t?"(tpn+ 1) for pos. bbm
tr(r) = g ~tr(tP;, - g7") for neg. bbm

Applying Theorem 3.6 and the technique of cabling, we have that:

. _
tr(t) = 2 tr(tPry-g;...q1... ;")

k
- > fi(Q»z)%k 'ltr(tpTu *91)
tr(r) = *—-tr(t’ry-g;...97 " -..g; ") 2

> il 2)2 = tr(tPr, - g1")
that is, it suffices to consider elements in the set L and perform braid band moves on

their first moving strand in order to obtain equations for the system.
The above are summarized in the following Theorem:

[ 10
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Theorem 4.2. The system consisting of equations obtained from elements in A by
performing braid band moves on all their strands, is equivalent to the system consisting
of equations obtained from elements in L by performing braid band moves only on their
first moving strand.

Remark 4.1. [t is worth mentioning that by performing L-moves and braid band moves
on elements in the expanded set L, we can always obtain elements in L, , that is, el-
ements in L where the loop generators have only positive exponents. Moreover, with
the use of L-moves and braid band moves one can obtain elements in L, where the
maximum exponent of the loop generators is p — 1.

4.3 'The infinite system

In this section we present results towards the solution of the infinite system. We first
simplify the equations in the system and we show that the unknowns of the system
commute. The main result of this section is that the system splits into self-contained
subsystems.

Lemma 4.4. Let T(];(j;%m € Ay, that is Y " ki = k. Then, the system

Xom = X oo
TOJ;I tpT1,7;1+1gl
(W)
T(If,?;zm B tpr,Or;:i1 97 1
15 equivalent to
() = L AN ()
F m i (o)
tr(moor) = L AZmoR Tl (g0 g )

: ko,m o ap kom 41 Wit1=Ki L uimin 41 0P _uom4r 41
Proof. Applying a bbm on 7, " obtain 77, 7", ; g1 = P09 = Tomaa 91 -

We have that:

1m—+1

[ e ko.m m .
X;k.jm = \/lxz VN tr(roa), er = Y i 2jk; (1)
X = (L] A g — Yk 1 (2)
omEly |V "Tom+1 91)s €2 = 2521 4IRj-1
X o = [ -m+2-\/xe2~tr(7u°"”“ N, ey = S 25k — 1 (3)
g?ﬁﬁflgfl - V2] o,m+1 91 ) 3 — j=1 JRj—1

We now impose (1') = (2/), (') = (3') and (2') = (3') and since e; —e; =
2> okj+landes—e = 237 k; — 1, we obtain:

96



Fig. 4.3: t~', = ™.

(1) = () = tr(mgr) = DN otr(minia) ()
(1) = (3) = tr(mgr) = DN oar(giniie ) (5)
(2) = (3) = tr(momit'o) = 3 tr(momii'or’) (6')
From Eq. (6') we obtain tr(ry,ii'g1) = ztr(rgmii’) and so Eq. (3') becomes
tr(momr) = AZ=0R g (rgst. O
Theorem 4.3. The unknowns sy, sa, ... of the system commute.

Proof. Consider the set of all permutations of the set S = ky,...k, and let ¢ be a
bijection from the set S to itself. We consider now the elements a = ¢ lkl . .t;nk" and
B = t;l“"(kl) . .t;n“’(k"), where 0 < iy < iy < ... <4, of the basis of S(ST). We have
that: tr(a) = sg, ...s5, and t7(8) = Spk,) - - - Se(ky)- We compute the invariant X on

the closures @, 3 of @ and 3, respectively, and we obtain: Xa = [—l;ﬁ]”*l\/xotr(a) =
- n— _ n— 0 - n—
Ay X5 = S VA() = (] s 5 N

the n-component link & is isotopic to B in ST, as illustrated in Figure 4.3 for the case
of two components. So, we have that X3 = X (B)’ equivalently,

Skn Ce Sk1 = Sw(kn) Ce Scp(kl) (42)

and so the unknowns of the system commute.
Equation 4.2 holds for any subset S of Z and for any permutation ¢ of S, hence the
unknowns s; of the system (#) must commute. O

Theorem 4.4. Let 7 € A, C X, Then tr(t) = >, fi(g,2) - s1,", where sy,;" =
sitsy? ... st such that u; € Z for all i and Y, iu; = k.

Proof. 1t derives directly from the fourth rule of the trace. m

Corollary 4.1. For k € Z we obtain an infinite self-contained system from elements in
Ay. That is, the system (M) splits into infinite self-contained infinite subsystems.
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We now deal with elements in A where all loop generators have negative exponents.
We do that in order to restrict the performance of the braid band moves only on elements
in the set A where all loop generators have positive exponents (see also Remark 4.1).

Definition 4.2. (i) We define the map f: A — A such that:
fln-m) = f(n)-f(n), Vm,mel

tho— R VieN, VkeZ\N

g = g VieN

(ii) We define the map M : R[z*!, sp] — R[2*, si] such that:

M(mi+ 1) = M(n)+ M(r), Vi,
M(Tl'TQ) = M(Tl)'M(TQ), VThTQ
S_ > Sk, Vk € N
Sp—k P Spiks VE : 0<k<p
zZ = Az
q:lzl — qﬂFl
TP e vk

Remark 4.2. The maps f and M are well defined. Moreover, the map f is an auto-
morphism.

We observe now that the following diagram commutes:

bbm
T = sly(r) = Xz = Xsl/l\(T), X- = Xsl_/l(\r)

L M M
bbm
fr) = skalr) = X =X 5Gmy X = XaaGo
that is:
M =X25) @ X5 = Xaatoy
This comes from the fact that the relations in Lemmas 3.1, 3.2, 3.3 and 3.4 are
symmetric (up to the sign of the exponents).
We introduce now the following notation:

Notation 4.2. We denote si°sy* ...s;" by sy5'. We also set so = 1.

Conjecture 4.1. The map M : R[z*!, 51, 89,...] = R[z%!, 51, 59,...] (Definition 4.2(ii))
s an 1somorphism.

From the discussion above and Remark 4.2, we have the following corollary of Con-
jugation 4.1:
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Corollary 4.2. For all m € N the following relations hold:

p—1 7
UO" . o
S = E fi(g,2) - 50", where g Jjruj=p—m.
i=1 §=0

The following example demonstrates this result.

Example 4.3. For the element t~ we have: t~* bhrg trt toft & s =5, 1 and s_; =

a15,5_1 + asS,—1, where a;,as € C.

4.3.1 Some combinatorial results on the system

We now present some combinatorial results on the infinite system. The aim is to find
the minimum number of equations needed for the computation of S(L(p,1)). In other
words, the aim is to exclude all linearly dependent equations so as to obtain even more
control on the system.

The subset of level k of L, L, has Zf;ol (¥71) = 2! elements and by performing
a positive and a negative bbm on each element in L;, we obtain 2 equations. We
denote the subsystem obtained from elements in L by [Si] and by [Sk]- (respectively
[Sk]s+) we denote the subsystem obtained from elements in L; by only performing a
negative (respectively, a positive) bbm. It is straightforward from the trace rules that
the subsystem [Sk]_ is obtained from [Sy_;]|+ by substituting p by p+ 1. More precisely,

the following lemma holds:
Lemma 4.5. If [Sk_1] admits unique solution, then so does the [Sk|- subsystem.

Lemma 4.6. Let 7 € Li\Ax. Then the equation X> = X ——, is obtained from the

tPTL0y
equations:

where 1; € Ny such that ; < 1, V i.

We now define the following ordering relation on the unknowns of the system s;’s,
with respect to the ordering relation defined on the sets A" and A.

‘s k l
Definition 4.3. Let S| = s, = shish2 skmoand Sy = Sin = sits2 . sin. Then:

(CL) [fZ:il ]{/‘Z -1 < Z?:l lj 'j, then S; < 95.
(b) [fZ;L ki-1= Z?:l lj - and Z:L k; < Z?:l lj, then S7 < 5.

(C) [fZZilklz = Z?:]lj'jf Z:ilkl = Z?:llj and k’1,l1 7& O,kg,lg 7’é O,kfz 7’é
O,li:O, then S] <SQ.
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Remark 4.3.  (a) If ki, l; # 0 for the same indices, then 3" ki # > ;.

(b) Let si'sh>...skm such that S ki -i = k. It follows from Definition 4.3 the

m
mazimum unknown element is s¥ and the minimum is sy,.

(c) Let 1y € Ly and 19 € Ly, such that k < m, then the equation Xz = X ——

tp7'2+ Ufl
contains more unknowns (which are higher ordered) than the equation Xz =
X,
tPTlJrol
Proposition 4.6. For T, ko " € L, the following relation holds:
tr(TO(;n ) = q21:1 ki Sko,km + Z f(Q> z)s)\o,)wrm

where Sxg a, < Skokm JOT Ll Sxg A, -
Proof. Tt follows from Proposition 3.8. O
Lemma 4.7. i) Let 7y < 7o € A such that #m3 € A} 1 7 < 73 < 7o, then, if the

number of unknowns in Xz = ti/\_l is R, then the number of unknowns in

T1, 0y
Xs = X — s R+ 1.
ti"'rgJr oy

i) If T € LY\AT and 71 € AT such that 7, < 7 and such that fry € AT .7y <7 < T,

then the (number of ) unknowns in X> = X —, are (is) the same as in X7z =
T+0,
X R
tP7'1+0'1
Proof. 1t follows from the trace rules. O
Note that the equation X, —— = X, —  contains all the unknowns of the
k—1 1.--lg01

[Sk] subsystem, since tt;...t;_; is the maximum element in A;. We also have that
tr(thty .. . tyor) = >, filq, )spﬂsl ... swm such that

m

S ki cj=k—i (4.3)
j=1

and such that k;; > 0 for all 4, j. This is equivalent to finding the number of non negative

solutions of the linear Diophantine equation 4.3. This equations has Zf:o H; solutions,
where

k—w k7w172w274..(k71)wk7
(5] === | =i %]
Hz': E I(k;wl,wg,...wk_l),
w1=0 ’ll)2:O wk,1=0

and where [(k;wy,ws, ... wip_q) =1, if k/k —w; — 2wy — ... (k — 2)wy_o and
I(k;wy,wa, ... wg—1) = 0, otherwise (see [RM10]).
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The point now is to find the infinite many linearly independent equations obtained
for the system and prove that the number of those equations equal the number of the
unknowns. Then, the system would admit unique solution, or equivalently, the following
set, which is different than the one found in [GM14], would be a basic set for S(L(p,1)):

B, = {tho¢/™ £ meNd eNVizdy<dy <...<dp<p—1}U{0}.

This is equivalent to proving the following conjecture:

Conjecture 4.2. For j € N such that j > p, the following relations hold:

p—1 ¢
=3 la.2) i, where 35w =j p
i=1

§=0
Example 4.4. For the element t € Ly we have: t bbrp tptlafcl & Spr1 = S1.

For the elements in Lo we have:

bbm
o 127X tri257t
So = Q1Spy2 + A2Sp1181 + A35pS2
Sy = b1Spra + baspr181

o tt; X 1Pt ty0t!

2 _
So+ 87 = C1Spy2 + CaSpr151
Sy + 82 = dySpro + dospi151 + dsspss + d4sp5%

and thus:
Sp+2 = A152 + AQS%

S525p = Blsg + BQS%
— 2

$1Sp+1 = 0182 + 0281
2 2
5ps] D1sy 4 Dosy

where ai,Ai,bi, Bi,Ci,Ci,di,Di € C, V1.

4.4 Appendix

In this section we provide some lemmas in order to investigate some further properties
of the system and prove Conjecture 4.2.
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Lemma 4.8. For k € N the following relations hold.

(i) tr(tthg) = qFrsp + oo (g — Vet )
(i) tr(tigr") = ¢ lasp + Y500 ¢ (g — Dr(t )
(ii3) tr(tPthg) = (¢ —q+Dtr(® 5 g) + ¢*(q— 1V)sis, +

+ S g - DAt gy)

(iv) tr(tPty) = 3 o fi(@.2)sprneis;

Proof. (i) We prove relations (i) by induction on k. For k = 1 we have tr(tPt1g1) =
(¢ — D)tr(tPty) + qtr(tPgit) = (¢ — 1)tr(tt1) + gzsp11. Suppose that the relation holds
for k — 1. Then for k£ we have:

tr(tPthg) = (q— Dtr(tPth) + qtr(tP 15 1 g) ind.step
= (q— Dtr(tPth) + qzj Oqj( )tr(tp+1+]tk Y 4 ¢ 28,k ==l
= ¢ zspn + g — Dtr(tPth) + 1 g% (g — V(e -

= ¢"zspyn + Zﬁ éq“( — 1)tr(trrugh—m),

(ii) Relations (ii) follow similarly since tr(t?thg; ) = tr(t?+'ti 1 g).
(iii) Relations (iii) follow by induction on k.

(iv) We have that: tF = ¢*¢/% — 25:1 ¢ (g = D)5 gl (Lemma 9 [DL15]) and
)

tr(tt) = qFsis, — 25 ¢l (g7 = Dtr( T g,

We also have that: .

tr(t T T gy = R ias, g + S0 gf(q — Dtr(PT7) and thus

tr(tPty) = ¢"spsp —kq* (¢t — 1)zspn —
- S (ST g - D = D)) (),
We prove now relations (iv) by induction on k. For k = 1 we have tr(t’t;) =

qs15p + (¢ — 1)zsp41. Suppose that it holds for k =1,...,m — 1.
Then for £k = m we have:
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—
S
=

trtm) L gmsns, — mg™ (@t — 1)2Smap —

S (S g — (g — (et )
= q"smsp —mq" (" = 1)zsmip — -
_ Z;nzl 27561_3 qj+i(q — 1)(q_1 - 1) (ZT:_J—J fi(q. Z)Sp—i-m—rsr) =

- ZZL:O fu(Qa Z)Sp-‘,-k_usu
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