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ΠΕΡΙΛΗΨΗ 

Στη παρούσα διδακτορική διατριβή προτείνουμε μια νέα μέθοδο για τον υπολογισμό skein 

modules 3-πολλαπλοτήτων μέσω ομάδων πλεξίδων και πηλίκα αυτών. Τα skein modules 3-

πολλαπλοτήτων αποτελούν σημαντικά αλγεβρικά εργαλεία για την μελέτη των 3-

πολλαπλοτήτων, καθώ̋ οι ιδιότητέ̋ του̋ παρέχουν σημαντικέ̋ τοπολογικέ̋ πληροφορίε̋ για 

τι̋ ίδιε̋ τι̋ 3-πολλαπλότητε̋. Αναπτύσσουμε λοπόν όλα τα απαραίτητα εργαλεία για τον 

υπολογισμό του Homflypt skein module των φακοειδών χώρων L(p,q) και εστιάζουμε στη 

περίπτωση q=1. Τα αποτελέσματα τη̋ παρούσα̋ διατιβή̋ ορίζουν ένα ομογενέ̋ πλαίσιο για 

τη μελέτη κόμβων και κρίκων σε 3-πολλαπλότητε̋ και σε οικογένειε̋ 3-πολλαπλοτήτων.  

 

 

 

ABSTRACT 

The present PhD thesis develops an algebraic approach in the computation of skein modules 

of 3-manifolds. Its primary motivation is the computation of the Homflypt skein module of the 

lens spaces L(p,q). Skein modules are quotients of free modules over ambient isotopy 

classes of knots and links in a 3-manifold by properly chosen skein relations. A skein module 

of a 3-manifold M based on the Homflypt skein relation is called Homflypt skein module of M. 

Skein modules of 3-manifolds have become very important algebraic tools in the study of 3-

manifolds, since their properties renders topological information about the 3-manifolds. In this 

thesis we work towards the Homflypt skein module of the lens spaces L(p,1) via braids. The 

advantage of the braid approach is that it gives more control over the band moves than the 

diagrammatic approach and much of the diagrammatic complexity is absorbed into the proofs 

of the algebraic statements. 
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ABSTRACT

The present thesis develops an algebraic approach in the computation of skein mod-

ules of 3-manifolds. Its primary motivation is the computation of the Homflypt skein

module of the lens spaces L(p, q). Skein modules are quotients of free modules over

ambient isotopy classes of knots and links in a 3-manifold by properly chosen skein rela-

tions. A skein module of a 3-manifold M based on the Homflypt skein relation is called

Homflypt skein module of M , also known as Conway skein module and as third skein

module. Skein modules of 3-manifolds have become very important algebraic tools in the

study of 3-manifolds, since their properties renders topological information about the 3-

manifolds. In this thesis we work towards the Homflypt skein module of the lens spaces

L(p, 1) via braids. The advantage of the braid approach is that it gives more control

over the band moves than the diagrammatic approach and much of the diagrammatic

complexity is absorbed into the proofs of the algebraic statements.

In Chapter 1 we give introductory notions from Knot Theory and we present an

overview of the subject of Homflypt skein modules of 3-manifolds, giving emphasis

to the mathematical tools needed for this thesis. More precisely, we first present the

Iwahori-Hecke algebra of type A and its properties, and then we construct the classical

Homflypt polynomial for knots and links in S3. We pass to the generalized Iwahori-

Hecke algebra of type B, which is related to the knot theory of the solid torus and which

plays a crucial role for this thesis. We discuss its properties and present the Homflypt
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polynomial for knots and links in the solid torus. Moreover, we describe geometric and

algebraic mixed braid equivalence for knots and links in 3-manifolds obtained from S3

by integral surgery along a framed link and we give the formal definition of the Homflypt

skein module of a 3-manifold.

In Chapter 2 we describe braid equivalence for knots and links in a 3-manifold

M obtained by rational surgery along a framed link in S3. We first prove a sharpened

version of the Reidemeister theorem for links in M . We then give geometric formulations

of the braid equivalence via mixed braids in S3 using the L-moves and the braid band

moves. We finally give algebraic formulations in terms of the mixed braid groups Bm,n

using cabling and the techniques of parting and combing for mixed braids. Our results

set a homogeneous ground for the algebraic braid equivalences for link isotopy in families

of 3-manifolds. We provide concrete formuli of the braid equivalences in lens spaces,

Seifert manifolds, homology spheres obtained from the trefoil and manifolds obtained

from torus knots. The algebraic classification of links in a 3-manifold via mixed braids

is a useful tool for computing the Witten invariants and for studying skein modules of

3-manifolds and of families of 3-manifolds.

In Chapter 3 we give a new basis, Λ, for the Homflypt skein module of the solid torus,

S(ST), other than the one of Hoste–Kidwell [HK90] and Turaev [Tur88], conjectured by

J. H. Przytycki. For doing this we use the generalized Hecke algebra of type B, H1,n,

defined by Lambropoulou [Lam99], which is isomorphic to the affine Hecke algebra of

type A. In order to show that the set Λ is a basic set for S(ST) we start with the

well-known basis of S(ST), Λ′, discovered independently in [Tur88] and [HK90] with

diagrammatic methods, and a basis Σn of the algebra H1,n. We define an ordering

relation in Λ′ and prove that the set is totally ordered. We then convert elements in

Λ′ to linear combinations of elements in the new basic set Λ. This is done in two

steps: First we convert elements in Λ′ to elements in Σn. Then, using conjugation and
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stabilization moves, we convert these elements to linear combinations of elements in Λ.

Finally, we relate the sets Λ′ and Λ via a block diagonal matrix, where each block is an

infinite lower triangular matrix with invertible elements in the diagonal. The infinite

matrix is then invertible and thus, the set Λ is a basis for S(ST). The new basis is

appropriate for computing the Homflypt skein module of the lens spaces.

S(ST) plays an important role in the study of Homflypt skein modules of arbitrary

c.c.o. 3-manifolds, since every c.c.o. 3-manifold can be obtained by surgery along a

framed link in S3 with unknotted components. The family of the lens spaces, L(p, q),

comprises the simplest example, since they are obtained by rational surgery on the

unknot. The aim of this chapter is to set a homogeneous ground in computing skein

modules of c.c.o. 3-manifolds via algebraic means.

In Chapter 4 we give a basis for the Homflypt skein module of the lens spaces

L(p, 1) using the braid approach and results from [Lam99, LR06, DL15]. We first show

the connection between S(ST) and S(L(p, 1)). In particular, we show that S(L(p, 1))

is obtained from S(ST) by considering relations coming from the braid band move on

elements in the basis Λ, where the braid band move is only performed on the first

moving strand of each element. We then study an infinite system of equations coming

from the braid band moves and we show that the system splits into self-contained

subsystems. We investigate other useful properties of the system such as “symmetry”

in equations. We then define an ordering relation on the unknowns that respects the

ordering defined in Chapter 3 for elements in Λ, and show some combinatorial results

derived by the ordering. In [GM14], S(L(p, 1)) is computed diagrammatically and the

result suggests that the infinite system admits unique solution, leading to the following

basis for S(L(p, 1)):

Bp = {td0t′1d1 . . . t′mdm : m ∈ N, di ∈ N∗ ∀ i : d0 < d1 < . . . < dm ≤ p− 1}.

The importance of our approach is that it can shed light to the problem of computing

skein modules of arbitrary c.c.o. 3-manifolds, since any 3-manifold can be obtained by

xv



surgery on S3 along unknotted closed curves. Indeed, one can use our results in order to

apply a braid approach to the skein module of an arbitrary c.c.o. 3-manifold. The main

difficulty of the problem lies in selecting from the infinitum of band moves (or handle

slide moves) some basic ones, solving the infinite system of equations and proving that

there are no dependencies in the solutions.
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1

PRELIMINARIES

1.1 Knots and Links in S3

Definition 1.1. A link of m-components is a subset of S3, or R3, that consists of m
disjoint, piecewise linear, simple, closed curves. A link of one component is a knot (see
Fig. 1.1).

Definition 1.2. Two links L1, L2 in S3 are equivalent (or isotopic), denoted by L1 ∼ L2,
if there is an orientation-preserving piecewise linear homeomorphism h : S3 → S3, such
that h(L1) = L2.

Definition 1.3. A link diagram is a diagram of a link on the plane, where each line
segment of the link is projected to a line segment in R2, such that two segments intersect
ion at most one point, which for disjoint segments is not an end point, and that no point
belongs to the projections of three segments.

Theorem 1.1 (Reidemeister). Two link diagrams correspond to isotopic links if and
only if one can be obtained from the other by a finite sequence of Reidemeister moves
(Fig. 1.2) and plane isotopies (Delta moves) (Fig. 1.3).

Fig. 1.1: A knot and a 2-component link.



Fig. 1.2: The Reidemeister moves.

Fig. 1.3: Delta move.

1.2 Braids

Definition 1.4. A braid in n strands is defined as a set of pairwise nonintersecting
descending polygonal lines (strands) joining the points A1, A2, . . . , An to the points
B1, B2, . . . , Bn in any order, where Ai = (i, 0, 0) and Bi = (i, 0, 1) for i = 1, 2, . . . , n.

Definition 1.5. Two braids are called isotopic if and only if one can be transformed
into the other by a finite sequence of elementary deformations.

The set of (equivalent classes of) braids in n strands has a natural group structure:

The product of two braids a and b is obtained by putting them end to end as shown
in Figure 1.5.

The unit element is the braid consisting of n parallel vertical strands and the inverse
of a braid a, a−1, is the mirror image of a in the plane. The set of braids in n strands
under this operation is called the braid group and is denoted by Bn.

Fig. 1.4: Elementary deformations.
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Fig. 1.5: The product of two braids a and b.

Fig. 1.6: The generator σi and its inverse σ−1
i for Bn.

Theorem 1.2 (Artin). The equivalence relation upon braid words defined by the rela-
tions

σiσj = σjσi for |i− j| > 1

σiσi+1σi = σi+1σiσi+1

is identical to the equivalence relations of braid isotopy upon braids represented by the
braid words.

Because of Theorem 1.2, Bn has the presentation:

Bn =

〈
σ1, . . . , σn−1

∣∣∣∣
σiσi+1σi = σi+1σiσi+1, 1 ≤ i ≤ n− 2
σiσj = σjσi, |i− j| > 1

〉
.

Definition 1.6. The closure of a braid a is defined as the link â obtained by joining
the upper points of its strands to the lower ones (see Fig. 1.7).

Fig. 1.7: The closure of a braid.
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Theorem 1.3 (Alexander). Any link is the closure of some braid.

Theorem 1.4 (Markov). The closures of two braids are isotopic if and only if one braid
can be taken to another by finite sequence of the following moves:

Conjugation : a ↔ bab−1, a, b ∈ Bn,

Stabilization : a ↔ aσ−1
n , a ∈ Bn.

1.3 The Homflypt polynomial of links in S3

1.3.1 The Iwahori-Hecke algebra of type A, Hn(q)

A presentation of Hn(q) is obtained from the presentation of the braid group Bn by
adding the quadratic relation g2i = (q − 1)gi + q, q ∈ C a fixed variable. The algebra
Hn(q) has the following presentation:

Hn(q) =

〈
g1, g2, . . . , gn−1

∣∣∣∣∣∣

gigi+1gi = gi+1gigi+1, 1 ≤ i ≤ n− 2
gigj = gjgi, |i− j| > 1
g2i = (q − 1)gi + q, i = 1, 2, . . . n− 1

〉
,

that is

Hn(q) =
Z [q±1]Bn

〈σ2
i − (q − 1) σi − q〉 .

In [Jon87] V.F.R. Jones gives the following linear basis for the Iwahori-Hecke algebra
of type A, Hn(q):

S =
{
(gi1gi1−1 . . . gi1−k1)(gi2gi2−1 . . . gi2−k2) . . . (gipgip−1 . . . gip−kp)

}
, for 1 ≤ i1 < . . . < ip ≤ n−1 .

The basis S yields directly an inductive basis for Hn(q), which is used in the con-
struction of the Ocneanu trace, leading to the Homflypt or 2-variable Jones polynomial
(dimHn(q) = n!).

Theorem 1.5 (Ocneanu). There exists a unique linear Markov trace function:

tr :
∞⋃

n=1

Hn(q)→ C,

determined by the rules:

(1) tr(ab) = tr(ba) for a,b ∈ Hn(q)
(2) tr(1) = 1 for all H1,n(q)
(3) tr(agn) = ztr(a) for a ∈ Hn(q)

4



Fig. 1.8: A mixed link in S3.

Theorem 1.6. The function X : L → Z[q±1, z, λ]

XL(q, λ) =

[
− 1− λq√

λ (1− q)

]n−1 (√
λ
)e

tr (π (α)) ,

where α ∈ Bn is a word in the σi’s, e is the exponent sum of the σi’s in α, and π the
canonical map of Bn in Hn(q), such that σi 7→ gi, is an invariant of oriented links in
ST.

1.4 Knot theory of the solid torus

We now view ST as the complement of a solid torus in S3. An oriented link L in ST
can be represented by an oriented mixed link in S3, that is a link in S3 consisting of
the unknotted fixed part Î representing the complementary solid torus in S3 and the
moving part L that links with Î.

A mixed link diagram is a diagram Î ∪ L̃ of Î ∪L on the plane of Î, where this plane
is equipped with the top-to-bottom direction of I.

Consider now an isotopy of an oriented link L in ST. As the link moves in ST,
its corresponding mixed link will change in S3 by a sequence of moves that keep the
oriented Î pointwise fixed. This sequence of moves consists in isotopy in the S3 and
the mixed Reidemeister moves. In terms of diagrams we have the following result for
isotopy in ST:

The mixed link equivalence in S3 includes the classical Reidemeister moves and the
mixed Reidemeister moves, which involve the fixed and the standard part of the mixed
link, keeping Î pointwise fixed.

1.4.1 Mixed Braids in S3

By the Alexander theorem for knots in solid torus, a mixed link diagram Î ∪ L̃ of Î ∪L
may be turned into a mixed braid I ∪ β with isotopic closure. This is a braid in S3

where, without loss of generality, its first strand represents Î, the fixed part, and the
other strands, β, represent the moving part L. The subbraid β shall be called the
moving part of I ∪ β.
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Fig. 1.9: The closure of a mixed braid to a mixed link.

Fig. 1.10: The generators of B1,n.

The sets of braids related to the ST form groups, which are in fact the Artin braid
groups type B, denoted B1,n, with presentation:

B1,n =

〈
t, σ1, . . . , σn−1

∣∣∣∣∣∣∣∣

σ1tσ1t = tσ1tσ1

tσi = σit, i > 1
σiσi+1σi = σi+1σiσi+1, 1 ≤ i ≤ n− 2
σiσj = σjσi, |i− j| > 1

〉
,

where the generators σi and t are illustrated in Figure 1.10.
Isotopy in ST is translated on the level of mixed braids by means of the following

theorem.

Theorem 1.7 (Theorem 3, [Lam94]). Let L1, L2 be two oriented links in ST and let
I ∪β1, I ∪β2 be two corresponding mixed braids in S3. Then L1 is isotopic to L2 in ST

if and only if I ∪ β1 is equivalent to I ∪ β2 in
∞∪
n=1

B1,n by the following moves:

(i) Conjugation : α ∼ β−1αβ, if α, β ∈ B1,n.
(ii) Stabilization moves : α ∼ ασ±1

n ∈ B1,n+1, if α ∈ B1,n.
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1.5 The Homflypt polynomial of links in the solid torus

1.5.1 The Generalized Iwahori-Hecke Algebra of type B

It is well known that B1,n is the Artin group of the Coxeter group of type B, which is
related to the Hecke algebra of type B, Hn(q,Q) and to the cyclotomic Hecke algebras
of type B. In [Lam99] it has been established that all these algebras form a tower of
B-type algebras and are related to the knot theory of ST. The basic one is Hn(q,Q),
a presentation of which is obtained from the presentation of the Artin group B1,n by
adding the quadratic relations

g2i = (q − 1)gi + q (1.1)

and the relation t2 = (Q− 1) t + Q, where q,Q ∈ C\{0} are seen as fixed variables.
The middle B–type algebras are the cyclotomic Hecke algebras of type B, Hn(q, d),
whose presentations are obtained by the quadratic relation (1.1) and td = (t − u1)(t −
u2) . . . (t−ud). The topmost Hecke-like algebra in the tower is the generalized Iwahori–
Hecke algebra of type B, H1,n(q), which, as observed by T.tom Dieck, is related to

the affine Hecke algebra of type A, H̃n(q) (cf. [Lam99]). The algebra H1,n(q) has the
following presentation:

H1,n(q) =

〈
t, g1, . . . , gn−1

∣∣∣∣∣∣∣∣∣∣

g1tg1t = tg1tg1
tgi = git, i > 1
gigi+1gi = gi+1gigi+1, 1 ≤ i ≤ n− 2
gigj = gjgi, |i− j| > 1
gi

2 = (q − 1)gi + q, i = 1, . . . , n− 1

〉
.

That is:

H1,n(q) =
Z [q±1]B1,n

〈σ2
i − (q − 1) σi − q〉 .

Note that in H1,n(q) the generator t satisfies no polynomial relation, making the
algebra H1,n(q) infinite dimensional. Also that in [Lam99] the algebra H1,n(q) is denoted
as Hn(q,∞).

In H1,n(q) we define the elements:

ti := gigi−1 . . . g1tg1 . . . gi−1gi and t′i := gigi−1 . . . g1tg
−1
1 . . . g−1

i−1g
−1
i , (1.2)

as illustrated in Figure 1.11.

In [Lam99] the following result has been proved.

Theorem 1.8 (Proposition 1, Theorem 1 [Lam99]). The following sets form linear bases
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Fig. 1.11: The elements t′i and ti.

for H1,n(q):

(i) Σn = {tk1i1 t
k2
i2
. . . tkrir · σ, where 1 ≤ i1 < . . . < ir ≤ n− 1},

(ii) Σ′
n = {t′i1

k1t′i2
k2 . . . t′ir

kr · σ, where 1 ≤ i1 < . . . < ir ≤ n},

where k1, . . . , kr ∈ Z and σ a basic element in Hn(q).

Remark 1.1. (i) The indices of the t′i’s in the set Σ′
n are ordered but are not neces-

sarily consecutive, neither do they need to start from t.

(ii) A more straight forward proof that the sets Σ′
n form bases for H1,n(q) can be found

in the appendix.

In [Lam99] the basis Σ′
n is used for constructing a Markov trace on

⋃∞
n=1 H1,n(q).

Theorem 1.9 (Theorem 6, [Lam99]). Given z, sk, with k ∈ Z specified elements in
R = Z [q±1], there exists a unique linear Markov trace function

tr :
∞⋃

n=1

H1,n(q)→ R (z, sk) , k ∈ Z

determined by the rules:

(1) tr(ab) = tr(ba) for a,b ∈ H1,n(q)
(2) tr(1) = 1 for all H1,n(q)
(3) tr(agn) = ztr(a) for a ∈ H1,n(q)

(4) tr(at′n
k) = sktr(a) for a ∈ H1,n(q), k ∈ Z.

Note that, if a word does not contain any t′i’s, tr coincides with the Ocneanu trace.
Using tr Lambropoulou constructed a universal Homflypt-type invariant for oriented
links in ST. Namely, let L denote the set of oriented links in S.T. Then:

Theorem 1.10 (Definition 1, [Lam99]). The function X : L → R(z, sk)

Xα̂ =

[
− 1− λq√

λ (1− q)

]n−1 (√
λ
)e

tr (π (α)) ,
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where α ∈ B1,n is a word in the σi’s and t′i’s, e is the exponent sum of the σi’s in α, and
π the canonical map of B1,n in H1,n(q), such that t 7→ t and σi 7→ gi, is an invariant of
oriented links in ST.

The invariant X satisfies a skein relation [Lam94]. Theorems 1.8, 1.9 and 1.10 hold
also for the algebras Hn(q,Q) and Hn(q, d), giving rise to all possible Homflypt-type
invariants for knots in ST. For the case of the Hecke algebra of type B, Hn(q,Q), see
also [Lam94] and [LG97].

1.6 Knots in manifolds obtained by integral surgery

Let L be an oriented link in M . Fixing B̂ pointwise, L can be represented unambiguously
by a mixed link in S3 denoted B̂ ∪L, that is, a link in S3 consisting of the fixed part B̂
and the moving part L that links with B̂. A mixed link diagram is a diagram B̂ ∪ L̃ of
B̂ ∪L on the plane of B̂, where this plane is equipped with the top-to-bottom direction
of the braid B.

1.6.1 The Reidemeister Theorem for links in 3-manifolds with integral surgery

description

An isotopy of L in M can be translated into a finite sequence of moves of the mixed
link B̂

⋃
L in S3 as follows. As we know, surgery along B̂ is realized by taking first

the complement S3\B̂ and then attaching to it solid tori according to the surgery
description. Thus, isotopy in M can be viewed as certain moves in S3, namely, isotopy
in S3\B̂ together with the band moves in S3, which are similar to the second Kirby

move. Isotopy in S3\B̂ is realized by the classical Reidemeister moves and planar
moves for the moving part together with the extended Reidemeister moves. These are
the Reidemeister II and III moves involving the fixed and the moving part of the mixed
link (cf. Definition 5.1 [LR97]). A band move is a non-isotopy move in S3\B̂ that
reflects isotopy in M and is the band connected sum of a component, say s, of L with
the specified (from the framing) parallel curve l of a surgery component, say c, of B̂.
Note that l bounds a disc in M . There are two types of band moves according to
the orientations of the component s of L and of the surgery curve c, as illustrated
and exemplified in Figure 1.12. In the α-type the orientation of s is opposite to the
orientation of c (and of its parallel curve l), but after the performance of the move their
orientations agree. In the β-type the orientation of s agrees initially with the orientation
of c, but disagrees after the performance of the move. Note that the two types of band
moves are related by a twist of s (Reidemeister I move in S3\B̂).

The above are summarized in the following analogue of the Reidemeister theorem
for oriented links in M .

Theorem 1.11 (Reidemeister for M = χ
Z
(S3, B̂), Thm. 5.8 [LR97]). Two oriented

links L1, L2 in M = χ
Z
(S3, B̂) are isotopic if and only if any two corresponding mixed

link diagrams of theirs, B̂ ∪ L̃1 and B̂ ∪ L̃2, differ by isotopy in S3\B̂ together with a
finite sequence of the two types α and β of band moves.

9



Fig. 1.12: The two types of Z-band moves.

Fig. 1.13: A geometric mixed braid and the two types of L-moves.

1.6.2 Geometric mixed braids and the L-moves

In order to translate isotopy of links in the 3-manifold M to braid equivalence, we need
to introduce the notion of a geometric mixed braid. A geometric mixed braid related to
M = χ

Z
(S3, B̂) and to a link K in M , is an element of the group Bm+n, where m strands

form the fixed surgery braid B and n strands form the moving subbraid β representing
the link K in M . For an illustration see the middle picture of Figure 1.13. We further
need the notions of the L-moves and the braid band moves.

Definition 1.7 (L-moves and Z-braid band moves, Definitions 2.1 and 5.6 [LR97]).
(i) Let B

⋃
β be a geometric mixed braid in S3 and P a point of an arc of the moving

subbraid β, such that P is not vertically aligned with any crossing or endpoint of a braid
strand. Doing an L-move at P means to cut the arc at P , to bend the two resulting
smaller arcs slightly apart by a small isotopy and to stretch them vertically, the upper
downward and the lower upward, and both over or under all other arcs of the diagram,
so as to introduce two new corresponding moving strands with endpoints on the vertical
line of the point P . Stretching the new strands over will give rise to an Lo-move and
under to an Lu-move. For an illustration see Figure 1.13. Two geometric mixed braids
shall be called L-equivalent if and only if they differ by a sequence of L-moves and braid
isotopy.
(ii) A geometric Z-braid band move is a move between geometric mixed braids which
is a band move between their closures. It starts with a little band oriented downward,
which, before sliding along a surgery strand, gets one twist positive or negative (see
Figure 1.14 (a) and (b)).

Remark 1.2. (i) In [LR97] it is shown that classical braid equivalence in S3 is generated
only by the L-moves. This implies that braid conjugation and in particular change of
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Fig. 1.14: A geometric, a parted and an algebraic Z-braid band move (top part of (d)).

the order of the endpoints of a braid can be realized by L-moves. A demonstration can
be found in [LR06] Figure 14.
(ii) A geometric Z-braid band move may be always assumed, up to L-equivalence, to
take place at the top part of a mixed braid and on the right of the specific surgery
strand ([LR06] Lemma 5).

In [LR97] the following theorem was proved for isotopic links in M = χ
Z
(S3, B̂).

Theorem 1.12 (Geometric braid equivalence for M = χ
Z
(S3, B̂), Theorem 5.10 [LR97]).

Two oriented links in M = χ
Z
(S3, B̂) are isotopic if and only if any two corresponding

geometric mixed braids in S3 differ by mixed braid isotopy, by L-moves that do not touch
the fixed subbraid B and by the geometric Z-braid band moves.

1.6.3 Algebraic mixed braids and their equivalence

Let M = χ
Z
(S3, B̂). We will pass from the geometric braid equivalence to an algebraic

statement for links in M . An algebraic mixed braid is a mixed braid on m + n strands
such that the first m strands are fixed and form the identity braid on m strands and
the next n strands are moving strands and represent a link in the manifold M . The
set of all algebraic mixed braids on m + n strands forms a subgroup of Bm+n, denoted
Bm,n, and called mixed braid group. In [La2] the mixed braid groups Bm,n have been
introduced and studied and it is shown that Bm,n has the presentation:

Bm,n =

〈
a1, . . . , am,
σ1, . . . , σn−1

∣∣∣∣∣∣∣∣∣∣

σkσj = σjσk, |k − j| > 1
σkσk+1σk = σk+1σkσk+1, 1 ≤ k ≤ n− 1
aiσk = σkai, k ≥ 2, 1 ≤ i ≤ m
aiσ1aiσ1 = σ1aiσ1ai, 1 ≤ i ≤ m
ai(σ1arσ

−1
1 ) = (σ1arσ

−1
1 )ai, r < i

〉
, (1.3)

where the loop generators ai and the braiding generators σj are as illustrated in Fig-
ure 1.15.
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Fig. 1.15: The loop generators ai, a−1
i and the braiding generators σj of Bm,n.

Fig. 1.16: Parting and combing a geometric mixed braid.

In order to give an algebraic statement for braid equivalence in M , we first part
the mixed braids and we translate the geometric L-equivalence of Theorem 1.12 to an
equivalence of parted mixed braids. Parting a geometric mixed braid B

⋃
β on m + n

strands means to separate its endpoints into two different sets, the first m belonging
to the subbraid B and the last n to β, and so that the resulting braids have isotopic
closures. This is realized by pulling each pair of corresponding moving strands to the
right and over or under each strand of B that lies on their right. We start from the
rightmost pair respecting the position of the endpoints. This process is called parting
of a geometric mixed braid and the result is a parted mixed braid. If the strands are
pulled always over the strands of B, then this parting is called standard parting. See the
middle illustration of Figure 1.16 for the standard parting of an abstract mixed braid.
For more details the reader is referred to [LR06].

Then, in order to restrict Theorem 1.12 to the set of all parted mixed braids related
to the manifold M , we need the following moves between parted mixed braids. Loop
conjugation of a parted mixed braid β is its concatenation by a loop ai (or by a−1

i ) from
above and from a−1

i (corr. ai) from below, that is β ∼ a±1βa∓1. As it turns out, two
partings of a geometric mixed braid differ by loop conjugations (cf. Lemma 2 [LR06]).
A parted L-move is an L-move between parted mixed braids. Further, a mixed braid
with an L-move performed can be parted to a parted mixed braid with a parted L-move
performed. Namely we make the parting consistent with the label of the L-move: an Lo

move will be parted by pulling over all other strands, while an Lu move will be parted
by pulling under all other strands (cf. Lemma 3 [LR06]). A parted Z-braid band move
is a geometric Z-braid band move between parted mixed braids, such that it takes place
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Fig. 1.17: Combing a parted mixed braid.

at the top part of the braid and the little band starts from the last strand of the moving
subbraid and it moves over each moving strand and each component of the surgery
braid, until it reaches from the right the specific component, and then is followed by
parting (see Figure 1.14(c)). Moreover, performing a Z-braid band move on a mixed
braid and then parting, the result is equivalent, up to L-moves and loop conjugation,
to performing a parted Z-braid band move (cf. Lemma 5 [LR06]).

Theorem 1.13 (Parted mixed braid equivalence for M = χ
Z
(S3, B̂), Theorem 3

[LR06]). Two oriented links in M = χ
Z
(S3, B̂) are isotopic if and only if any two corre-

sponding parted mixed braids differ by a finite sequence of parted mixed braid isotopies,
parted L-moves, loop conjugations and parted Z-braid band moves.

We now comb the parted mixed braids in order to translate the parted mixed braid
equivalence to an equivalence between algebraic mixed braids. Combing a parted mixed
braid means to separate the knotting and linking of the moving part away from the fixed
subbraid using mixed braid isotopy. More precisely, let Σk denote the crossing between
the kth and the (k + 1)st strand of the fixed subbraid. Then, for all j = 1, . . . , n − 1
and k = 1, . . . ,m − 1 we have: Σkσj = σjΣk. Thus, the only generating elements of
the moving part that are affected by the combing are the loops ai. This is illustrated
in Figure 1.17. In Lemma 6 [LR06] formuli are given for the effect of combing on the
ai’s (see Lemma 2.2 below).

The effect of combing a parted mixed braid is to separate it into two distinct parts:
the algebraic part at the top, which has all fixed strands forming the identity braid, so
is an element of some mixed braid group Bm,n, and which contains all the knotting and
linking information of the link L in M ; the coset part at the bottom, which contains
only the fixed subbraid B and an identity braid for the moving part (see right hand
most illustration in Figure 1.16). Let now Cm,n denote the set of parted mixed braids
on n moving strands with fixed subbraid B. Concatenating two elements of Cm,n is not
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a closed operation since it alters the braid description of the manifold. However, as a
result of the combing, for the fixed subbraid B the set Cm,n is a coset of Bm,n in Bm+n.
Fore details on the above the reader is referred to [Lam99].

Translating the parted braid equivalence into an equivalence between algebraic mixed
braids, we will obtain an algebraic statement of Theorem 1.13. Since loop conjugation
does not take into account the combing of the loop through the fixed subbraid, we
need the notion of combed loop conjugation. A combed loop conjugation is a move
between algebraic mixed braids and is the result of a loop conjugation on a combed
mixed braid followed by combing, so it can be described algebraically as: β ∼ α∓1

i βρ±1
i

for β, ai, ρi ∈ Bm,n, where ρi is the combing of the loop ai through the fixed subbraid B.
We also define algebraic M -conjugation of an algebraic mixed braid to be its conjugation
by a crossing σj (or by σ−1

j ). An algebraic M -move is defined to be the insertion of a
crossing σ±1

n on the right hand side of an algebraic mixed braid. Finally, an algebraic
L-move is defined to be a L-move between algebraic mixed braids. An algebraic L-move
has the following algebraic expression for an Lo-move and an Lu-move respectively:

α = α1α2
Lo∼ σ−1

i . . . σ−1
n α′

1σ
−1
i−1 . . . σ

−1
n−1σ

±1
n σn−1 . . . σiα

′
2σn . . . σi

α = α1α2
Lu∼ σi . . . σnα

′
1σi−1 . . . σn−1σ

±1
n σ−1

n−1 . . . σ
−1
i α′

2σ
−1
n . . . σ−1

i

(1.4)

where α1, α2 are elements of Bm,n and α′
1, α

′
2 ∈ Bm,n+1 are obtained from α1, α2 by

replacing each σj by σj+1 for j = i, . . . , n− 1.
Note that algebraic M -conjugation, the algebraic M -moves and the algebraic L-

moves commute with combing. Note also that Remark 1.2(i) applies equally to the case
of algebraic mixed braids (cf. Lemma 4 [LR06]).

We finally need to understand how a parted Z-braid band move is combed through
the surgery braid B.

Definition 1.8 (Definition 7 [LR06]). An algebraic Z-braid band move is defined to be
a parted band move between algebraic mixed braids (see top part of Figure 1.14(d)).
Setting:

λn−1,1 := σn−1 . . . σ1 and tk,n := σn . . . σ1akσ
−1
1 . . . σ−1

n ,

an algebraic band move has the following algebraic expression:

β1β2 ∼ β′
1 t

pk
k,n σ

±1
n β′

2,

where β1, β2 ∈ Bm,n and β′
1, β

′
2 ∈ Bm,n+1 are the words β1, β2 respectively with the

substitutions:

a±1
k ←→ [(λ−1

n−1,1σ
2
nλn−1,1) ak]

±1

a±1
i ←→ (λ−1

n−1,1σ
2
nλn−1,1) a

±1
i (λ−1

n−1,1σ
2
nλ

−1
n−1,1), if i < k

a±1
i ←→ a±1

i , if i > k.

Further, a combed algebraic Z-braid band move is a move between algebraic mixed
braids and is defined to be a parted Z-braid band move that has been combed through
B. So it is the composition of an algebraic Z-braid band move with the combing of the
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parallel strand and it has the following algebraic expression:

β1β2 ∼ β′
1 t

pk
k,n σ

±1
n β′

2 rk,

where rk is the combing of the parted parallel strand to the kth surgery strand through
the surgery braid.

The group Bm,n embeds naturally into the group Bm,n+1. We shall denote Bm,∞ =⋃∞
n=1 Bm,n and similarly Cm,∞ =

⋃∞
n=1 Cm,n.

We are now in position to give the algebraic Markov theorem for M = χ
Z
(S3, B̂).

Theorem 1.14 (Algebraic Markov Theorem for M = χ
Z
(S3, B̂), Theorem 5 [LR06]).

Two oriented links in M = χ
Z
(S3, B̂) are isotopic if and only if any two corresponding

algebraic mixed braid representatives in Bm,∞ differ by a finite sequence of the following
moves:

(1) Algebraic M -moves: β1β2 ∼ β1σ
±1
n β2, for β1, β2 ∈ Bm,n,

(2) Algebraic M -conjugation: β ∼ σ±1
j βσ∓1

j , for β, σj ∈ Bm,n,

(3) Combed loop conjugation: β ∼ a∓1
i βρ±1

i , for β, ai, ρi ∈ Bm,n, where ρi is the
combing of the loop ai through B,

(4) Combed algebraic braid band moves: For for every k = 1, . . . ,m we have:

β1β2 ∼ β′
1 t

pk
k,n σ

±1
n β′

2 rk,

where β1, β2 ∈ Bm,n and β′
1, β

′
2 ∈ Bm,n+1 are as in Definition 1.8 and where rk is the

combing of the parted parallel strand to the kth surgery strand through B.

Equivalently, by a finite sequence of algebraic mixed braid relations and the following
moves:

(1′) algebraic L-moves,
(2′) combed loop conjugations,
(3′) combed algebraic Z-braid band moves.

1.7 Homflypt Skein Modules

Definition 1.9. A 3-manifold M3 is a compact, connected, Hausdorff space M each
point of which has a neighborhood homeomorphic to R3. A 3-manifold with boundary
is defined similarly, except that besides neighborhoods homeomorphic to R3, neighbor-
hoods homeomorphic to R3

+ := {(x, y, z) ∈ R3 | z ≥ 0 are also allowed. The set of
points that have only neighborhoods of the second type is called boundary of M3 and
is denoted by θM3. A compact 3-manifold with no boundary is said to be closed.

where the finite group Zp acts freely on S3:
A skein module of a 3-manifold M is a module associated to M by considering all

linear combinations of links in M , modulo some properly chosen skein relation.
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Let M be an oriented 3-manifold, R = Z[u±1, z±1], L the set of all oriented links
in M up to ambient isotopy in M and let S the submodule of RL generated by the
skein expressions u−1L+−uL−−zL0, where L+, L− and L0 are oriented links that have
identical diagrams, except in one crossing, where they are as depicted in Figure 1.18.

Fig. 1.18: The links L+, L−, L0 locally.

For convenience we allow the empty knot, ∅, and add the relation u−1∅ − u∅ = zT1,
where T1 denotes the trivial knot. Then the Homflypt skein module of M is defined to
be:

S (M) = S
(
M ;Z

[
u±1, z±1

]
, u−1L+ − uL− − zL0

)
= RL/S.

Unlike the Kauffman bracket skein module, the Homflypt skein module of a 3-
manifold, also known as Conway skein module and as third skein module, is very hard
to compute.
The linear dimension of S(M) means the number of independent Homflypt-type invari-
ants defined on knots in M . For example, the Homflypt skein module of S3 is freely
generated by the unknot (Homflypt polynomial) and the Homflypt skein module of the

solid torus is generated by elements of the set t′i1
ε1 t̂′i2

ε2
. . . t′in

εn , n ∈ N, εi ∈ Z, where
t′ik

εk are shown below.
Equivalently, S(M) means the set of independent Markov traces defined on the quotient

algebra: S(M) =
CBraids of M

Markov Equivalence

g2i =(q−1)gi+q
.

Let us now see how S(ST) is described in the above algebraic language. We note first
that an element α in the basis of S(ST) described in Theorem 3.1 when ST is considered
as Annulus× Interval, can be illustrated equivalently as a mixed link in S3 when ST is
viewed as the complement of a solid torus in S3. So we correspond the element α to
the minimal mixed braid representation, which has decreasing order of twists around
the fixed strand. Figure 1.19 illustrates an example of this correspondence. Denoting

Λ′ = {t′1k1t′2k2 . . . t′nkn , ki ∈ Z \ {0} , ki+1 ≥ ki, ∀i, n ∈ N}, (1.5)

we have that Λ′ is a subset of
⋃

n H1,n. In particular Λ′ is a subset of
⋃

n Σ
′
n.

Applying the inductive trace rules to a word w in
⋃

n Σ
′
n will eventually give rise to

linear combinations of monomials in Z[q±1, z]. In particular, for an element of Λ′ we
have:

tr(tk0t′1
k1 . . . t′n−1

kn−1) = skn−1 . . . sk1sk0 .
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Fig. 1.19: An element of Λ′.

Further, the elements of Λ′ are in bijective correspondence with increasing n-tuples
of integers, (k0, k1, . . . , kn−1), n ∈ N, and these are in bijective correspondence with
monomials in sk0 , sk1 , . . . , skn−1 .

Remark 1.3. The invariant X recovers the Homflypt skein module of ST since it gives
different values for different elements of Λ′ by rule 4 of the trace.
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2

BRAID EQUIVALENCE IN 3-MANIFOLDS WITH

RATIONAL SURGERY DESCRIPTION

In this chapter we provide algebraic mixed braid classification of links in any c.c.o.
3-manifold M obtained by rational surgery along a framed link in S3. We do this by
representing M by a closed framed braid in S3 and links in M by closed mixed braids
in S3. We first prove an analogue of the Reidemeister theorem for links in M . We then
give geometric formulations of the mixed braid equivalence using the L-moves and the
braid band moves. Finally we formulate the algebraic braid equivalence in terms of the
mixed braid groups Bm,n, using cabling and the parting and combing techniques for
mixed braids. Our results set a homogeneous algebraic ground for studying links in 3-
manifolds and in families of 3-manifolds using computational tools. We provide concrete
formuli of the braid equivalences in lens spaces, in Seifert manifolds, in homology spheres
obtained from the trefoil and in manifolds obtained from torus knots.

Our setting is appropriate for constructing Jones-type invariants for links in families
of 3-manifolds via quotient algebras of the mixed braid groups Bm,n, as well as for study-
ing skein modules of 3-manifolds, since they provide a controlled algebraic framework
and much of the diagrammatic complexity has been absorbed into the proofs. Further,
our moves can be used in a braid analogue of Rolfsen’s rational calculus and potentially
in computing Witten invariants.

2.1 Introduction

In the study of knots and links in 3-manifolds, such as handlebodies, knot complements,
closed, connected, oriented (c.c.o.) 3-manifolds, as well as in the study of 3-manifolds
themselves, it can prove very useful to take an approach via braids, as the use of braids
provides more structure and more control on the topological equivalence moves. After
the construction of the Jones polynomial for links in S3, many mathematicians focused
on expressing link isotopy in oriented 3-manifolds via appropriate braids, using different
approaches, cf. for example [Sko91, Sko92], [Sun91, Sun93], [Sos92], [LR97, Lam94,



LR06, OL02].
In [LR97] braid equivalences have been obtained for isotopy of knots and links in

knot complements and in c.c.o. 3-manifolds with integral surgery description. Integral
surgery covers the generality, since every c.c.o. 3-manifold can be constructed via in-
tegral surgery along a framed link in S3, the components of which may be assumed to
be simple closed curves, giving rise to a closed framed pure braid. So, for a 3-manifold,
say M , a surgery description via a closed framed braid B̂ in S3 is fixed and we write
M = χ(S3, B̂). Then, links in M can be represented unambiguously by mixed links

in S3 (see Figure 1.8 and Figure 1.13), that is, links in S3 that contain B̂ as a fixed
sublink. Mixed links are then represented by geometric mixed braids which contain B
as a fixed subbraid. Link isotopy in M comprises isotopy in the complement S3\B̂ to-
gether with the band moves, which come from the handle sliding moves in M according
to the surgery description of M (see Figure 1.12). Isotopy in M is then translated into
mixed link equivalence. For obtaining the geometric mixed braid equivalences in M , the
authors sharpened first the classic Markov theorem giving only one type of equivalence
moves, the L-moves (see Figure 1.13), which are geometric as well as algebraic. Then,
it was proved that link isotopy in M is generated by the L-moves and the braid band
moves (see Figure 1.14). Further, in [LR06] the geometric statements were reformulated
into algebraic language, via the cosets of the braid B in the mixed braid groups Bm,n (see
(1.3) and Figure 1.15), introduced and studied in [Lam94], and the techniques of parting
and combing mixed braids (see Figure 1.16). Parting a geometric mixed braid means to
separate its strands into two sets: the strands of the fixed subbraid B and the ‘moving
strands’ of the braid representing a link in M . Combing a parted mixed braid means to
separate the braiding of the fixed subbraid B from the braiding of the moving strands
(see Figures 1.14 and 1.17). The above techniques have been also applied for obtaining
mixed braid equivalences in knot complements and in handlebodies [LR06, OL02] (see
also [Sos92]).

Integral surgery is a special case of rational surgery. There are c.c.o. 3-manifolds
which have simpler description when obtained from S3 via rational surgery. There are
even whole families of 3-manifolds described by rational surgery along the same link.
Representative examples are the lens spaces L(p, q): they are all obtained from the
trivial knot with rational surgery description p/q, while with integral surgery descrip-
tion different, non-trivial links are needed, see for example [Rol76]. Another important
example comprise the homology spheres obtained by rational surgery 1/n along the
trefoil knot: with integral surgery they would be described by more complicated knots
(see [Rol84]). Other known classes of 3-manifolds given by the same surgery descrip-
tion (with different surgery coefficients) comprise the Seifert manifolds ([Sav99]) and
manifolds obtained by surgery along torus knots ([Mos71]). We note that a whole fam-
ily of 3-manifolds described by different framings on the same link, in our setting is
represented by the same cosets of the mixed braid groups Bm,n.

The purpose of this chapter is to provide mixed braid equivalences, geometric as well
as algebraic, for isotopy of oriented links in families of c.c.o. 3-manifolds obtained by
rational surgery along framed links in S3. A simpler surgery description of a c.c.o. 3-
manifold M is expected to induce simpler algebraic expressions for the braid equivalence
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in M . As an example, compare [LR06, §4] with §2.7.2 in this paper for the case of lens
spaces: in this paper the Q-mixed braid equivalence is in the mixed braid groups B1,n

and there is only one expression for the braid band moves, while in [LR06] there are
many, according to the integer surgery coefficient of each strand of the surgery pure
braid; on top of that combing is also needed. Further, in §2.7 we give the algebraic Q-
mixed braid equivalences for links in all four families of 3-manifolds mentioned above.
In the paper we use the setting and the results of [LR97, LR06] and our results extend
the results of [LR97, LR06] to rational surgery descriptions and to arbitrary framed
braids. We first formulate the geometric Q-mixed braid equivalence via the L-moves
and the braid band moves and then we move gradually to the algebraic statement by
introducing the notion of cabling and applying the parting and combing techniques of
[LR06].

More precisely: let M be a c.c.o. 3-manifold obtained by rational surgery along a
framed link B̂ in S3. Note that the surgery braid B is not assumed to be a pure braid.
Let s be a surgery component of B with surgery description p/q consisting of k strands,
s1, . . . , sk. When a geometric Q-braid band move on s occurs, k sets of q new strands
appear, each one running in parallel to a strand of s, and also a (p, q)-torus braid d′

wraps around the last strand, sk, p times, followed by a positive or negative crossing c′±,
see Figures 2.10 (shaded region) and 2.7. These moves together with the L-moves lead
to the geometric Q-mixed braid equivalence in M (Theorem 2.3) (see also [LR97, Sko92,
Sun93]). The Q-braid band moves are clearly much more complicated than the Z-braid
band moves in [LR97]. However, a sharpened version of the Reidemeister theorem for
links in M (Theorem 2.2; see also [LR97, Sko91, Sun91]), whereby only one type of band
moves is used in the mixed link isotopy (see Figure 2.1), makes the proof of Theorem 2.3
quite light.

In order to move toward an algebraic statement we adapt the techniques and results
of [LR06] using the notion of a q-strand cable. A q-strand cable represents a set of q new
strands arising from the performance of a geometric braid band move. So, we show first
that standard parting of a q-strand cable is equivalent to standard parting of each strand
of the cable one by one; in other words that parting and cabling commute. Treating
now each one of the k q-strand cables as one thickened strand leads to the parted Q-
mixed braid equivalence (Theorem 2.4), assuming the corresponding result with integral
surgery from [LR06]. We continue by finding algebraic expressions for the loopings of the
cables around the fixed strands of B (Lemma 2.3). Then, after a parted Q-braid band
move is performed (Figure 2.20a), we part locally the (p, q)-torus braid d′, the crossing
c′± and the loop generators aj between the moving and the fixed strands obtaining their
corresponding algebraic expressions (see Figures 2.17, 2.18, 2.19 and Definition 6(i)).
In this way we obtain the algebraic expression of an algebraic Q-braid band move, which
takes place on elements of the braid groups Bm,n (see top part of Figure 2.20b) and
Definition 2.4(i)). Finally, we do combing through the fixed subbraid B and we show
that combing and cabling commute (see Figures 2.14 to 2.16). After the combing our
parted mixed braids as well as the Q-braid band moves get separated from the fixed
subbraid B, having picked information from it. So, we obtain the algebraic Q-mixed
braid equivalence for links in M in terms of the mixed braid groups Bm,n and this is our
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main result (Theorem 2.5). Further, in §2.7.2–§2.7.5 we apply Theorem 2.5 to give the
concrete algebraic expressions for the Q-mixed braid equivalences in the aforementioned
families of 3-manifolds.

Our results set a homogeneous algebraic ground for studying links in families of 3-
manifolds with the computational advantage. Indeed, as we discuss in §2.7.6, our setting
is the right one for constructing Jones type invariants (such as analogues of the Jones
polynomial and the 2-variable Jones or Homflypt polynomial) for links in 3-manifolds via
appropriate quotient algebras of the mixed braid groups Bm,n (such as analogues of the
Temperley-Lieb algebras and the Iwahori-Hecke algebras) which support Markov traces.
This topological motivation gives rise to new algebras worth studying. Then one can
derive link invariants in the complement S3 \ B̂, which then have to satisfy all possible

band moves, for extending them to link invariants in the manifold M = χ(S3, B̂). Our
results can be equally applied to the study of skein modules of c.c.o. 3-manifolds, using
braid techniques (see §2.7.6). The advantage of the braid approach is that the algebraic
mixed braid equivalences provide good control over the band moves, better than in the
diagrammatic setting, and much of the diagrammatic complexity is absorbed into the
proofs of the algebraic statements. We only need to consider one type of orientations
patterns and the braid band moves are limited. A good example and the simplest one
demonstrating the above is the case of the lens spaces L(p, 1): in [Lam99] a generic
analogue of the Homflypt polynomial for links in the solid torus, ST, has been defined
from the generalized Hecke algebras of type B via a Markov trace constructed on them.
This invariant recovers the Homflypt skein module of ST. In order to extend this to
an invariant of links in L(p, 1) in Chapter 3 we solve an infinite system of equations
resulting from the braid band moves and we show that it has a unique solution, which
proves the freeness of the module. In [GM14] the same problem has been solved using
the diagrammatic approach. Finally, our Q-braid band move can be used for providing a
braid analogue of the Rational calculus, which is Rolfsen’s analogue to the Kirby calculus
for manifolds with rational surgery description [Rol84], extending the braid approach
to the Kirby calculus by Ko and Smolinsly [KS92] (see §2.7.7). Then, our results can
potentially lead to a braid computational approach to the Witten invariants.

This chapter is organized as follows. In §2.2 we prove the sharpened version of the
Reidemeister theorem for knots and links in c.c.o. 3-manifolds with rational surgery
description (Theorem 2.2). In §2.3 we derive the geometric Q-mixed braid equivalence
for links in such 3-manifolds (Theorem 2.3) and we introduce the cabling. In §2.4 we
derive the parted Q-mixed braid equivalence using the cabling and in §2.5 we show that
combing and cabling commute. These lead to §2.6 where we give the algebraic Q-mixed
braid equivalence (Theorem 2.5). In §2.7.2–§2.7.5 the reader will find the application
of Theorem 2.5 to the aforementioned families of 3-manifolds. In §2.7.6 we discuss
applications to Jones-type invariants of links in 3-manifolds and to skein modules of 3-
manifolds; finally, in §2.7.7 we discuss the potential application to formulating Rolfsen’s
Rational Calculus in terms of braids and to the computation of the Witten invariants.
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Fig. 2.1: The two types of Q-band moves.

2.2 The Reidemeister Theorem for links in 3-manifolds

>From now on M will denote a c.c.o. 3-manifold obtained from S3 by rational surgery,
that is surgery along a framed link B̂ with rational coefficients, denoted M = χ

Q
(S3, B̂).

Let L be an oriented link in M . By the discussion in §1.6.1, isotopy in M is translated
into isotopy in S3\B̂ together with the two types, α and β, of band moves for mixed
links in S3. The band moves in this case are described as follows. Let c be a component
of B̂ with framing p/q. The specified parallel curve l of c is a (p, q)-torus knot on
the boundary of a tubular neighborhood of c which, by construction, bounds a disc in
M . Then, a Q-band move along c is the connected sum of a component of L with the
(p, q)-torus knot l and there are two types, α and β, according to the orientations. The
two types of band moves are illustrated in Figure 2.1, where c is a trefoil knot with 2/3
surgery coefficient and where “band move" is shortened to “b.m.". Clearly, Theorem 1.11
applies also to M = χ

Q
(S3, B̂). Namely:

Theorem 2.1 (Reidemeister for M = χ
Q
(S3, B̂) with two types of band moves). Two

oriented links L1, L2 in M are isotopic if and only if any two corresponding mixed link
diagrams of theirs, B̂ ∪ L̃1 and B̂ ∪ L̃2, differ by isotopy in S3\B̂ together with a finite
sequence of the two types α and β of band moves.

In this section we sharpen Theorem 2.1. More precisely, we show that only one
of the two types of band moves is necessary in order to describe isotopy for links in
M . The proof is based on a known contrivance, which was used in the proof of Theo-
rem 5.10 [LR97] (Theorem 1.12) for establishing the sufficiency of the geometric braid
band moves in the mixed braid equivalence for the case of integral surgery (see Fig-
ure 2.2). Theorem 2.2 simplifies the proof of Theorem 2.3.

Theorem 2.2 (Reidemeister for M = χ
Q
(S3, B̂) with one type of band moves). Two

oriented links L1, L2 in M are isotopic if and only if any two corresponding mixed link
diagrams of theirs, B̂

⋃
L1 and B̂

⋃
L2, differ by a finite sequence of the band moves of

type α (or equivalently of type β) and isotopy in S3\B̂.

Proof. Let L be an oriented link in M . By Theorem 2.1, it suffices to show that a band
move of type β can be obtained from a band move of type α and isotopy in the knot
complement. We will first demonstrate the proof for an unknotted surgery component
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Fig. 2.2: A type-β band move follows from a type-α band move in the case of integral surgery
coefficient.

Fig. 2.3: Twist cancelation.

c with integral coefficient p. (Note that integral surgery description can be considered
as a special case of rational surgery description.) We shall follow the steps of the proof
in Figure 2.2 where p = 2. We start with performing a band move of type β using
a component s of the link L. In Figure 2.2 we see the two twists of the band move
wrapping around the surgery curve c in the righthand sense. Then, using an arc of the
same link component s, we perform a second band move of type α. This will take place
within a thinner tubular neighborhood than the first band move. So, the two twists of
the second band move, which also wrap around c in the righthand sense, commute with
the two twists of the first band move. We arrange all 2p twists in pairs as follows. We
pass one twist from the second band move (the closest) through all twists of the first
band move, see Figure 2.3. Since all twists follow the righthand sense, the two innermost
twists coming from the second and the first band move, create a little band which can
be eliminated using isotopy in the knot complement of c. This is the cancelation of the
first pair of the 2p twists. Repeating the same procedure we cancel all p pairs and we
end up with the component s of the link L as it was in the initial position before the
band moves.

For the more general case of rational surgery along any knot c we follow the same
idea. More precisely, we perform a Q-band move of type β along c and we obtain an
outer (p, q)-torus knot. Then, we perform a Q-band move of type α along c and we
obtain an inner (p, q)-torus knot. In Figure 2.4 we illustrate this for the case where
p = 2, q = 3 and c a trefoil knot.

Without loss of generality (by isotopy in the complement of c), the second band move
is performed on the innermost arc of the q arcs parallel to c, creating q new parallel
arcs even closer to c. After the second Q-band move is performed, the outer arc of the
q new arcs and the inner arc of the q arcs coming from the first band move of type α
form a band (see shaded area in Figure 2.4). Then, using isotopy in the complement
of c, we eliminate this band by pulling it along c. This will result in the elimination of
p− q pairs of parallel arcs to c. In our example, this is done in Figure 2.5.

As in the case of integral surgery the twists coming from the two band moves com-
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Fig. 2.4: A band move of type β followed by a band move of type α.

Fig. 2.5: Band with boundary two parallel arcs of opposite orientations.

Fig. 2.6: Retracting the band along the surgery component.
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Fig. 2.7: A Q-braid band move locally.

mute. Arranging these 2p twists pairwise, they cancel out by the fact that all twists
have the same handiness, but opposite orientation. In the end, s is left as in its initial
position.

So, a Q-band move of type β can be performed using a Q-band move of type α and
isotopy in the complement of the surgery component c. The proof of Theorem 2.2 is
now concluded.

2.3 Geometric Q-mixed braid equivalence

In this section we extend Theorem 1.12 to manifolds with rational surgery description,
that is M = χ

Q
(S3, B̂), using the sharpened Reidemeister theorem for M (Theorem 2.2).

We first need the following.

Definition 2.1. A geometric Q-braid band move is a move between geometric mixed
braids which is a Q-band move of type α between their closures. It starts with a little
band (an arc of the moving subbraid) close to a surgery strand with surgery coefficient
p/q. The little band gets first one twist positive or negative, which shall be denoted as c′±
and then is replaced by q strands that run in parallel to all strands of the same surgery
component and link only with that surgery strand, wrapping around it p times and,
thus, forming a (p, q)-torus knot. See Figure 2.7 for local and Figure 2.10 (shaded area)
for global illustration. This braided (p, q)-torus knot is denoted as d′. A geometric
Q-braid band move with a positive (resp. negative) twist shall be called a positive
geometric Q-braid band move (resp. negative geometric Q-braid band move).

By Remark 1(ii) a Q-braid band move may be assumed to take place at the top part
of a mixed braid and all strands from a Q-braid band move may be assumed to lie on
the righthand side of the surgery strands. We shall now prove the following.

Theorem 2.3 (Geometric braid equivalence for M = χ
Q
(S3, B̂)). Two oriented links in

M are isotopic if and only if any two corresponding geometric mixed braids in S3 differ
by mixed braid isotopy, by L-moves that do not touch the fixed subbraid B and by the
geometric Q-braid band moves.
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Fig. 2.8: A type α band move and its braiding (locally).

Proof. The proof is completely analogous to and is based on the proof of Theorem
5.10 [LR97] (Theorem 1.12). Let K1 and K2 be two isotopic oriented links in M . By

Theorem 2.2, the corresponding mixed links B̂
⋃
K1 and B̂

⋃
K2 differ by isotopy in

the complement of B̂ and Q-band moves of type α. Note that, by Theorem 2.2 we
do not need to consider band moves of type β. By Theorem 5.10 [LR97], isotopy in

the complement of B̂ translates into geometric braid isotopy and the L-moves. Let
now B̂

⋃
K1 and B̂

⋃
K2 differ by a Q-band move of type α (recall Figure 2.1). Let

B̂
⋃
K̃1 and B̂

⋃
K̃2 be two mixed link diagrams of the mixed links B̂

⋃
K1 and B̂

⋃
K2

which differ only by the places illustrated in Figure 2.8. As in [LR97], by the braiding

algorithm given therein, the diagrams B̂
⋃
K̃1 and B̂

⋃
K̃2 may be assumed braided

everywhere except for the places where the Q-band move is performed.
We now braid the up-arc in Figure 2.8(b) and obtain a geometric mixed braid B̂

⋃
b1

corresponding to the diagram B̂
⋃

K̃1 (see Figure 2.8(a)). Note that Figure 2.8(c) is
already in braided form and let B

⋃
b2 denote the geometric mixed braid corresponding

to the diagram B̂
⋃

K̃2.
We would like to show that the two mixed braids B

⋃
b1 and B

⋃
b2 differ by the

moves given in the statement of the Theorem.
We perform a Reidemeister I move on B̂

⋃
K̃1 with a negative crossing and obtain

the diagram B̂
⋃
K̃ ′

1. Then, the corresponding mixed braids, B
⋃
b1 and B

⋃
b′1, differ

by mixed braid isotopy and L-moves (see Figure 2.9(a) and (b)). We then perform a
positive Q-braid band move on B

⋃
b′1 and obtain the mixed braid B

⋃
b′2. In the closure

of B
⋃

b′2 we unbraid and re-introduce the two up-arcs illustrated in Figure 2.9(b),

obtaining a diagram B̂
⋃

K̃ ′
2 with the formation of a Reidemeister II move. Performing

this move on B̂
⋃
K̃ ′

2 we obtain the diagram B̂
⋃
K̃2, which is already in braided form

and its corresponding mixed braid is B
⋃

b2 (see Figure 2.9(c) and (d)). So, the mixed
braids B

⋃
b′2 and B

⋃
b2 differ by mixed braid isotopy and L-moves. Therefore, we

showed that the braids B
⋃
b1 and B

⋃
b2 in Figure 2.8(a) and (c) differ by mixed braid

isotopy, L-moves and a braid band move. This concludes the proof.
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Fig. 2.9: The steps of the proof of Theorem 2.3.

2.3.1 Introducing cabling

In order to translate the geometric mixed braid equivalence to an equivalence of algebraic
mixed braids we follow the strategy in [LR06]. Namely, we apply to the geometric mixed
braids first parting and then combing. What makes things more complicated in the
case of rational surgery description is that the surgery braid B is in general not a pure
braid and when we apply a Q-braid band move on a mixed braid, the little band that
approaches the surgery strand is replaced by q strands that run in parallel to all strands
of the same surgery component. In order to proceed we need the notion of a q-strand
cable.

Definition 2.2. We define a q-strand cable to be a set of q parallel strands coming from
a Q-braid band move and following one strand of the specified surgery component.

Treating the new strands coming from the braid band move as cables running in
parallel to the strands of a surgery component, that is, treating each cable as one
thickened strand, we may adopt and apply results from [LR06].

2.4 Parted Q-mixed braid equivalence

Let B
⋃
β be a geometric mixed braid and suppose that a Q-braid band move is per-

formed on it. We part B
⋃

β following the exact procedure as in [LR06]. More precisely,
we have the following.

Lemma 2.1. Cabling and standard parting commute. That is, standard parting of a
mixed braid with a Q-braid band move performed and then cabling, is the same as cabling
first the set of new strands and then standard parting.
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Fig. 2.10: A parted Q-braid band move using cables.

Proof. Let B
⋃

β be a geometric mixed braid on m+ n strands and let a Q-braid band
move be performed on a surgery component s of B. Let also s1, . . . , sk ∈ {1, . . . ,m}
be the numbers of the strands of the surgery component s and let c1, . . . , ck denote the
q-strand cables corresponding to s1, . . . , sk. On the one hand, after the Q-braid band
move is performed and before any cablings occur, we part the geometric mixed braid
following the procedure of the standard parting as described in §1.6.3 (recall middle
illustration of Figure 1.16). On the other hand we cable first each set of q-strands
resulting from the Q-braid band move and then we part the geometric mixed braid with
the standard parting, treating each cable as one (thickened) strand. Since both cabling
and parting a geometric mixed braid respect the position of the endpoints of each pair
of corresponding moving strands, it follows that cabling and parting commutes.

Recall from §1.6.3 that a geometric L-move can be turned to a parted L-move. In
order to give the analogue of Theorem 1.13 in the case of rational surgery we also need
to introduce the following adaptation of a parted Z-braid band move.

Definition 2.3. A parted Q-braid band move is defined to be a geometric Q-braid band
move between parted mixed braids, such that it takes place at the top part of the
braid and on the right of the rightmost strand, sk, of the specific surgery component, s,
consisting of the strands s1, . . . , sk. Moreover, the little band starts from the last strand
of the moving subbraid and it moves over each moving strand and each component of
the surgery braid, until it reaches the last strand of s, and then is followed by parting
of the resulting mixed braid, as illustrated in Figure 2.10.

Then Theorem 2.3 restricts to the following.
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Fig. 2.11: The elements λk,r.

Theorem 2.4 (Parted version of braid equivalence for M = χ
Q
(S3, B̂)). Two oriented

links in M = χ
Q
(S3, B̂) are isotopic if and only if any two corresponding parted mixed

braids in Cm,∞ differ by a finite sequence of parted L-moves, loop conjugations and
parted Q-braid band moves.

Proof. By Lemma 2.1 the cables resulting from a geometric Q-braid band move are
treated as one strand, so we can apply Theorem 1.13. Moreover, by Lemma 9 in [LR06]
a geometric Q-braid band move may be always assumed, up to L-equivalence, to take
place on the right of the rightmost strand of the specific surgery component.

2.5 Combing and cabling

In order to translate Theorem 2.4 into an algebraic equivalence between elements of
Bm,∞ we need the following lemmas.

Lemma 2.2 (Combing Lemma, Lemma 6 [LR06]). The crossings Σk, k = 1, . . . ,m−1
of the fixed subbraid B, and the loops ai, for i = 1, . . . ,m, satisfy the following ‘combing’
relations:

Σka
±1
k = a±1

k+1Σk

Σka
±1
k+1 = a−1

k+1a
±1
k ak+1Σk

Σka
±1
i = a±1

i Σk if i 6= k, k + 1
Σ−1

k a±1
k = aka

±1
k+1a

−1
k Σ−1

k

Σ−1
k a±1

k+1 = a±1
k Σ−1

k

Σ−1
k a±1

i = a±1
i Σ−1

k if i 6= k, k + 1.

Notation: We set λk,r := σkσk+1 . . . σr−1σr, for k < r and λk,r := σkσk−1 . . . σr+1σr, for
r < k. We note that λi,i := σi. Also, by convention we set λ0,i = λi,0 := 1.

Then we have the following:

Lemma 2.3. A positive looping between a q-strand cable and the jth fixed strand of the
fixed subbraid B has the algebraic expressions:

q−1∏

i=0

λi,1ajλ
−1
i,1 =

q−1∏

i=0

λ−1
1,(q−1)−i

ajλ1,(q−1)−i ,
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Fig. 2.12: A positive looping between a cable and a fixed strand.

Fig. 2.13: A negative looping between a cable and a fixed strand.

while a negative looping has the algebraic expressions:

q−1∏

i=0

λ−1
1,i a

−1
j λ1,i =

q−1∏

i=0

λ(q−1)−i,1a
−1
j λ−1

(q−1)−i,1 .

Proof. We start with Figure 2.12(a) where a positive looping between a q-strand cable
and a fixed stand of the mixed braid is shown. In Figure 2.12(b) the cable is replaced
by the q strands according to Definition 2.2. Then, using mixed braid isotopy, we
end up with Figure 2.12(c), top, whereby we can read directly the algebraic expression∏q−1

i=0 λi,1ajλ
−1
i,1 . The second algebraic expression comes from the bottom illustration of

Figure 2.12. Similarly, in Figure 2.13 we illustrate the case where a negative looping
between a q-strand cable and a fixed strand of the mixed braid occurs.

Lemma 2.4. Cabling and combing commute. That is, treating a q-strand cable as
a thickened moving strand and combing it through the fixed subbraid B, the result is
equivalent to combing one by one each strand of the cable.

Proof. According to the Combing Lemma we have to consider all cases between looping
and crossings of the subbraid B. We will only examine the four cases illustrated in
Figure 1.17 as representative cases. All others are completely analogous. The first case
is illustrated in Figure 2.14, where a positive looping between the cable and the kth
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Fig. 2.14: Combing and cabling commute: Proof of Case 1.

fixed strand of B is being considered and the crossing of the fixed strands is positive.
For a negative looping the proof is similar.

We now consider the case illustrated in Figure 2.15, where a positive looping between
the cable and the (k + 1)th fixed strand of B is being considered, and the crossing in B
is positive. We shall prove this case by induction on the number of strands that belong
to the cable, since, as we can see from Figure 2.15, the resulting algebraic expressions
are not directly comparable.

The case where the cable consists of one strand is trivial. For a two-strand cable,
combing the cable first and then uncabling (see top part part of Figure 2.15) results in
the algebraic expression:

α−1
2 (σ−1

1 α−1
2 σ1) α1 (σ−1

1 α1σ1) α2 (σ−1
1 α2σ1),

while uncabling first and then combing (bottom part of Figure 2.15) results in the
algebraic expression:

(α−1
2 α1α2) (σ

−1
1 α−1

2 α1α2σ1).

We show below that these algebraic expressions are equal, whereby we have under-
lined expressions which are crucial for the next step. Indeed:

α−1
2 (σ−1

1 α−1
2 σ1)α1(σ1α1σ

−1
1 )α2(σ1α2σ

−1
1 ) = (α−1

2 α1α2)(σ1α
−1
2 α1α2σ

−1
1 ) ⇔

(σ−1
1 α−1

2 σ1)α1(σ1α1σ
−1
1 )α2(σ1) = (α1α2)(σ1α

−1
2 α1) ⇔

σ−1
1 α−1

2 σ1α1α2σ1α1σ
−1
1 σ1 = α1α2σ1α

−1
2 α1 ⇔

σ−1
1 α−1

2 σ1α1(σ
−1
1 σ1)α2σ1 = α1α2σ1α

−1
2 ⇔

σ−1
1 σ1α1σ

−1
1 α−1

2 σ1α2σ1 = α1α2σ1α
−1
2 ⇔

σ−1
1 α−1

2 σ1α2σ1 = α2σ1α
−1
2 ⇔

σ1α2σ1α2 = α2σ1α2σ1
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Fig. 2.15: Combing and cabling commute: Case 2.

We ended up with one of the defining relations of the mixed braid group Bm,n, recall
(1.3).

We now consider a (q+1)-strand cable and we let the first q strands form a q-strand
subcable. We first comb the q-strand cable and then the (q+ 1)st strand and the result
follows by applying the case of a 2-strand cable and the induction hypothesis for the
q-strand cable (see Figure 2.16).

2.6 Algebraic Q-mixed braid equivalence

Let now B
⋃

β be a parted mixed braid and let a parted Q-braid band move be per-
formed on the last strand, sk, of a surgery component consisting of the strands s1, . . . , sk.
Recall Figure 2.10. In order to give an algebraic expression for the parted Q-braid band
move, we part locally the subbraids d′ and c′± and the loop generators ai, i = 1, . . . ,m,
and we use mixed braid isotopy in order to transform d′ into d and c′± into c±. See
Figures 2.17, 2.18, 2.19. Then, d has the algebraic expression:

d = [ λn+kq−1,n+(k−1)q+1 λ−1
n+1,n+(k−1)q λn,1 ask λ−1

n,1 λ−1
n+1,n+(k−1)q ]p (2.1)

and c± has the algebraic expression:

c± = λn,n+kq−2 σ±1
n+kq−1 λ−1

n,n+kq−2. (2.2)

We are now in the position to give the definition of an algebraic Q-braid band move.
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Fig. 2.16: Combing and cabling commute: Proof of Case 2.

Fig. 2.17: Algebraization of the (p, q)-torus braid d′ to d after a Q-braid band move is per-
formed.
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Fig. 2.18: Algebraization of the crossing part c′± to c± after a Q-braid band move is performed.

Fig. 2.19: Algebraization of the loop generators aj after a Q-braid band move is performed.
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Definition 2.4. (i) An algebraic Q-braid band move is defined to be a parted Q-braid
band move between elements of Bn,∞ and it has the following algebraic expression:

β ∼ d c± β′,

where β′ is the algebraic mixed braid β with the substitutions:

ai
±1 ←→ ai

±1, for i > sk,

ai
±1 ←→ λ−1

n−1,1λn,n+kq−1λn+kq−1,1 ai
±1

λ−1
n−1,1λ

−1
n+kq−1,nλ

−1
n,n+kq−1λn−1,1, for i < s1,

asj ←→ λ−1
n−1,1λn,n+kq−1λn+kq−1,n+(j−1)qλ

−1
n,n+(j−1)q−1λn−1,1 asj

λ−1
n−1,1λn,n+jq−1λ

−1
n+kq−1,n+jqλ

−1
n,n+kq−1λn−1,1

a−1
sj

←→ λ−1
n−1,1λn,n+kq−1λn+kq−1,n+jqλ

−1
n,n+jq−1λn−1,1 a−1

sj

λ−1
n−1,1λn,n+(j−1)q−1λ

−1
n+kq−1,n+(j−1)qλ

−1
n+kq−1,nλn−1,1,

for sj ∈ {s1, . . . , sk},

a±1
j ←→ λ−1

n−1,1λn,n+kq−1λn+kq−1,n+(r−1)qλ
−1
n,n+(r−1)q−1λn−1,1a

±1
j

λ−1
n−1,1λn,n+(r−1)q−1λ

−1
n+kq−1,n+(r−1)qλ

−1
n,n+kq−1λn−1,1, for sr−1 < j < sr.

(ii) A combed algebraic Q-braid band move is a move between algebraic mixed braids
and is defined to be a parted Q-braid band move that has been combed through B.
Moreover, it has the following algebraic expression:

β ∼ d c± β′ combB(c1, . . . , ck),

where combB(c1, . . . , ck) is the combing of the parted q-strand cables c1, . . . , ck through
the surgery braid B (see Figure 2.20).

We are, finally, in the position to state the following main result of the paper.

Theorem 2.5 (Algebraic mixed braid equivalence for M = χ
Q
(S3, B̂)). Let s1, . . . , sk

be the numbers of the strands of a surgery component s and let c1, . . . , ck be the corre-
sponding q-strand cables arising from a Q-braid band move performed on s. Then, two
oriented links in M are isotopic if and only if any two corresponding algebraic mixed
braid representatives in Bm,∞ differ by a finite sequence of the following moves:
(i) M -moves: β1β2 ∼ β1σ

±1
n β2, for β1, β2 ∈ Bm,n,

(ii) M-conjugation: β ∼ σ∓1
j βσ±1

j , for β, σj ∈ Bm,n,

(iii) Combed loop conjugation: β ∼ α∓1
i β ρ±1

i , for β ∈ Bm,n, where ρi is the combing
of the loop αi through B,
(iv) Combed algebraic braid band moves: β ∼ d c± β′ combB(c1, . . . , ck), where the
algebraic expressions of d and c± are as in Eqs. (3) and (4) respectively, β′ is β with
the substitutions of the loop generators as in Definition 2.4 and combB(c1, . . . , ck) is the
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Fig. 2.20: Combing a parted Q-braid band move results in an algebraic Q-braid band move
followed by its combing.

combing of the resulting q-strand cables c1, . . . , ck through the fixed subbraid B. Equiva-
lently, by the same moves as above, where (i) and (ii) are replaced by algebraic L-moves
(see algebraic expressions in Eqs. 2).

Proof. The arguments for passing from parted braid equivalence (Theorem 2.4) to al-
gebraic braid equivalence are the same as in those in the proof of the transition from
Theorem 1.13 to Theorem 1.14 in the case of integral surgery. The only part we need
to analyze in detail is the algebraization of a parted Q-braid band move. Namely, we
will show that the following diagram commutes.

Cm,n ∋ B
⋃
β

Parted Q-b.b.m.−−−−−−−−−→ B
⋃

β′ ∈ Cm,n+kq∥∥∥
∥∥∥

combB(β) combB(β
′)y

y

Bm,n ∋ algB(β)
Algebraic Q-b.b.m.−−−−−−−−−−→ algB(β

′) ∈ Bm+n+kq

In words, we start with a parted mixed braid B
⋃

β ∈ Cm,n and we perform on it a parted
Q-braid band move (Definition 2.3) obtaining a parted mixed braid B

⋃
β′ ∈ Cm,n+kq,

where k is the number of strands forming the surgery component. We then comb both
parted mixed braids obtaining combB(β) and combB(β

′) respectively. We will show that
the corresponding algebraic parts, algB(β) ∈ Bm,n and algB(β

′) ∈ Bm,n+kq differ by the
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algebraic braid equivalence given in the statement of the theorem. We apply Lemma 8
in [LR06], where the q strands of a braid band move are placed in the cable and the
cable is treated as one strand. More precisely, we note that the parted Q-braid band
move takes place at the top of the braid, so it forms an algebraic Q-braid band move.
We now comb away β to the top of B and on the other side we comb away β′. Since the
q-strands cable of the parted Q-braid band move lie very close to the surgery strands,
this ensures that the loops α±1

j around any strand of the k strands of the specific surgery
components get combed in the same way before and after the Q-braid band move. So,
having combed away β we are left at the bottom with the identity moving braid on
the one hand, and with the combing of all cables of the braid band move on the other
hand, which is precisely what we denote combB(). Finally, by Lemma 2.4, combing and
cabling commute. Thus, the Theorem is proved.

2.7 Applications

In this section we give the braid equivalences for knots in specific families of 3-manifolds
that play a very important role in 3-dimensional topology, such as the lens spaces L(p, q),
homology spheres and Seifert manifolds. It is worth mentioning, in general, that any
framed link gives rise to a whole family of 3-manifolds obtained from different rational
surgeries along the link. This approach sets the ground for a homogeneous treatment
for studying the knot theory of 3-manifolds, for example the skein modules of oriented
3-manifolds with or without boundary.

2.7.1 Illustrations for an abstract generic example

Let M be the manifold obtained by rational surgery along a framed link B̂ in S3. Let
also B

⋃
β be a parted mixed braid representing a link in M . In Figures 2.21 to 2.26

we illustrate step-by-step the algebraization of a geometric Q-braid band move. More
precisely, in Figure 2.21 a geometric Q-braid band move takes place on the last strand
of a surgery component (s1, . . . , sk) of B. In Figure 2.22 we part all cables c1, . . . , ck
arising from the geometric Q-braid band move, turning the initial geometric Q-braid
band move to a parted Q-braid band move. In Figure 2.22 we also part locally the
(p, q)-torus subbraid d′. This leads to the algebraic expression d of d′, illustrated in
Figure 2.23, where the local parting of the crossing subbraid c′± is also initiated. In
Figure 2.24 the algebraic expression c± of c′± is illustrated and the local parting of
all loop generators is also initiated. This leads to the algebraic expressions of the loop
generators, in Figure 2.25, where also the preparation for combing of the cables c1, . . . , ck
through B is illustrated. Note that the top part of Figure 2.25 (above the dotted line)
illustrates an algebraic Q-braid band move. Finally, in Figure 2.26 the combing of
the cables c1, . . . , ck through B is performed and the final result is a combed algebraic
Q-braid band move.
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Fig. 2.21: A geometric Q-braid band move.
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Fig. 2.22: Parting locally d′.
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Fig. 2.23: Algebraization of d′ to d and local parting of c′±.

41



Fig. 2.24: Algebraization of c′± to c and local parting of the loop generators ai.
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Fig. 2.25: Algebraization of the loop generators and preparation for combing.
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Fig. 2.26: The combing of the cables through B.

2.7.2 Lens spaces L(p, q)

It is known that the lens spaces L(p, q) can be obtained by surgery on the unknot with

surgery coefficient p/q. So, the fixed braid B̂ that represents L(p, q) is the identity braid
of one single strand and thus, no combing is needed. We have the following (compare
with [LR06, §4]):
Two oriented links in L(p, q) are isotopic if and only if any two corresponding algebraic
mixed braids in B1,∞ differ by a finite sequence of the moves given in Theorem 2.5,
where in particular:

(iv) Algebraic braid band moves: For β ∈ B1,n we have: β ∼ d c± β′, where:

d = [λn+q−1,1 a1 λ−1
1,n+q−1]

p, c± = λn,n+q−1 σ±1
n+q−1 λ−1

n,n+q−1,

and where β′ ∈ B1,n+q is the word β with the substitutions:

a1 ←→ (λ−1
n−1,1 λn,n+q−1 λn+q−1,1) a1, and a1

−1 ←→ a1
−1 (λ−1

n+q−1,1 λ−1
n,n+q−1 λn−1,1).

44



Fig. 2.27: A Q-braid band move in L(p, q) and its algebraization.

Fig. 2.28: An algebraic Q-braid band move in L(2, 3).

In Figure 2.28 the case where p = 2 and q = 3 is illustrated.

2.7.3 Homology spheres

It is known that a Dehn surgery on a knot yields a homology sphere exactly when
the surgery coefficient is the reciprocal of an integer (see [Rol76] p.262). For example,
surgery on the right-handed trefoil, with surgery coefficient −1 yields the Poincare
Manifold also known as dodecahedral space (for the algebraic braid equivalence in this
case see [LR06, §4]). In this subsection we give the algebraic braid equivalence for knots
in a homology sphere M obtained from S3 by surgery on the trefoil knot with rational
surgery coefficient 1/q, where q ∈ Z. As explained in [Rol84] if one used integral surgery
description, one would need a different knot for each q.

Two oriented links in M are isotopic if and only if any two corresponding algebraic
mixed braids in B2,∞ differ by a finite sequence of the moves given in Theorem 2.5,
where in particular:

(iv) Combed algebraic braid band moves: β ∼ d c± β′ combB(c1, c2), where:
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Fig. 2.29: Surgery description of a Seifert manifold.

β ∈ B2,n,
d = (λn+2q−1,n+q+1 λ−1

n+1,n+q λn,1) a2 (λ−1
n,1 λn+1,n+q),

c± = λn,n+2q−1 σ±1
n+2q−1 λ−1

n,n+2q−1,

β′ is the word β with the substitutions:

a1 ←→ (λ−1
n−1,1 λn,n+2q−1 λn+2q−1,n+q λ−1

n,n+q−1 λn−1,1)a1,

a−1
1 ←→ a−1

1 (λ−1
n−1,1 λn,n+q−1 λ−1

n+2q−1,n+q λ−1
n,n+2q−1 λn−1,1),

a2 ←→ (λ−1
n−1,1 λn,n+2q−1 λn+2q−1,1) a2

(λ−1
n−1,1 λn,n+q−1 λ−1

n+2q−1,n+q λ−1
n,n+2q−1 λn−1,1),

a−1
2 ←→ (λ−1

n−1,1 λn,n+2q−1 λn+2q−1,n+q λ−1
n,n+q−1 λn−1,1) a

−1
2

(λ−1
n+2q−1,1 λ−1

n,n+2q−1 λn−1,1),

and combB(c1, c2) is the combing of the q-strand cables (c1 and c2) through the fixed
braid:

combB(c1, c2) =
∏q−1

i=0 λn+i,1 a2 λ−1
n+i,1

∏q−1
i=0 λn+2q−1−i,1 a−1

2 λ−1
n+2q−1−i,1

∏q−1
i=0 λn+q+i,1 a1 λ−1

n+q+i,1 λn+q,1 a2 λ−1
n,1 λn+1,n+q

∏q−1
i=1 λn+q+i,1 a2 λ−1

n,1 λn+1,n+q λ
−1
n+q+i,n+q+1

∏q−1
i=0 λn+q−1−i,1 a2 λ−1

n+q−1−i,1

∏q−1
i=0 λn+i,1 a1 λ−1

n+i,1

∏q−1
i=0 λn+i,1 a2 λ−1

n+i,1

∏q−1
i=0 λn+i,1 a1 λ−1

n+i,1

∏q−1
i=0 λn+i,1 a2 λ−1

n+i,1

∏q−1
i=0 λn+q+i,n+1+i.

2.7.4 Seifert Manifolds

It is known that a Seifert manifold M((p1, q1), . . . , (pm−1, qm−1)) has a rational surgery
description as shown in Figure 2.29 (see [Sav99], p.33).
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Two oriented links in a Seifert manifold M((p1, q1), . . . , (pm−1, qm−1)) are isotopic if
and only if any two corresponding algebraic mixed braids differ by a finite sequence of
the moves given in Theorem 2.5, where in particular:

(iv) Combed algebraic braid band moves: For β ∈ Bm,n we distinguish the cases:

• If a Q-braid band move is performed on the jth strand of the fixed braid with
rational coefficient p/q (see Figure 2.30) then: β ∼ d c± β′ combB(cj), where combB(cj)
is the combing of the cj cable through B,

d = [λn+q−1,1 αi λ
−1
n−1,1]

p and c± = λn,n+q−1 σ−1
n+q−1 λ−1

n,n+q−1,

and where β′ is β with the substitutions:

For i > j : a±1
i ←→ a±1

i ,

For i < j : a±1
i ←→ λ−1

n−1,1 λn,n+q−1 λn+q−1,1 a±1
i λ−1

n+q−1,1 λ−1
n,n+q−1 λn−1,1,

For i = j : aj ←→ λ−1
n−1,1 λn,n+q−1 λn+q−1,1 aj, and

a−1
j ←→ a−1

j λ−1
n+q−1,1 λ−1

n,n+q−1 λn−1,1.

• If a Q-braid band move is performed on the last strand of the fixed braid with surgery
coefficient 0, then: β ∼ σ±1

n β′, where β′ is β with the substitutions:

a±1
j ←→ λ−1

n−1,1 σ2
n λn−1,1a

±1
j λ−1

n,1 σ−1
n λn−1,1, for j = 1, . . . ,m− 1,

am ←→ λ−1
n−1,1 σ2

n λn−1,1 am,

a−1
m ←→ a−1

m λ−1
n−1,1 σ−2

n λn−1,1.

2.7.5 Rational surgery along a torus knot

It is well-known that a manifold M obtained by rational surgery from S3 along an
(m, r)-torus knot with rational coefficient p/q is either the lens space L(|q|, pr2), or the
connected sum of two lens spaces L(m, r)♯L(r,m), or a Seifert manifold (for more details
the reader is referred to [Mos71]). For links in M we have:

Two oriented links in M are isotopic if and only if any two corresponding algebraic
mixed braids differ by a finite sequence of the moves given in Theorem 2.5, where in
particular: (iv) Combed algebraic braid band moves: For β ∈ Bm,n we have:

β ∼ d c± β′ combB(c1, . . . , cm),

where

d = [ λn+mq−1,n+(m−1)q+1 λ−1
n,n+(m−1)q λn−1,1 αj λ

−1
n−1,1 λn,n+(m−1)q ]p,

c± = λn,n+mq−2 σ±1
n+mq−1 λ−1

n,n+mq−2,
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Fig. 2.30: A Q-braid band move in a Seifert manifold and its algebraic expression.

combB(c1, . . . , cm) is the combing through the fixed braid braid of the parted moving cables
parallel to the surgery strands and β′ is the word β with the substitutions:

aj ←→ (λ−1
n−1,1 λn,n+mq−1 λn+mq−1,n+(j−1)q λ−1

n,n+(j−1)q−1 λn−1,1) aj
(λ−1

n−1,1 λn,n+jq−1 λ−1
n+mq−1,n+jq λ−1

n,n+mq−1 λn−1,1),

a−1
j ←→ (λ−1

n−1,1 λn,n+mq−1 λn+mq−1,n+jq λ−1
n,n+jq−1 λn−1,1) a

−1
j

(λ−1
n−1,1 λn,n+(j−1)q−1 λ−1

n+mq−1,n+(j−1)q λ−1
n,n+mq−1 λn−1,1), for j ∈ {1, . . . ,m}.

In Figure 2.31 we illustrate an example where the (m, r)-torus knot is the (2, 3)-torus
knot, p = 2 and q = 3 (see Proposition 3.1 in [Mos71] for details about the manifold
obtained).

2.7.6 Jones-type invariants and skein modules of 3-manifolds

Our braiding approach is particularly useful for constructing Jones-type invariants and
for computing skein modules of 3-manifolds. Jones-type invariants (such as analogues
of the Jones polynomial and the 2-variable Jones or Homflypt polynomial) for links
in 3-manifolds can be constructed via Markov traces on appropriate quotient algebras
(such as analogues of the Temperley-Lieb algebras and the Iwahori-Hecke algebras) of
the related mixed braid groups Bm,n, which support Markov traces. This topological
motivation gives rise to many new algebras worth studying. From the Markov trace
rules one can obtain link invariants in the complement S\B̂. These invariants can be
then extended to link invariants in the manifold M = χ(S3, B̂) by forcing them to
satisfy all possible band moves. Now, these are more limited if one uses the braiding
setting and our Theorem 2.5. A good example and the simplest one demonstrating the
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Fig. 2.31: Turning the geometric (2, 3)-braid band move into a combed algebraic (2, 3)-braid
band move.

above is the case of the lens spaces L(p, 1): in [Lam99] the most generic analogue of
the Homflypt polynomial, X, for links in the solid torus ST has been derived from the
generalized Hecke algebras of type B via a unique Markov trace constructed on them.
Hence, X is appropriate for extending the results to the lens spaces L(p, q), since the
combinatorial setting is the same as for ST, only the braid equivalence includes the
Q-braid band move, which reflects the surgery description of L(p, q). For the case of
L(p, 1), in order to extend X to an invariant of links in L(p, 1) in [IDP] we solve an
infinite system of equations resulting from the braid band moves. Namely we force:

Xα̂ = Xbbm(α̂),

for all α ∈ ⋃
∞ B1,n and for all possible slidings of α. The above equations have partic-

ularly simple formulations with the use of a new basis Λ for the Homflypt skein module
of ST, that we give in [DL15]. These handle sliding equations are very controlled in the
algebraic setting, because they can be performed only on the first moving strand. Fur-
ther, the infinite system of these equations splits into finite self-contained subsystems.
In future work we will use §2.7.2 on the general case of L(p, q) where we have to solve
equations of the invariant X which derive by attaching anywhere on a link a 2-handle
along a (p, q)-curve. Further, in [KL] the authors are working on connected sums of two
lens spaces, constructing the appropriate quotient algebras of the mixed braid groups
B2,n and a Markov trace on these algebras.

Our results can be also applied to the study of skein modules of c.c.o. 3-manifolds,
using braid techniques. A skein module of a 3-manifold, characterized by a given prop-
erty, is equivalent to finding all possible knot invariants in the 3-manifold characterized
by the same property. We are particularly interested in Homflypt skein modules of
3-manifolds, although our approach can be also used for computing other skein modules
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of 3-manifolds such as Kauffman bracket skein modules. We note that the computation
of a Homflypt skein module of a 3-manifold M with the use of diagrammatic methods
is very complicated. The advantage of the algebraic setting is that it gives more control
over the band moves than the diagrammatic approach and much of the diagrammatic
complexity is absorbed into the proofs of the algebraic statements. We only need to
consider one type of orientations patterns and the braid band moves are limited. To
draw the analogy in the simplest situation: in [Lam99] the Homflypt skein module of the
solid torus S(ST) ([Tur88, HK90]) has been recovered from the invariant X mentioned
above. S(ST) is related to S(L(p, q)). The unique solution of the infinite system of the
sliding equations satisfied by X reflects the freeness of S(L(p, 1)). As a consequence of
the above, in [?] we work on computing S(L(p, q)) in the general case using our results
of §2.7.2.

2.7.7 Application to the equivalence of 3-manifolds

In [KS92] the authors prove a braid version of the Kirby calculus, namely an equivalence
relation between framed braids that represent homeomorphic 3-manifolds. As mentioned
in the introduction, although every c.c.o. 3-manifold can be obtained by integral surgery
along a link L in S3, it is sometimes more convenient to consider rational surgery
description for a c.c.o. 3-manifold. Rolfsen [Rol84] extended the Kirby calculus to
rational surgery coefficients, giving rise to the Rational calculus and introducing a handle
sliding move called Rolfsen twist. It would be useful to extend the result in [KS92] and
derive the braid analogue of the Rolfsen calculus. The braid analogue of the Rolfsen twist
is precisely the Q-braid band move (Definition 2.4). The difference here is that there
are no fixed and moving strands in the setting; all braids involved are surgery braids.
Moreover, when applying a Q-braid band move along a component, the framings of the
strands involved, will change, as shown in [Rol84]. The braid moves reflecting framed
link isotopy in S3 as well as the blow up move are the same as in [KS92]. The difficulty
in carrying through the braid analogue for the Rational calculus lies in the following:
Since Kirby calculus as well as Rational calculus are applied to non-oriented links in S3,
and since the orientation of a link L is crucial in order to obtain its braid representation,
one has to consider additionally how the change of orientation of any component of L
would alter the surgery braid. For the case of integral surgery, as shown in [KS92],
one may unknot the component that the change of orientation will occur, by applying
Fenn-Rourke moves, then change the orientation of the component, and finally undo
all Fenn-Rourke moves applied before. The result is a link L′, that differs from L by a
change of orientation of one component. For the case of rational surgery, this is a very
complicated problem and will be the subject of future research.

Combining the above with the Kauffman bracket skein module of a 3-manifold, our
results could potentially lead to a uniform algebraic approach to the Witten invariants.
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3

A NEW BASIS FOR THE HOMFLYPT SKEIN MODULE

OF THE SOLID TORUS

In this chapter we give a new basis, Λ, for the Homflypt skein module of the solid
torus, S(ST), which topologically is compatible with the handle sliding moves and
which was predicted by J.H.Przytycki. The basis Λ is different from the basis Λ′,
discovered independently by Hoste–Kidwell [HK90] and Turaev [Tur88] with the use
of diagrammatic methods, and also different from the basis of Morton–Aiston [MA97].
For finding the basis Λ we use the generalized Hecke algebra of type B, H1,n, which is
generated by looping elements and braiding elements and which is related to the affine
Hecke algebra of type A [Lam99]. More precisely, we start with the well-known basis
Λ′ of S(ST) and an appropriate linear basis Σn of the algebra H1,n. We then convert
elements in Λ′ to sums of elements in Σn. Then, using conjugation and the stabilization
moves, we convert these elements to sums of elements in Λ by managing gaps in the
indices, by ordering the exponents of the looping elements and by eliminating braiding
tails in the words. Further, we define total orderings on the sets Λ′ and Λ and, using
these orderings, we relate the two sets via a block diagonal matrix, where each block is
an infinite lower triangular matrix with invertible elements in the diagonal. Using this
matrix we prove linear independence of the set Λ, thus Λ is a basis for S(ST).

S(ST) plays an important role in the study of Homflypt skein modules of arbitrary
c.c.o. 3-manifolds, since every c.c.o. 3-manifold can be obtained by integral surgery
along a framed link in S3 with unknotted components. In particular, the new basis of
S(ST) is appropriate for computing the Homflypt skein module of the lens spaces. In
this paper we provide some basic algebraic tools for computing skein modules of c.c.o.
3-manifolds via algebraic means.

3.1 Introduction

Let ST denote the solid torus. In [Tur88], [HK90] the Homflypt skein module of the
solid torus has been computed using diagrammatic methods by means of the following



Fig. 3.1: A basic element of S(ST).

theorem:

Theorem 3.1 (Turaev, Kidwell–Hoste). The skein module S(ST) is a free, infinitely
generated Z[u±1, z±1]-module isomorphic to the symmetric tensor algebra SRπ̂0, where
π̂0 denotes the conjugacy classes of non trivial elements of π1(ST).

A basic element of S(ST) in the context of [Tur88, HK90], is illustrated in Figure 3.1.
In the diagrammatic setting of [Tur88] and [HK90], ST is considered as Annulus ×
Interval. The Homflypt skein module of ST is particularly important, because any
closed, connected, oriented (c.c.o.) 3-manifold can be obtained by surgery along a
framed link in S3 with unknotted components.

A different basis of S(ST), known as Young idempotent basis, is based on the work
of Morton and Aiston [MA97] and Blanchet [Bla00].

In [Lam99], S(ST) has been recovered using algebraic means. More precisely, the
generalized Hecke algebra of type B, H1,n(q), is introduced, which is isomorphic to the

affine Hecke algebra of type A, H̃n(q). Then, a unique Markov trace is constructed on
the algebras H1,n(q) leading to an invariant for links in ST, the universal analogue of
the Homflypt polynomial for ST. This trace gives distinct values on distinct elements of
the [Tur88, HK90]-basis of S(ST). The link isotopy in ST, which is taken into account
in the definition of the skein module and which corresponds to conjugation and the
stabilization moves on the braid level, is captured by the conjugation property and the
Markov property of the trace, while the defining relation of the skein module is reflected
into the quadratic relation of H1,n(q). In the algebraic language of [Lam99] the basis of
S(ST), described in Theorem 3.1, is given in open braid form by the set Λ′ in Eq. 1.5.
Figure 1.19 illustrates the basic element of Figure 3.1 in braid notation. Note that in
the setting of [Lam99] ST is considered as the complement of the unknot (the bold
curve in the figure). The looping elements t′i ∈ H1,n(q) in the monomials of Λ′ are all
conjugates, so they are consistent with the trace property and they enable the definition
of the trace via simple inductive rules.

In this chapter we present a new basis Λ for S(ST), which was predicted by J.H.
Przytycki, using the algebraic methods developed in [Lam99]. The motivation of this
work is the computation of S (L(p, q)) via algebraic means. The new basic set is de-
scribed in Eq. 3.1 in open braid form. The looping elements ti are in the algebras
H1,n(q) and they are commuting. For a comparative illustration and for the defining
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Fig. 3.2: An element of the new basis Λ.

formulas of the ti’s and the t′i’s the reader is referred to Figure 1.11. Moreover, the ti’s
are consistent with the handle sliding move or band move used in the link isotopy in
L(p, q), in the sense that a braid band move can be described naturally with the use of
the ti’s (see for example [DL15] and references therein).

Our main result is the following:

Theorem 3.2. The following set is a Z[q±1, z±1]-basis for S(ST):

Λ = {tk0tk11 . . . tknn , ki ∈ Z \ {0}, ki ≥ ki+1 ∀i, n ∈ N}. (3.1)

Our method for proving Theorem 3.2 is the following:

• We define total orderings in the sets Λ′ and Λ,

• we show that the two ordered sets are related via a lower triangular infinite matrix
with invertible elements on the diagonal, and

• using this matrix, we show that the set Λ is linearly independent.

More precisely, two analogous sets, Σn and Σ′
n, are given in [Lam99] as linear bases

for the algebra H1,n(q). See Theorem 1.8 in this paper. The set
⋃

n Σn includes Λ as
a proper subset and the set

⋃
n Σ

′
n includes Λ′ as a proper subset. The sets Σn come

directly from the works of S. Ariki and K. Koike, and M. Brouè and G. Malle on the
cyclotomic Hecke algebras of type B. See [Lam99] and references therein. The second
set

⋃
n Σ

′
n includes Λ′ as a proper subset. The sets Σ′

n appear naturally in the structure
of the braid groups of type B, B1,n; however, it is very complicated to show that they
are indeed basic sets for the algebras H1,n(q). The sets Σn play an intrinsic role in the
proof of Theorem 3.2. Indeed, when trying to convert a monomial λ′ from Λ′ into a
linear combination of elements in Λ we pass by elements of the sets Σn. This means that
in the converted expression of λ′ we have monomials in the ti’s, with possible gaps in
the indices and possible non ordered exponents followed by monomials in the braiding
generators gi. So, in order to reach expressions in the set Λ we need:

• to manage the gaps in the indices of the ti’s,

• to order the exponents of the ti’s and

• to eliminate the braiding ‘tails’.

This chapter is organized as follows. In Section 4.3 we define the orderings in the
two sets Σn and Σ′

n, which include the sets Λ and Λ′ as subsets, and we prove that
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these sets are totally ordered. In Section 3.3 we prove a series of lemmas for converting
elements in Λ′ to elements in the sets Σn. In Section 3.4 we convert elements in Σn

to elements in Λ using conjugation and the stabilization moves. Finally, in Section 3.5
we prove that the sets Λ′ and Λ are related through a lower triangular infinite matrix
mentioned above and that the set Λ is linearly independent.

The algebraic techniques developed here will serve as basis for computing Homflypt
skein modules of arbitrary c.c.o. 3-manifolds using the braid approach. The advantage
of this approach is that we have an already developed homogeneous theory of braid
structures and braid equivalences for links in c.c.o. 3-manifolds ([LR97, LR06, DL15]).
In fact, these algebraic techniques are used and developed further in [KL] for knots and
links in 3-manifolds represented by the 2-unlink.

3.2 An ordering in the sets Λ and Λ′

In this section we define an ordering relation in the sets Σ′
n and Σn, which include Λ′

and Λ as subsets. Before that, we will need the notion of the index of a word in Λ′ or
in Λ .

Definition 3.1. The index of a word w in Λ′ or in Λ, denoted ind(w), is defined to be
the highest index of the t′i’s, resp. of the ti’s, in w. Similarly, the index of an element
in Σ′

n or in Σn is defined in the same way by ignoring possible gaps in the indices of the
looping generators and by ignoring the braiding part in Hn(q). Moreover, the index of
a monomial in Hn(q) is equal to 0.

For example, ind(t′k0t′1
k1 . . . t′n

kn) = ind(tu0 . . . tun
n ) = n.

Definition 3.2. We define the following ordering in the sets Σ′
n.

Let w = t′i1
k1t′i2

k2 . . . t′iµ
kµ and σ = t′j1

λ1t′j2
λ2 . . . t′jν

λν , where kt, λs ∈ Z, for all t, s. Then:

(a) If
∑µ

i=0 ki <
∑ν

i=0 λi, then w < σ.

(b) If
∑µ

i=0 ki =
∑ν

i=0 λi, then:

(i) if ind(w) < ind(σ), then w < σ,

(ii) if ind(w) = ind(σ), then:

(α) if i1 = j1, i2 = j2, . . . , is−1 = js−1, is < js, then w > σ,

(β) if it = jt ∀t and kµ = λµ, kµ−1 = λµ−1, . . . ki+1 = λi+1, |ki| < |λi|, then
w < σ,

(γ) if it = jt ∀t and kµ = λµ, kµ−1 = λµ−1, . . . ki+1 = λi+1, |ki| = |λi| and ki > λi,
then w < σ,

(δ) if it = jt ∀t and ki = λi, ∀i, then w = σ.
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(c) In the general case where w = t′i1
k1t′i2

k2 . . . t′iµ
kµ · β1 and σ = t′j1

λ1t′j2
λ2 . . . t′jν

λν · β2,
where β1, β2 ∈ Hn(q), the ordering is defined in the same way by ignoring the
braiding parts β1, β2.

The same ordering is defined on the set Λ′ by ignoring the braiding parts. Moreover,
the same ordering is defined on the sets Σn and Λ, where the t′i’s are replaced by the
corresponding ti’s.

Proposition 3.1. The set Σn
′ equipped with the ordering given in Definition 3.2, is a

totally ordered set.

Proof. In order to show that the set Σn
′ is totally a ordered set when equipped with

the ordering given in Definition 3.2, we need to show that the ordering relation is anti-
symmetric, transitive and total. We only show that the ordering relation is transitive.
Antisymmetric property follows similarly. Totality follows from Definition 3.2 since all
possible cases have been considered. Let w, σ, v ∈ Σn such that:

w = t′i1
k1t′i2

k2 . . . t′im
km · β1,

σ = t′j1
λ1t′j2

λ2 . . . t′jn
λn · β2,

v = t′φ1

µ1t′φ2

µ2 . . . t′φp

µp · β3,

where β1, β2, β3 ∈ Hn(q) and let w < σ and σ < v. Since w < σ, one of the following
holds:

(a) Either
∑m

i=1 ki <
∑n

i=1 λi and since σ < v, we have that
∑n

i=1 λi ≤
∑p

i=1 µi and
so

∑m

i=1 ki <
∑p

i=1 µi. Thus w < v.

(b) Either
∑m

i=1 ki =
∑n

i=1 λi and ind(w) = m < n = ind(σ). Then, since σ < v we
have that either

∑n

i=1 λi <
∑p

i=1 µi

(
same as in case (a)

)
or

∑n

i=1 λi =
∑p

i=1 µi

and ind(σ) ≤ p = ind(v). Thus, ind(w) = m < p = ind(v) and so we conclude
that w < v.

(c) Either
∑m

i=1 ki =
∑n

i=1 λi, ind(w) = ind(σ) and i1 = j1, . . . , is−1 = js−1, is > js.
Then, since σ < v, we have that either:

• ∑n

i=1 λi <
∑p

i=1 µi, same as in case (a), or

• ∑n

i=1 λi =
∑p

i=1 µi and ind(σ) < ind(v), same as in case (b), or

• ind(σ) = ind(v) and j1 = ϕ1, . . . , jp > ϕp. Then:

(i) if p = s we have that is > js > ϕs and we conclude that w < v.

(ii) if p < s we have that ip = jp > ϕp and thus w < v and if s < p we

have that is > js = ϕs and so w < v.
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(d) Either
∑m

i=1 ki =
∑n

i=1 λi, ind(w) = ind(σ) and kn = λn, . . . , |kq| < |λq|. Then,
since σ < v, we have that either:

• ∑n

i=1 λi <
∑p

i=1 µi, same as in case (a), or

• ∑n

i=1 λi =
∑p

i=1 µi and ind(σ) < ind(v), same as in case (b), or

• ind(σ) = ind(v) and j1 = ϕ1, . . . , jq > ϕq, same as in case (c), or

• jn = ϕn, for all n and µn = λn, . . . , µc+1 = λc+1, |µc| ≥ |λc| for some c, then:

(1) If |µc| > |λc|, then:

(i) If c > q then |kc| = |λc| < |µc| and thus w < v.

(ii) If c < q then |kq| < |λq| = |µq| and thus w < v.

(iii) If c = q then |kq| < |λq| < |µq| and thus w < v.

(2) If |µc| = |λc|, such that µc < λc, then:

(i) If c > q then |kc| = |λc| = |µc| and kc = λc > µc. Thus w < v.

(ii) If c ≤ q then |kq| < |λq| = |µq| and thus w < v.

(e) Either
∑m

i=1 ki =
∑n

i=1 λi, ind(w) = ind(σ) and kn = λn, . . . , |kq| = |λq|, such that
kq > λq. Then, since σ < v, we have that either:

• ∑n

i=1 λi <
∑p

i=1 µi, same as in case (a), or

• ∑n

i=1 λi =
∑p

i=1 µi and ind(σ) < ind(v), same as in case (b), or

• ind(σ) = ind(v) and j1 = ϕ1, . . . , jq > ϕq, same as in case (c), or

• jn = ϕn, for all n and µn = λn, . . . , µc+1 = λc+1, |µc| ≥ |λc| for some c, then:

(1) If |µc| > |λc|, then:

(i) If c > q then |kc| = |λc| < |µc|, thus w < v.

(ii) If c ≤ q then |kq| = |λq| = |µq| and kq > λq = µq, thus w < v.

(2) If |µc| = |λc| such that λc > µc, then:

(i) If c > q then |kc| = |λc| = |µc| and kc = λc > µc, thus w < v.

(ii) If c < q then |kq| = |λq| = |µq| and kq > λq = µq, thus w < v.

(iii) If c = q, then |kq| = |λq| = |µq| and kq > λq > µq, thus w < v.

So, we conclude that the ordering relation is transitive.

Remark 3.1. Proposition 3.1 also holds for the sets Σn, Λ
′ and Λ.

Definition 3.3. We define the subset of level k, Λk, of Λ to be the set

Λk := {tk0tk11 . . . tkmm |
m∑

i=0

ki = k, ki ∈ Z \ {0}, ki ≥ ki+1 ∀i}
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and similarly, the subset of level k of Λ′ to be

Λ′
k := {tk0t′1k1 . . . t′mkm |

m∑

i=0

ki = k, ki ∈ Z \ {0}, ki ≥ ki+1 ∀i}.

Remark 3.2. Let w ∈ Λk a monomial containing gaps in the indices and u ∈ Λk a
monomial with consecutive indices such that ind(w) = ind(u). Then, it follows from
Definition 3.2 that w < u.

Proposition 3.2. The sets Λk are totally ordered and well-ordered for all k.

Proof. Since Λk ⊆ Λ, ∀k, Λk inherits the property of being a totally ordered set from
Λ. Moreover, tk is the minimum element of Λk and so Λk is a well-ordered set.

We also introduce the notion of homologous words as follows:

Definition 3.4. We shall say that two words w′ ∈ Λ′ and w ∈ Λ are homologous,
denoted w′ ∼ w, if w is obtained from w′ by turning t′i into ti for all i.

With the above notion the proof of Theorem 3.2 is based on the following idea:
Every element w′ ∈ Λ′ can be expressed as linear combinations of monomials wi ∈ Λ
with coefficients in C, such that:

(i) ∃ j such that wj ∼ w′,

(ii) wj < wi, for all i 6= j,

(iii) the coefficient of wj is an invertible element in C.

3.3 From Λ′ to Σn

In this section we prove a series of lemmas relating elements of the two different basic
sets Σn, Σ

′
n of H1,n(q). In the proofs we underline expressions which are crucial for the

next step. Since Λ′ is a subset of Σ′
n, all lemmas proved here apply also to Λ′ and will

be used in the context of the bases of S(ST).

3.3.1 Some useful lemmas in H1,n(q)

We will need the following results from [Lam99]. The first lemma gives some basic
relations of the braiding generators.

Lemma 3.1 (Lemma 1 [Lam99]). For ǫ ∈ {±1} the following hold in H1,n(q):
(i) gmi = (qm−1 − qm−2 + . . .+ (−1)m−1) gi + (qm−1 − qm−2 + · · ·+ (−1)m−2q)

g−m
i = (q−m − q1−m + . . .+ (−1)m−1q−1) gi +

+ (q−m − q1−m + · · ·+ (−1)m−1q−1 + (−1)m)
(ii) gi

ǫ(gk
±1g±1

k−1 . . . gj
±1) = (gk

±1g±1
k−1 . . . gj

±1)gi+1
ǫ, for k > i ≥ j,

gi
ǫ(gj

±1g±1
j+1 . . . gk

±1) = (gj
±1g±1

j+1 . . . gk
±1)gi−1

ǫ, for k ≥ i > j,
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where the sign of the ±1 exponent is the same for all generators.
(iii) gigi−1 . . . gj+1gjgj+1 . . . gi = gjgj+1 . . . gi−1gigi−1 . . . gj+1gj

gi
−1g−1

i−1 . . . g
−1
j+1gj

ǫgj+1 . . . gi = gjgj+1 . . . gi−1gi
ǫg−1

i−1 . . . g
−1
j+1gj

−1

(iv) gi
ǫ . . . gn−1

ǫgn
2ǫgn−1

ǫ . . . gi
ǫ =

∑n−i+1
r=0 (qǫ − 1)ǫrqǫr (gi

ǫ . . . gn−r
ǫ . . . gi

ǫ),
where ǫr = 1 if r ≤ n− i and ǫn−i+1 = 0. Similarly,
(v) gi

ǫ . . . g2
ǫg1

2ǫg2
ǫ . . . gi

ǫ =
∑i

r=0 (q
ǫ − 1)ǫrqǫr (gi

ǫ . . . gr+2
ǫgr+1

ǫgr+2
ǫ . . . gi

ǫ),
where ǫr = 1 if r ≤ i− 1 and ǫi = 0.

The next lemma comprises relations between the braiding generators and the looping
generator t.

Lemma 3.2 (cf. Lemmas 1, 4, 5 [Lam99]). For ǫ ∈ {±1}, i, k ∈ N and λ ∈ Z the
following hold in H1,n(q):

(i) tλg1tg1 = g1tg1t
λ

(ii) tǫg1
ǫtǫkg1

ǫ = g1
ǫtǫkg1

ǫtǫ + (qǫ − 1)tǫg1
ǫtǫk + (1− qǫ)tǫkg1

ǫtǫ

t−ǫg1
ǫtǫkg1

ǫ = g1
ǫtǫkg1

ǫt−ǫ + (qǫ − 1)tǫ(k−1)g1
ǫ + (1− qǫ)g1

ǫtǫ(k−1)

(iii) tǫig1
ǫtǫkg1

ǫ = gǫ1t
ǫkgǫ1t

ǫi + (qǫ − 1)
∑i

j=1 t
ǫjgǫ1t

ǫ(k+i−j)+

+ (1− qǫ)
∑i−1

j=0 t
ǫ(k+j)gǫ1t

ǫ(i−j)

t−ǫig1
ǫtǫkg1

ǫ = g1
ǫtǫkg1

ǫt−ǫi + (qǫ − 1)
∑i

j=1 t
ǫ(k−j)gǫ1t

−ǫ(i−j)+

+ (1− qǫ)
∑i

j=1 t
ǫ(i−j)gǫ1t

ǫ(k−j)

The next lemma gives the interactions of the braiding generators and the loopings
tis and t′is.

Lemma 3.3 (Lemmas 1 and 2 [Lam99]). The following relations hold in H1,n(q):

(i) gitk
ǫ = tk

ǫgi for k > i, k < i− 1
giti = qti−1gi + (q − 1)ti
giti−1 = q−1tigi + (q−1 − 1)ti = tig

−1
i

git
−1
i−1 = qti

−1gi + (q − 1)ti−1
−1

git
−1
i = q−1ti−1

−1gi + (q−1 − 1)ti−1
−1 = t−1

i−1g
−1
i

(ii) tkngn = (q − 1)
∑k−1

j=0 q
jtjn−1t

k−j
n + qkgnt

k
n−1, if k ∈ N

tkngn = (1− q)
∑k−1

j=0 q
jtjn−1t

k−j
n + qkgnt

k
n−1, if k ∈ Z− N

(iii) ti
ktj

λ = tj
λti

k for i 6= j and k, λ ∈ Z
(iv) git

′
k
ǫ = t′k

ǫgi for k > i, k < i− 1
git

′
i
ǫ = t′i−1

ǫgi + (q − 1)t′i
ǫ + (1− q)t′i−1

ǫ

git
′
i−1

ǫ = t′i
ǫgi

(v) t′i
k = gi . . . g1t

kg1
−1 . . . gi

−1 for k ∈ Z.

Using now Lemmas 3.1, 3.2 and 3.3 we prove the following relations, which we will
use for converting elements in Λ′ to elements in Σn. Note that whenever a generator is
overlined, this means that the specific generator is omitted from the word.
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Lemma 3.4. The following relations hold in H1,n(q) for k ∈ N:

(i) gm+1t
k
m = q−(k−1)tkm+1g

−1
m+1 +

∑k−1
j=1 q

−(k−1−j)(q−1 − 1)tjmt
k−j
m+1,

(ii) g−1
m+1t

−k
m = q(k−1)t−k

m+1gm+1 +
∑k−1

j=1 q
(k−1−j)(q − 1)t−j

m t
−(k−j)
m+1 .

Proof. We prove relations (i) by induction on k. Relations (ii) follow similarly. For
k = 1 we have that gm+1tm = tm+1g

−1
m+1, which holds from Lemma 3.3 (i) . Suppose

that the relation holds for k − 1. Then, for k we have:

gm+1t
k
m = gm+1t

k−1
m tm

ind.
=
step

q−(k−2)tk−1
m+1g

−1
m+1tm +

+
∑k−2

j=1 q
−(k−2−j)(q−1 − 1)tjmt

k−1−j
m+1 tm =

= q1−kgm+1tm + q2−k(q−1 − 1)tmt
k−1
m+1 +

∑k−2
j=1 q

−(k−2−j)(q−1 − 1)tj+1
m tk−1−j

m+1

= q−(k−1)tm+1g
−1
m+1 +

∑k

j=1 q
−(k−1−j)(q−1 − 1)tjmt

k−j
m+1.

Fig. 3.3: Illustrating Lemma 4(i) for k = 2.

Lemma 3.5. In H1,n(q) the following relations hold:

(i) For the expression A = (grgr−1 . . . gr−s) · tk the following hold for the different
values of k ∈ N:

(1) A = tk (gr . . . gr−s) for k > r or k < r − s− 1
(2) A = tr

(
g−1
r . . . g−1

r−s

)
for k = r − s− 1

(3) A = qtr−1 (gr . . . gr−s) + (q − 1)tr(gr−1 . . . gr−s) for k = r
(4) A = qtr−s−1 (gr . . . gr−s) + (q − 1)tr

(
g−1
r . . . g−1

r−s+1

)
for k = r − s

(5) A = tm−1 (gr . . . gr−s) + (q − 1)tr
(
g−1
r . . . g−1

m+1

)
(gm−1 . . . gr−s)

for k = m ∈ {r − s+ 1, . . . , r − 1}.

(ii) For the expression A = (grgr−1 . . . gr−s) · t−1
k the following hold for the different

values of k ∈ N:

(1) A = t−1
k (gr . . . gr−s) for k > r or k < r − s− 1

(2) A = t−1
r−s−1

(
gr . . . gr−s+1g

−1
r−s

)
for k = r − s

(3) A = t−1
m−1 (grgr−1 . . . gm+1g

−1
m gm−1 . . . gk−s)

for k = m ∈ {r − s+ 1, . . . , r}
(4) A = qs+1t−1

r (gr . . . gr−s) + (q − 1)
∑s+1

j=1 q
s−j+1t−1

r−j·
· (gr . . . gr−j+2gr−j . . . gr−s) for k = r − s− 1.
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Proof. We only prove relations (ii) for k = r − s − 1 by induction on s (case 4). All
other relations follow from Lemma 3.3 (i).

For s = 1 we have:

grgr−1t
−1
r−2 = gr[qt

−1
r−1gr−1 + (q − 1)t−1

r−2] = qgrt
−1
r−1gr−1 + (q − 1)grt

−1
r−2

= q[qt−1
r gr + (q − 1)t−1

r−1]gr−1 + (q − 1)t−1
r−2gr

= q2t−1
r (grgr−1) + (q − 1)

[
qt−1

r−1gr−1 + q0t−1
r−2gr

]
,

and so the relation holds for s = 1. Suppose that the relation holds for s = n. We will
show that it holds for s = n+ 1. Indeed we have:
(gr . . . gr−n−1)t

−1
r−n−2 = (gr . . . gr−n)(gr−n−1t

−1
r−n−2) =

(gr . . . gr−n)
[
qt−1

r−n−1gr−n−1 + (q − 1)t−1
r−n−2

]
=

= q(gr . . . gr−nt
−1
r−n−1)gr−n−1 + (q − 1)(gr . . . gr−n)t

−1
r−n−2

ind.step
=

= qn+2t−1
r (gr . . . gr−n−1) +

+ (q − 1)
∑n+1

j=1 q
n−j+2t−1

r−j(gr . . . gr−j+2gr−j . . . gr−n−1) +

+ (q − 1)t−1
r−n−2(gr . . . gr−n) = qn+2t−1

r (gr . . . gr−n−1)+

+ (q − 1)
∑n+2

j=1 q
(n+1)−j+1t−1

r−j(gr . . . gr−j+2gr−j . . . gr−n−1).

Fig. 3.4: Illustrating Lemma 5(ii) for k = r − s.

Before proceeding with the next lemma we introduce the notion of length of w ∈
Hn(q). For convenience we set δk,r := gkgk−1 . . . gr+1gr for k > r and by convention we
set δk,k := gk.

Definition 3.5. We define the length of δk,r ∈ Hn(q) to be the number of braiding
generators, that is, l(δk,r) := k − r + 1 and since every element of the Iwahori-Hecke
algebra of type A can be written as

∏n−1
i=1 δki,ri so that kj < kj+1 ∀j, we define the length

of an element w ∈ Hn(q) as:

l(w) :=
n−1∑

i=1

li(δki,ri) =
n−1∑

i=1

ki − ri + 1.

Note that l(gk) = l(δk,k) = k − k + 1 = 1.
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Lemma 3.6. For k > r the following relations hold in H1,n(q):

tkδk,r =
k−r∑

i=0

qi(q − 1)δk,k−i,rtk−i + ql(δk,r)δk,rtr−1,

where δk,k−i,r := gkgk−1 . . . gk−i+1gk−i−1 . . . gr := gk . . . gk−i . . . gr.

Proof. We prove relations by induction on k. For k = 1 we have that t1g1 = (q−1)t1+
qg1t, which holds. Suppose that the relation holds for (k − 1), then for k we have:

tkδk,r = tkgk · δk−1,r = (q − 1)tkδk−1,r + qgktk−1δk−1,r =

= (q − 1)δk−1,rtk + qgk
∑k−1−r

i=0 qi(q − 1)δk−1,k−1−i,rtk−1−i+

+ ql(δk−1,r)+1gkδk−1,rtr−1 =

=
∑k−r

i=0 q
i(q − 1)δk,k−1−i,rtk−1−i + ql(δk,r)δk,rtr−1.

Lemma 3.7. In H1,n(q) the following relations hold:

(i) For the expression A = (grgr+1 . . . gr+s) · tk the following hold for the different
values of k ∈ N:

(1) A = tk (gr . . . gr+s) for k ≥ r + s+ 1 or k < r − 1
(2) A = tk+1

(
gr . . . gkg

−1
k+1gk+2 . . . gr+s

)

for r − 1 ≤ k < r + s

(3) A = (q − 1)
∑r+s

i=r q
r+s−iti (gr . . . gi . . . gr+s) + qs+1tr−1 (gr . . . gr+s)

for k = r + s

(ii) For the expression A = (grgr+1 . . . gr+s) · t−1
k the following hold for the different

values of k ∈ N:

(1) A = t−1
k (grgr+1 . . . gr+s) for k ≥ r + s+ 1 or k < r − 1

(2) A = q t−1
k+1 (gr . . . gr+s) + (q − 1) t−1

r−1

(
g−1
r . . . g−1

k gk+2 . . . gr+s

)

for r − 1 ≤ k < r + s
(3) A = t−1

r−1

(
g−1
r . . . g−1

r+s

)
for k = r + s

Proof. We prove relation (i) for r+s = k by induction on k (case 3). All other relations
follow from Lemmas 3.1 and 3.3.

For k = 1 we have: g1t1 = g21tg1 = qtg1 + (q − 1)t1. Suppose that the relation holds
for k = n. Then, for k = n+ 1 we have that:

gr . . . gn+1tn+1 = q(gr . . . gntn)gn+1 + (q − 1)(gr . . . gn)tn+1
ind.step
=

= q [(q − 1)
∑n

i=r q
n−iti(gr . . . gi . . . gn) + qn−r+1tr−1(gr . . . gn)] gn+1+

+ (q − 1)tn+1(gr . . . gn) =
= ((q − 1)

∑n

i=r q
n−i+1ti(gr . . . gi . . . gngn+1) + (q − 1)tn+1(gr . . . gn))+

+ qn+1−r+1tr−1(gr . . . gngn+1) =
= (q − 1)

∑n+1
i=r qn+1−iti(gr . . . gi . . . gn+1) + qn+1−r+1tr−1(gr . . . gn+1).
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Lemma 3.8. The following relations hold in H1,n(q) for k ∈ N:

(i) (g1 . . . gi−1g
2
i gi−1 . . . g1) · t =

(q − 1)
∑i

k=1 q
i−ktk

(
g1 . . . gk−1g

−1
k g−1

k−1 . . . g
−1
1

)
+ qit

(ii)
(
g−1
1 . . . g−1

i−1g
−2
i g−1

i−1 . . . g
−1
1

)
· t−1 =

(q−1 − 1)
∑i

k=1 q
−(i−k)t−1

k

(
g−1
1 . . . g−1

k−1gkgk−1 . . . g1
)
+ q−i t−1

(iii)
(
g−1
k . . . g−1

2 g−2
1 g−1

2 . . . g−1
k

)
· tk =

(q−1 − 1)
∑k−1

i=1 q
−kti

(
g−1
k . . . g−1

i+2gi+1gi+2 . . . gk
)

+ q−ktk

(iv)
(
g−1
k . . . g−1

2 g−2
1 g−1

2 . . . g−1
k

)
· t−1

k =

t−1q−k(q−1 − 1)g−1
k . . . g−1

1 . . . g−1
k +

+
∑k−1

i=0 t
−1
i q−k+i(q−1 − 1)g−1

k . . . g−2
1 . . . g−1

i g−1
i+2 . . . g

−1
k +

+t−1
k

[∑k

i=2 q
−k+i(q−1 − 1)2g−1

i−1 . . . g
−1
2 g−2

1 g−1
2 . . . g−1

i−1 +

+ q−(k+1)(q2 − q + 1)
]
.

Proof. We prove relations (i) by induction on i. All other relations follow similarly. For
i = 1 we have: g21t = g1g1tg1g

−1
1 = g1t1g

−1
1 = (q−1)t1g

−1
1 +qt. Suppose that the relation

holds for i = n. Then, for i = n+ 1 we have:(
g1 . . . gng

2
n+1gn . . . g1

)
· t = (q − 1) (g1 . . . gn+1gn . . . g1) · t +

+ q (g1 . . . gn−1g
2
ngn−1 . . . g1) · t =

= (q − 1)g1 . . . gntn+1g
−1
n+1 . . . g

−1
1 + q

∑n

k=1 q
n−k(q − 1)tk·(

g1 . . . gk−1g
−1
k . . . g−1

1

)
+ qn+1t =

= (q − 1)tn+1

(
g1 . . . gng

−1
n+1 . . . g

−1
1

)
+

∑n

k=1 q
n+1−k(q − 1)tk·(

g1 . . . gk−1g
−1
k . . . g−1

1

)
+ qn+1t =

=
∑n+1

k=1 q
n+1−k(q − 1)tk

(
g1 . . . gk−1g

−1
k . . . g−1

1

)
+ qn+1t.

Fig. 3.5: Illustrating Lemma 8(i) for i = 2.
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3.3.2 Converting elements in Λ′ to elements in Σn

We are now in the position to prove a set of relations converting monomials of t′i’s to
expressions containing the ti’s. In the appendix we provide lemmas converting mono-
mials of ti’s to monomials of t′i’s in the context of giving a simple proof that the sets Σ′

n

form bases of H1,n(q).

Lemma 3.9. The following relations hold in H1,n(q) for k ∈ N:

(i) t′1
−k = qkt−k

1 +
∑k

j=1 q
k−j(q − 1)t−jtj−k

1 · g−1
1 ,

(ii) t′1
k = q−ktk1 +

∑k

j=1 q
−(k−j)(q−1 − 1)tj−1tk+1−j

1 · g−1
1 .

Proof. We prove relations (i) by induction on k. Relations (ii) follow similarly. For k = 1
we have: t′1

−1 = g1 t
−1 g−1

1 = q g−1
1 t−1 g−1

1 + (q−1) t−1 g−1
1 = q t−1

1 + (q−1) t−1 g−1
1 .

Suppose that the relation holds for k − 1. Then, for k we have:

t′1
−k = t′1

−(k−1)t′1
−1 ind.

=
step

qk−1t
−(k−1)
1 t′1

−1 +

+
∑k−1

j=1 q
k−1−j(q − 1)t−jt

j−(k−1)
1 g−1

1 t′1
−1 =

= qkt−k
1 + qk−1t−1t

−(k−1)
1 g−1

1 +
∑k−1

j=1 q
k−1−j(q − 1)t−jt

j−(k−1)
1 t−1g−1

1

= qkt−k
1 + qk−1(q − 1)t−1t

−(k−1)
1 g−1

1 +

+
∑k−1

j=1 q
k−1−j(q − 1)t−j−1t

j−(k−1)
1 g−1

1 =

= qkt−k
1 +

∑k

j=1 q
k−j(q − 1)t−jtj−k

1 g−1
1 .

Lemma 3.10. The following relations hold in H1,n(q) for k ∈ N:

t′k
−1

= qk t−1
k + (q − 1)

k−1∑

i=0

qi t−1
i ( gk gk−1 . . . gi+2 g−1

i+1 . . . g−1
k−1 g−1

k ).

Proof. We prove the relations by induction on k. For k = 1 we have:

t′1
−1 = g1 t−1 g−1

1 = q g−1
1 t−1 g−1

1 + (q − 1) t−1 g−1
1 = q t−1

1 + (q − 1) t−1 g−1
1 .

Suppose that the relations hold for k = n. Then, for k = n+ 1 we have that:

t′n+1
−1 = gn+1 t′n

−1 g−1
n+1

ind. step
=

= gn+1

[
qnt−1

n + (q − 1)
∑n−1

i=0 qi t−1
i (gn . . . gi+2g

−1
i+1 . . . g

−1
n )

]
g−1
n+1 =

= qn gn+1 t−1
n g−1

n+1 + (q − 1)
∑n−1

i=0 qign+1t
−1
i (gn . . . gi+2g

−1
i+1 . . . g

−1
n g−1

n+1) =

= qn
[
qt−1

n+1gn+1 + (q − 1)t−1
n

]
g−1
n+1 + (q − 1)

∑n−1
i=0 qit−1

i ·
(gn+1 . . . gi+2g

−1
i+1 . . . g

−1
n+1) =

= qn+1t−1
n+1 + qn(q − 1)t−1

n g−1
n+1 + (q − 1)

∑n−1
i=0 qit−1

i ·
(gn+1 . . . gi+2g

−1
i+1 . . . g

−1
n+1) =

= qn+1t−1
n+1 + (q − 1)

∑n

i=0 q
it−1
i (gn+1 . . . gi+2g

−1
i+1 . . . g

−1
n+1).

Lemma 3.11. The following relations hold in H1,n(q) for k ∈ Z\{0}:
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t′m
k

= q−mktkm +
∑

i

fi(q)t
k
mwi +

∑

i

gi(q)t
λ0tλ1

1 . . . tλm

m ui,

where wi, ui ∈ Hm+1(q), ∀i,
∑m

i=0 λi = k and λi ≥ 0, ∀i, if k > 0 and λi ≤ 0, ∀i, if
k < 0.

Proof. We prove relations by induction on m. The case m = 1 is Lemma 3.9. Suppose
now that the relations hold for m− 1. Then, for m we have:

t′m
k = gmt

′
m−1

kg−1
m

ind.
=
step

q−(m−1)kgmt
k
m−1g

−1
m +

∑
i fi(q)gmt

k
m−1wig

−1
m +

+
∑

i gi(q)t
λ0tλ1

1 . . . t
λm−2

m−2 gmt
λm−1

m−1 uig
−1
m

(L.4)
=

= q−(m−1)kq−(k−1)tkmg
−2
m +

∑k−1
j=1 q

−(k−1−j)(q−1 − 1)tjm−1t
k−j
m g−1

m =

= q−mktkm +
∑

i fi(q)t
k
mwi +

∑
i gi(q)t

λ0tλ1
1 . . . t

λmi
m ui.

Using now Lemma 3.11 we have that every element u ∈ Λ′ can be expressed to linear
combinations of elements vi ∈ Σn, where ∃ j : vj ∼ u. More precisely:

Theorem 3.3. The following relations hold in H1,n(q) for k ∈ Z:

tk0t′1
k1 . . . t′m

km = q−
∑m

n=1 nkn · tk0tk11 . . . tkmm +
∑

i fi(q) · tk0tk11 . . . tkmm · wi +
+

∑
j gj(q)τj · uj,

where wi, uj ∈ Hm+1(q), ∀i, τj ∈ Σn, such that τj < tk0tk11 . . . tkmm , ∀j.

Proof. We prove relations by induction on m. Let k1 ∈ N, then for m = 1 we have:

tk0t′1
k1 (L.9)

= q−k1tk0tk11 +
∑k1

j=1 q
−(k1−j)(q−1 − 1)tk0+j−1tk1+1−j

1 g−1
1 =

= q−k1tk0tk11 + q−k1(q−1 − 1)tk0tk11 g−1
1 +

+
∑k1

j=2 q
−(k1−j)(q−1 − 1)tk0+j−1tk1+1−j

1 g−1
1 .

On the right hand side we obtain a term which is the homologous word of tk0t′1
k1 with

scalar q−k1 ∈ C, the homologous word again followed by g−2
1 ∈ H2(q) and with scalar

q−(k1−1)(q−1 − 1) ∈ C and the terms tk0+j−1tk1+1−j
1 , which are of less order than the

homologous word tk0tk11 , since k1 > k1+1− j, for all j ∈ {2, 3, . . . k1}. So the statement
holds for m = 1 and k1 ∈ N. The case m = 1 and k1 ∈ Z\N is similar.

Suppose now that the relations hold for m− 1. Then, for m we have:

tk0t′1
k1 . . . t′m

km ind.
=
step

q−
∑m−1

n=1 nkn · tk0 . . . tkm−1

m−1 · t′mkm +

+
∑

i fi(q) · tk0tk11 . . . t
km−1

m−1 · wi · t′mkm

+
∑

j gj(q)τj · uj · t′mkm .

Now, since wi, ui ∈ Hm(q), ∀i we have that wit
′
m

km = t′m
kmwi and uit

′
m

km = t′m
kmui, ∀i.

Applying now Lemma 3.11 to t′m
k we obtain the requested relation.
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Fig. 3.6: Illustrating Theorem 3.3.

Example 3.1. We convert the monomial tt′1t
′
2
−2 ∈ Λ′ to linear combination of elements

in Σn. We have that:

t′1 = q−1t1 + (q−1 − 1)t1g
−1
1 , (Lemma 3.9),

t′2
−2 = q4t−2

2 + q3(q − 1)t−1
1 t−1

2 g−1
2 + q2(q − 1)t−1t−1

2 g2g
−1
1 g−1

2 +
+ q2(q − 1)t−2

1 g−1
2 + q(q − 1)2t−1t−1

1 g−1
1 g−1

2 + (q − 1)t−2g2g
−1
1 g−1

2 ,
(Lemma 3.10),

and so:

tt′1t
′
2
−2 = q3 · tt1t−2

2 + q4(q−1 − 1) · tt1t−2
2 · g−1

1 + 1 · u+
+ tt−1

1 ·
(
(q − 1)(q2 − q + 1) · g−1

2 − (q − 1)2 · g1g2g−1
1 g−1

2

)
+

+ tt−1
2 ·

(
q2(q − 1) · g−1

2 + q(q − 1)3 · g−1
2 − q(q − 1)2 · g2g−1

1 g−1
2

)
+

+ t1t
−1
2 ·

(
q(q − 1) · g2g−1

1 g−1
2 − q(q − 1)2 · g−1

1 g−1
2

)
+

+ t−1t1 ·
(
−(q − 1) · g2g−1

1 g−1
2 − q−1(q − 1)2 · g−1

1 g−1
2

)

where u = (q − 1)2g−1
1 g−1

2 − (q − 1)3g−2
1 g−1

2 − q−1(q − 1)3g2g
−1
1 g−1

2 + q−1(q − 1)3g−1
2 .

We obtain the homologous word w = tt1t
−2
2 , the homologous word again followed

by the braiding generator g−1
1 and terms in Σn of less order than w, since either their

index is less that ind(w) (the terms tt−1
1 , 1 and t−1t1), either they contain gaps in the

indices (the terms tt−1
2 and t1t

−1
2 ).

3.4 From Σn to Λ

In order to prove Theorem 3.2 we need to show that the set Λ is a spanning set of S(ST)
and also that is linear independent. In this section we show that every element in Λ′

can be expressed in terms of elements in the set Λ. Linear independence of the set Λ is
shown in the next section.

Before proceeding we need to discuss the following situation. According to Lemma 3.9,
for a word w′ = tkt′1

−λ ∈ Λ′, where k, λ ∈ N and k < λ we have that:

w′ = tkt′1
−λ = tk−1t1

−λ+1α1 + tk−2t1
−λ+2α2 + . . . +

+ t0t1
−λ+kαk + t−1t1

−λ+k+1αk+1 + . . . + t−λ+kαλ,
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Fig. 3.7: Conjugating ti by g−1
1 . . . g−1

i .

where αi ∈ Hn(q), ∀i. We observe that in this particular case, in the right hand side
there are terms which do not belong to the set Λ. These are the terms of the form tqtp1,
where p > q and the term tm1 . So these elements cannot be compared with the highest
order term w ∼ w′. The point now is that these terms are elements in the basis Σn

on the Hecke algebra level, but, when we are working in S(ST), such elements must be
considered up to conjugation by any braiding generator and up to stabilization moves.
Topologically, conjugation corresponds to closing the braiding part of a mixed braid.
Conjugating t1 by g−1

1 we obtain tg21 (view Figure 3.7) and similarly conjugating tm1
by g−1

1 we obtain tg21tg
2
1 . . . tg

2
1. Then, applying Lemma 3.3 we obtain the expression∑m−1

k=1 tktm−k
1 vk, where vk ∈ Hn(q), for all k, that is, we obtain now elements with

consecutive indices but not necessarily with ordered exponents.

We shall first deal with elements where the looping generators do not have con-
secutive indices, and then with elements where the exponents are not in decreasing
order. For the expressions that we obtain after appropriate conjugations we shall use
the notation =̂.

3.4.1 Managing the gaps

We will call gaps in monomials of the ti’s, gaps occurring in the indices and size of the
gap tkii t

kj
j the number si,j = j − i ∈ N.

Lemma 3.12. For k0, k1 . . . ki ∈ Z, ǫ = 1 or ǫ = −1 and si,j > 1 the following relation
holds in H1,n(q):

tk0tk11 . . . t
ki−1

i−1 t
ki
i · tǫj =̂ tk0tk11 . . . t

ki−1

i−1 t
ki
i · tǫi+1

(
gǫi+2 . . . g

ǫ
j−1g

2ǫ
j gǫj−1 . . . g

ǫ
i+2

)
.

Proof. We have that tǫj =
(
gǫj . . . g

ǫ
i+2

)
tǫi+1

(
gǫi+2 . . . g

ǫ
j

)
and so:

tk0tk11 . . . t
ki−1

i−1 t
ki
i t

ǫ
j = tk0tk11 . . . t

ki−1

i−1 t
ki
i (g

ǫ
j . . . g

ǫ
i+2) t

ǫ
i+1 (gǫi+2 . . . g

ǫ
j) =

= (gǫj . . . g
ǫ
i+2) t

k0tk11 . . . t
ki−1

i−1 t
ki
i t

ǫ
i+1(g

ǫ
i+2 . . . g

ǫ
j) =̂

=̂ tk0 . . . t
ki−1

i−1 t
ki
i t

ǫ
i+1(g

ǫ
i+2 . . . g

ǫ
j−1g

2ǫ
j gǫj−1 . . . g

ǫ
i+2).

In order to pass to a general way for managing gaps in monomials of ti’s we first
deal with gaps of size one. For this we have the following.
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Lemma 3.13. For k ∈ N, ǫ = 1 or ǫ = −1 and α ∈ H1,n(q) the following relations hold:

tǫki · α =̂
k−1∑

u=1

qǫ(u−1)(qǫ − 1)tǫui−1t
ǫ(k−u)
i (αgǫi ) + qǫ(k−1)tǫki−1(g

ǫ
iαg

ǫ
i ).

Proof. We prove the relations by induction on k. For k = 1 we have tǫi · α =̂ gǫi t
ǫ
i−1g

ǫ
i ·

α =̂ tǫi−1g
ǫ
i ·α ·gǫi . Suppose that the assumption holds for k−1 > 1. Then for k we have:

tǫki · α =̂ t
ǫ(k−1)
i (tǫi · α)

(tǫi ·α = β)
= t

ǫ(k−1)
i · β =̂

ind. step

=
∑k−2

u=1 q
ǫ(u−1)(qǫ − 1)tǫui−1t

ǫ(k−1−u)
i (βgǫi ) + qǫ(k−2)t

ǫ(k−1)
i−1 (gǫiβg

ǫ
i )

(β = tǫi ·α)=

=
∑k−2

u=1 q
ǫ(u−1)(qǫ − 1)tǫui−1t

ǫ(k−1−u)
i tǫi(αg

ǫ
i ) + qǫ(k−2)t

ǫ(k−1)
i−1 (gǫi t

ǫ
iαg

ǫ
i ) =

=
∑k−2

u=1 q
ǫ(u−1)(qǫ − 1)tǫui−1t

ǫ(k−u)
i (αgǫi ) + qǫ(k−2)t

ǫ(k−1)
i−1 tǫiαg

ǫ
i +

+ qǫ(k−1)t
ǫ(k−1+1)
i−1 (gǫi t

ǫ
iαg

ǫ
i ) =

=
∑k−1

u=1 q
ǫ(u−1)(qǫ − 1)tǫui−1t

ǫ(k−u)
i (αgǫi ) + qǫ(k−1)tǫki−1(g

ǫ
iαg

ǫ
i ).

We now introduce the following notation.

Notation 3.1. We set τ
ki,i+m

i,i+m := tkii t
ki+1

i+1 . . . t
ki+m

i+m , where m ∈ N and kj 6= 0 for all j and

δi,j :=

{
gigi+1 . . . gj−1gj if i < j
gigi−1 . . . gj+1gj if i > j

, δ
i,k̂,j

:=

{
gigi+1 . . . gk−1gk+1 . . . gj−1gj if i < j
gigi−1 . . . gk+1gk−1 . . . gj+1gj if i > j

We also set wi,j an element in Hj+1(q) where the minimum index in w is i.

Using now the notation introduced above, we apply Lemma 3.13 si,j-times to 1-gap

monomials of the form τ
k0,i
0,i · t

kj
j and we obtain monomials with no gaps in the indices,

followed by words in Hn(q).

Example 3.2. For si,j > 1 and α ∈ Hn(q) we have:

(i) τ ki0,i · tj · α =̂ τ ki0,i · ti+1 · δi+2,j α δj,i+2

(ii) τ ki0,i · t2j · α =̂ τ ki0,i · t2i+1 · δi+2,j α δj,i+2 + τ ki0,i · ti+1ti+2 · β, where

β =
[
(q − 1)

∑j

s=i+2 q
j−sδi+3,sδi+2,s−1δs+1,j α δj,i+2δs,i+3

]

(iii) τ ki0,i · t3j · α =̂
[
qj−(i+2)+1

]2
τ ki0,i · t3i+1 · δi+2,j α δj,i+2 +

+ τ ki0,i · t2i+1ti+2 · β + τ ki0,i · ti+1t
2
i+2 · γ +

+ τ ki0,i · ti+1ti+2ti+3 · µ, where
γ = qj−(i+3)+1(q − 1)δi+3,jδi+2,s−1δs+1,j α δj,i+2δs,i+3, and

µ =
∑j

s=i+2

∑j

r=s+1 q
2j−r−s (q − 1)2δi+4,rδi+2,s−1δs+1,r−1δr+1,j·

α δj,i+2δs,i+3δr,i+4 +
∑j

s=i+2

∑s

r=i+3 q
2j−r−s (q − 1)2·

δi+4,rδi+3,r−1δr+1,sδi+2,s−1δs+1,j α δj,i+2δs,i+3.
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Applying Lemma 3.13 to the one gap word τ
k0,i
0,i ·t

kj
j , where kj ∈ Z\{0} and α ∈ Hn(q)

we obtain:

τ
k0,i
0,i · t

kj
j α=̂





∑
λ τ

k0,i
0,i t

λi+1

i+1 . . . t
λi+kj

i+kj
α′ if kj < si,j

∑
λ τ

k0,i
0,i t

λi+1

i+1 . . . t
λj

j β′ if kj ≥ si,j

,

where α′, β′ ∈ Hn(q),
∑i+kj

µ=i+1 λµ = kj, λµ ≥ 0, ∀µ and if λu = 0, then λv = 0,
∀v ≥ u.

More precisely:

Lemma 3.14. For the 1-gap word A = τ
k0,i
0,i · t

kj
j · α, where α ∈ Hn(q) we have:

(i) If |kj| < si,j, then : A =̂ (qkj−1)j−(i+1)τ
k0,i
0,i · t

kj
i+1 δi+2,j α δj,i+2 +

+
∑

kj
f(q)τ

k0,i
0,i τ

ki+1,i+kj

i+1,i+kj
· βαβ′.

(ii) If |kj| ≥ si,j, then : A =̂ (qkj−1)j−(i+1)τ
k0,i
0,i · t

kj
i+1 δi+2,j α δj,i+2 +

+
∑

kj
f(q)τ

k0,i
0,i · τ

ki+1,j

i+1,j · βαβ′.

where β and β′ are of the form wi+1,j ∈ Hj+1(q),
∑

kj
f(q, z)τ

k0,i
0,i τ

ki+1,i+kj

i+1,i+kj
means a sum

of elements in Σn, such that in each one them, the sum of the exponents of the looping
generators ti+1, . . . , ti+kj is equal to kj, and such that |ki+1| < |kj|. Moreover, if kµ = 0,
for some index µ, then ks = 0 for all s > µ.

Proof. We prove the relations by induction on kj. Let 0 < kj < j − i.

For kj = 1 we have A =̂
[
q(1−1)

]j−(i+1)
τ
k0,i
0,i · ti+1δi+2,j α δj,i+2 (Lemma 3.12). Suppose

that the relation holds for kj − 1 > 1. Then for kj we have:

A = τ
k0,i
0,i · t

kj−1
j · (tj α) =̂

ind.step

[
qkj−2

]j−(i+1)
τ
k0,i
0,i · t

kj−1
i+1 δi+2,j tj α δj,i+2︸ ︷︷ ︸

B

+

+
∑

ki1,i+kj−1

f(q)τ
k0,i
0,i · τ

ki1,i+kj−1

i+1,i+kj−1β tj β
′

︸ ︷︷ ︸
C

.

We now consider B and C separately and apply Lemma 3.4 to both expressions:

B
(L. 3.4)
=

=
[
qkj−2

]j−(i+1)
τ
k0,i
0,i · t

kj−1
i+1 ·[

(q − 1)
∑j

k+i+2 q
j−ktkδi+2,k−1δk+1,j + qj−(i+2)+1ti+1δi+2,j

]
αδj,i+2

=
[
qkj−2

]j−(i+1)
(q − 1)τ

k0,i
0,i ti+1 ·

∑j

k+i+2 q
j−ktkδi+2,k−1δk+1,jαδj,i+2 +

+
[
qkj−1

]j−(i+1)
τ
k0,i
0,i · t

kj
i+1δi+2,jαδj,i+2.

We now do conjugation on the (j − (i+ 3))-one gap words that occur and since tk ·
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β =̂ ti+2 · δi+3,k β δk,i+3 we obtain:

B =̂
[
qkj−1

]j−(i+1)
τ
k0,i
0,i · t

kj
i+1δi+2,j α δj,i+2 +

+ τ
k0,i
0,i ti+1ti+2

∑j

k=i+2 f(q, z)δi+3,kδi+2,k−1δk+1,jαδj,i+2δk,i+3 =

=
[
qkj−1

]j−(i+1)
τ
k0,i
0,i · t

kj
i+1δi+2,j α δj,i+2 + τ ki0,iti+1ti+2 · β1,

where β1 ∈ Hj+1(q).

Moreover, C =
∑

kr
f(q)τ

k0,i
0,i · τ

ki+1,i+kj−1

i+1,i+kj−1β tj β
′ and since β = wi+kj−1,j, we have that:

β ·tj
(L. 3.4)
=

∑j

s=i+kj−1 ts ·γs, where γs ∈ Hj+1(q) and so: C =̂
∑

vr
f(q)τ

k0,i
0,i ·τ

vi+1,i+kj

i+1,i+kj
·β2,

where β2 ∈ Hj+1(q).

This concludes the proof.

We now pass to the general case of one-gap words.

Proposition 3.3. For the 1-gap word B = τ
k0,i
0,i · τ

kj,j+m

j,j+m ·α, where α ∈ Hn(q) we have:

B =̂
∏m

s=0 (q
kj+s−1)j−(i+1) · τ k0,i0,i τ

kj,j+m

i+1,i+m

· ∏m

s=0(δi+m+2−s,j+s) · α ·
∏m

s=0(δj+s,i+m+2−s) +

+
∑

ur
f(q)τ

k0,i
0,i · (τ

u1,m

i+1,i+m) · α′

where α′ ∈ Hn(q),
∑

u1,m = kj such that u1 < kj and if uµ = 0, then us = 0, ∀s > µ.

Proof. The proof follows from Lemma 4.3. The idea is to apply Lemma 4.3 on the
expression τ

k0,i
0,i · t

kj
j · ρ1, where ρ1 = τ

kj+1,j+m

j+1,j+m and obtain the terms τ
k0,i
0,i · t

kj
i+1 · ρ2 and

τ
k0,i
0,i · τ

ki+1,i+q

i+1,i+q · ρ2 and follow the same procedure until there is no gap in the word.

We are now ready to deal with the general case, that is, words with more than one
gap in the indices of the generators.

Theorem 3.4. For the φ-gap word:

C = τ
k0,i
0,i · τ

ki+s1,i+s1+µ1
i+s1,i+s1+µ1

· τ ki+s2,i+s2+µ2
i+s2,i+s2+µ2

. . . τ
ki+sφ,i+sφ+µφ

i+sφ,i+sφ+µφ
· α, where ki ∈ Z\{0} for all i,

α ∈ Hn(q), sj, µj ∈ N, such that s1 > 1 and sj > sj−1 + µj−1 for all j we have:

C =̂
∏φ

j=1

(
qki+sj

−1
)sj−j−∑j−1

p=1 µp

· τ
u
0,i+φ+

∑φ
p=1 µp

0,i+φ+
∑φ

p=1 µp
·
(∏φ−1

p=0 αφ−p

)
· α·

(∏φ

p=1 α
′
p

)
+

∑
v fv(q)τ

k0,v
0,v · wv, where

(i) αj =
∏µj

λj=0 δi+j+1+
∑j

k=1 µk−λj , i+sj+µj−λj
, j = {1, 2, . . . , φ},

(ii) α′
j =

∏µj

λj=0 δi+j+1+
∑j−1

k=1 µk+λj , i+sj+λj
, j = {1, 2, . . . , φ},

(iii) τ
u
0,i+φ+

∑φ
p=1 µp

0,i+φ+
∑φ

p=1 µp
= τ

k0,i
0,i ·

∏φ

j=1 τ
ki+sj ,i+sj+µj

i+j+
∑j−1

p=1 µp,i+j+
∑j

p=1 µp
,
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(iv) τ
u0,v

0,v < τ
u
0,i+φ+

∑φ
p=1 µp

0,i+φ+
∑φ

p=1 µp
, for all v,

(v) wv of the form wi+2,i+sφ+µφ
∈ Hi+sφ+µφ+1(q), for all v,

(vi) the scalars fv(q) are expressions of q ∈ C for all v.

Proof. We prove the relations by induction on the number of gaps. For the 1-gap word
τ
k0,i
0,i · τ

ki+s,i+s+µ

i+s,i+s+µ · α, where α ∈ Hn(q), we have:

A =̂
[∏µ

λ=0

(
qki+s+λ−1

)s−1
]
· τ k0,i0,i · τ

ki+s,i+s+µ

i+1,i+1+µ ·
∏µ

λ=0 δi+2+µ−λ,i+s+µ−λ · α·∏µ

λ=0 δi+2+µ+λ,i+s+λ +
∑

v fv(q) · τ
u0,v

0,v · wv,
which holds from Proposition 3.3.

Suppose that the relation holds for (φ − 1)-gap words. Then for a φ-gap word we
have:(
τ
k0,i
0,i · τ

ki+s1,i+s1+µ1
i+s1,i+s1+µ1

· τ ki+s2,i+s2+µ2
i+s2,i+s2+µ2

. . . τ
ki+sφ−1,i+sφ−1+µφ−1

i+sφ−1,i+sφ−1+µφ−1

)
· τ ki+sφ,i+sφ+µφ

i+sφ,i+sφ+µφ
· α =̂

ind.step

∏φ−1
j=1

(
qki+sj

−1
)sj−j−

∑j−1
k=1 µk · τ

u
0,i+φ−1+

∑φ−1
k=1

µk

0,i+φ−1+
∑φ−1

k=1 µk

·∏φ−2
k=0 αφ−1−k · τ

ki+sφ,i+sφ+µφ

i+sφ,i+sφ+µφ
·α ·∏φ−1

k=1 α
′
k +

∑
v fv(q) · τ

u0,v

0,v · w · τ ki+sφ,i+sφ+µφ

i+sφ,i+sφ+µφ

sφ>sφ−1+µφ−1
=

∏φ−1
j=1

(
qki+sj

−1
)sj−j−∑j−1

k=1 µk · τ
u
0,i+φ−1+

∑φ−1
k=1

µk

0,i+φ−1+
∑φ−1

k=1 µk

· τ ki+sφ,i+sφ+µφ

i+sφ,i+sφ+µφ
·∏φ−2

k=0 αφ−1−k ·α ·
∏φ−1

k=1 α
′
k +

∑
v fv(q) · τ

u0,v

0,v · τ ki+sφ,i+sφ+µφ

i+sφ,i+sφ+µφ
· w (Prop. 3.3)

=

∏φ−1
j=1

(
qki+sj

−1
)sj−j−

∑j−1
k=1 µk ·∏µφ

p=0

(
qki+sφ+p−1

)sφ−φ−
∑φ−1

k=1 µk

τ
u
0,i+φ−1+

∑φ−1
k=1

µk

0,i+φ−1+
∑φ−1

k=1 µk

·

τ
ki+sφ,i+sφ+µφ

i+φ+
∑φ−1

k=1 µk,i+φ+
∑φ−1

k=1 µk+µφ

·∏φ−1
k=0 αφ−1−k · α ·

∏φ−1
k=1 α

′
k +

∑
v fv(q) · τ

u0,v

0,v · τ ki+sφ,i+sφ+µφ

i+sφ,i+sφ+µφ
·

w
(Prop. 3.3)

=[∏µ

λ=0

(
qki+s+λ−1

)s−1
]
· τ k0,i0,i · τ

ki+s,i+s+µ

i+1,i+1+µ ·
∏µ

λ=0 δi+2+µ−λ,i+s+µ−λ ·α ·
∏µ

λ=0 δi+2+µ+λ,i+s+λ +
∑

v fv(q) · τ
u0,v

0,v · wv.

All results are best demonstrated in the following example on a word with two gaps.

Example 3.3. For the 2-gap word tk0tk11 t3t
2
5t

−1
6 ∈ Σn we have:

tk0tk11 t3t
2
5t

−1
6 = tk0tk11 g3t2g3t

2
5t

−1
6 = g3t

k0tk11 t2t
2
5t

−1
6 g3 =̂ tk0tk11 t2t

2
5t

−1
6 g23 =

= tk0tk11 t2t5t5t
−1
6 g23 = tk0tk11 t2g5g4t3g4g5t5t

−1
6 g23 =

= g5g4t
k0tk11 t2t3g4g5t5t

−1
6 g23 =̂ tk0tk11 t2t3g4g5t5t

−1
6 g23g5g4 =

= tk0tk11 t2t3 [q
2t3g4g5 + q(q − 1)t4g5 + (q − 1)t5g4] t

−1
6 g23g5g4 =

= q2tk0tk11 t2t
2
3g4g5t

−1
6 g23g5g4 + q(q − 1)tk0tk11 t2t3t4g5t

−1
6 g23g5g4 +
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+ (q − 1)tk0tk11 t2t3t5g4t
−1
6 g23g5g4 = q2tk0tk11 t2t

2
3t

−1
6 g4g5g

2
3g5g4 +

+ (q − 1)tk0tk11 t2t3t5t
−1
6 g4g

2
3g5g4 + q(q − 1)tk0tk11 t2t3t4t

−1
6 g5g

2
3g5g4 =̂

=̂ q2tk0tk11 t2t
2
3g

−1
6 g−1

5 t−1
4 g−1

5 g−1
6 g4g5g

2
3g5g4 +

+ q(q − 1)tk0tk11 t2t3t4g
−1
6 t−1

5 g−1
6 g5g

2
3g5g4 + (q − 1)tk0tk11 t2t3g5t4g5t

−1
6 ·

·(g4g23g5g4) = q2g−1
6 g−1

5 tk0tk11 t2t
2
3t

−1
4 g−1

5 g−1
6 g4g5g

2
3g5g4 +

+ q(q − 1)g−1
6 tk0tk11 t2t3t4t

−1
5 g−1

6 g5g
2
3g5g4 +

+ (q − 1)g5t
k0tk11 t2t3t4t

−1
6 g5g4g

2
3g5g4 =̂

=̂ q2tk0tk11 t2t
2
3t

−1
4 g−1

5 g−1
6 g4g5g

2
3g5g4g

−1
6 g−1

5 +

+ q(q − 1)tk0tk11 t2t3t4t
−1
5 g−1

6 g5g
2
3g5g4g

−1
6 + (q − 1)tk0tk11 t2t3t4t

−1
6 g5·

·(g4g23g5g4g5) = q2tk0tk11 t2t
2
3t

−1
4 g−1

5 g−1
6 g4g5g

2
3g5g4g

−1
6 g−1

5 +

+ q(q − 1)tk0tk11 t2t3t4t
−1
5 g−1

6 g5g
2
3g5g4g

−1
6 +

+ (q − 1)tk0tk11 t2t3t4g
−1
6 t−1

5 g−1
6 g5g4g

2
3g5g4g5 =̂

=̂ q2tk0tk11 t2t
2
3t

−1
4 g−1

5 g−1
6 g4g5g

2
3g5g4g

−1
6 g−1

5 +

+ q(q − 1)tk0tk11 t2t3t4t
−1
5 g−1

6 g5g
2
3g5g4g

−1
6 +

+ (q − 1)tk0tk11 t2t3t4t
−1
5 g−1

6 g5g4g
2
3g5g4g5g

−1
6 .

3.4.2 Ordering the exponents

We now deal with elements in Σn, where the looping generators have consecutive indices
but their exponents are not in decreasing order. More precisely, we will show that these
elements can be expressed as sums of elements in the

⋃
n Hn(q)-module Λ, namely, as

sums of elements in Λ followed by a braiding tail.
We will need the following lemma.

Lemma 3.15. The following relations hold in H1,n(q) for λ ∈ N:

tki · tk+λ
i+1 =̂

∑

j

t
uj

i t
vj
i+1 · wj,

where uj + vj = 2k + λ, uj ≥ vj and wj ∈ Hn(q), ∀j.

Proof. We have that tki · tk+λ
i+1 = tki · tki+1t

λ
i+1

L. 3.13
=

= tki · tki+1 ·
(
qλ−1gi+1t

λ
i gi+1 +

∑λ−2
j=0 q

j(q − 1)tj+1
i tλ−1−j

i+1

)
=

= qλ−1tki · tki+1 · gi+1t
λ
i gi+1 +

∑λ−2
j=0 q

j(q − 1)tk+j+1
i tk+λ−1−j

i+1 .

We obtained the term tki · tki+1 · gi+1t
λ
i gi+1, terms where the exponent of ti is greater than

the exponent of ti+1 and terms of the form tp1i tp2i+1, where k < p1 > p2 < k + λ. We
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apply Lemma 3.13 on the terms of the last form and repeat the same procedure until
there are only elements of the form tu1

i tu2
i+1, u1 > u2 left in each sum. Note that each

time Lemma 3.13 is performed, a term of the form tm1
i · tm1

i+1 · gi+1t
m2
i gi+1 appears. For

these elements we have:
tm1
i · tm1

i+1 · gi+1t
m2
i gi+1

L. 3
= tm1

i ·
(
(q − 1)

∑m1−1
j=0 qjtji t

m1−j
i+1 + qm1gi+1t

m1
i

)
· tm2

i gi+1 =

(q − 1)
∑m1−1

j=0 qjtm1+m2+j
i tm1−j

i+1 gi+1 + qm1tm1
i · gi+1t

m1+m2
i · gi+1.

We have obtained now elements where the exponent of ti is greater than the exponent

of ti+1 and the term tm1
i · gi+1t

m1+m2
i · gi+1 =̂ tm1+m2

i · gi+1t
m1
i gi+1

L. 3.4
=

= tm1+m2
i ·

(
q−m1+1tm1

i+1g
−1
i+1 +

∑m1−1
j=1 q−m1+1−j(q−1 − 1)tji t

m1−j
i+1

)
and this concludes the

proof.

Remark 3.3. Let τ
k0,m
0,m ∈ Σn such that ki < ki+1. Applying Lemma 3.15 on τ

k0,m
0,m we

obtain a sum of elements τj ∈ Σn, such that τj < τ, ∀j, since the exponent of the
generator ti+1 in τj is less than ki+1 for all j (see Definition 3.2).

Example 3.4. Consider the element tt21t
3
2 ∈ Σn and apply Lemma 3.15 on the first

“bad” exponent occurring in the word, starting from right to left.

tt21t
3
2 =̂ f1(q) · tt31t22 · w1 + f2(q) · tt41t2 · w2.

The terms obtained are still in Σn but they have one “bad” exponent less. We apply
Lemma 3.15 again and obtain:

tt31t
2
2 =̂ f3(q) · t3t1t22 · w3 + f4(q) · t2t21t22 · w4

tt41t2 =̂ f5(q) · t4t1t2 · w5 + f6(q) · t3t21t2 · w6

All terms obtained now are in the
⋃

n Hn(q)-module Λ except from the element t3t1t
2
2.

We apply Lemma 3.15 again and obtain:

t3t1t
2
2 =̂ f7(q) · t3t21t2 · w7.

So:
tt21t

3
2 =̂ g1(q) · t3t21t2 · u1 + g2(q) · t2t21t22 · u2 + g3(q) · t4t1t2 · u3

where u1, . . . , u5 ∈ Hn(q) and g1(q), . . . , g5(q) ∈ C.

Theorem 3.5. Applying conjugation on an element in Σn we have that:

τ
k0,m
0,m · w =̂

∑

j

τ
λ0,j

0,j · wj,

where τ
λ0,j

0,j ∈ Λ and w,wj ∈ Hn(q), ∀j.

Proof. We prove the statement by induction on the order of τ
k0,m
0,m · w ∈ Σn, where

order of an element in Σn denotes the position of this element in Σn with respect to
total-ordering.
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The base of the induction is Lemma 3.15 for i = 0. Suppose that the relation holds
for all τj · uj ∈ Σn of less order than τ

k0,m
0,m · w. Then, for τ

k0,m
0,m · w we have:

Let k0 > k1 > . . . > ki < ki+1. Applying Lemma 3.15 on τ
k0,m
0,m · w we obtain:

τ
k0,m
0,m · w := tk00 tk11 . . . tkii t

ki+1

i+1 . . . tkmm · w =
∑

j t
k0
0 tk11 . . . t

uj

i t
vj
i+1 . . . t

km
m · wj, where uj >

vj < ki+1, ∀j, that is, a sum of lower order terms than τ
k0,m
0,m · w (see Remark 3.3). So,

by the induction hypothesis, the relation holds.

3.4.3 Eliminating the tails

So far we have seen how to convert elements in the basis Λ′ to sums of elements in Σn

and then, using conjugation, how these elements are expressed as sums of elements in
the

⋃
n Hn(q)-module Λ. We will show now that using conjugation and stabilization

moves all these elements of the
⋃

n Hn(q)-module Λ are expressed to sums of elements
in the set Λ with scalars in the field C. We will use the symbol ≃ when a stabilization
move is performed and ≃̂ when both stabilization moves and conjugation are performed.

Let us consider a generic word in H1,n+1(q). This is of the form τ
k0,n
0,n · wn+1, where

wn+1 ∈ Hn+1(q). Without loss of generality we consider the exponent of the braiding
generator with the highest index to be (−1) when the exponent of the corresponding
loop generator is in N and (+1) when the exponent of the corresponding loop generator
is in Z\N. We then apply Lemma 3.3 and 3.4 in order to interact t±kn

n with g∓1
n and

obtain words of the following form:

(1) τ
λ0,p

0,p · v, where τ
λ0,p

0,p < τ
k0,n
0,n and v ∈ Hn+1(q) of any length, or

(2) τ
k0,q
0,q · u, where τ

λ0,q

0,q < τ
k0,n
0,n and u ∈ Hn(q) such that l(u) < l(w).

In the first case we obtain monomials of tis of less order than the initial monomial,
followed by a word in Hn+1(q) of any length. After at most (kn + 1)-interactions of tn
with gn, the exponent of tn will become zero and so by applying a stabilization move we
obtain monomials of tis of less index, and thus of less order (Definition 3.2), followed
by a word in Hn(q).

In the second case, we have monomials of tis of less order than the initial monomial
followed by words u ∈ Hn(q) such that l(u) < l(w). We interact the generator with
the maximum index of u, gm with the corresponding loop generator until the exponent
of tm becomes zero. A gap in the indices of the monomials of the tis occurs and we
apply Theorem 3.4. This leads to monomials of tis of less order followed by words of
the braiding generators of any length. We then apply stabilization moves and repeat
the same procedure until the braiding ‘tails’ are eliminated.

Theorem 3.6. Applying conjugation and stabilization moves on a word in the
⋃

∞ Hn(q)-
module, Λ we have that:

τ
k0,m
0,m · wn ≃̂

∑

j

fj(q, z) · τ
v0,uj
0,uj

,
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such that
∑

v0,uj
=

∑
k0,m and τ

v0,uj
0,uj

< τ
k0,m
0,m , for all j.

The logic for the induction hypothesis is explained above. We shall now proceed
with the proof of the theorem.

Proof. We prove the statement by double induction on the length of wn ∈ Hn(q) and

on the order of τ
k0,m
0,m ∈ Λ, where order of τ

k0,m
0,m denotes the position of τ

k0,m
0,m in Λ with

respect to total-ordering.

For l(w) = 0, that is for w = e we have that τ
k0,m
0,m ≃̂ τ

k0,m
0,m and there’s nothing to

show. Moreover, the minimal element in the set Λ is tk and for any word w ∈ Hn(q) we
have that tk · w ≃ f(q, z) · tk, by the quadratic relation and stabilization moves.

Suppose that the relation holds for all τ
u0,p

0,p · w′, where τ
u0,p

0,p ≤ τ
k0,m
0,m and l(w′) = l,

and for all τ
v0,q
0,q ·w, where τ

v0,q
0,q < τ

k0,m
0,m and l(w) = l+ 1. We will show that it holds for

τ
k0,m
0,m · w. Let the exponent of tr, kr ∈ N and let w ∈ Hr+1(q). Then, w can be written

as w′ · g−1
r · δr−1,d, where w′ ∈ Hr(q) and d < r. We have that:

τ
k0,m
0,m · w = τ

k0,r−1

0,r−1 tkr−1
r τ

kr+1,m

r+1,m · w′ · trg−1
r δr−1,d =

= τ
k0,r−1

0,r−1 tkr−1
r τ

kr+1,m

r+1,m · w′ · grtr−1δr−1,d
L. 6
=

= τ
k0,r−1

0,r−1 tkr−1
r τ

kr+1,m

r+1,m · w′ · gr
·
(∑r−1−d

j=0 qj(q − 1)δ
r−1, ̂r−1−j,d

tr−1−j + ql(δr−1,d)δr−1,dtd−1

)
=̂

=̂
∑r−1−d

j=0 qj(q − 1)τ
k0,r−1

0,r−1 tkr−1
r τ

kr+1,m

r+1,m · tr−1−j · w′ · grδr−1, ̂r−1−j,d
+

+ ql(δr−1,d)τ
k0,r−1

0,r−1 tkr−1
r τ

kr+1,m

r+1,m · td−1 · w.

We have that
(
τ
k0,r−1

0,r−1 tkr−1
r τ

kr+1,m

r+1,m · tr−1−j

)
<

(
t
k0,m
0,m

)
, for all j ∈ {1, 2, . . . r − 1− d}

and l
(
w′ · grδr−1, ̂r−1−j,d

)
= l and

(
τ
k0,r−1

0,r−1 tkr−1
r τ

kr+1,m

r+1,m · td−1

)
<

(
t
k0,m
0,m

)
. So, by the

induction hypothesis, the relation holds.

Example 3.5. In this example we demonstrate how to eliminate the braiding ‘tail’ in
a word in Σn.

t−1t21t
−1
2 g−1

1 = t−1t1t
−1
2 t1g

−1
1 = t−1t1t

−1
2 g1t =̂ t1t

−1
2 g1 = t−1

2 t1g1 =

= (q − 1)t1t
−1
2 + qt−1

2 g1t =̂ (q − 1)tt−1
2 g21 + qtt−1

2 g1 =

= (q − 1)tt−1
1 g−1

2 g21g
−1
2 + qtt−1

1 g−1
2 g1g

−1
2 .

We have that:

g−1
2 g1g

−1
2 = q−2g1g2g1 + q−1(q−1 − 1)g2g1 + q−1(q−1 − 1)g1g2 +

+ (q−1 − 1)2g1,
g−1
2 g21g

−1
2 = q−2(q − 1)g1g2g1 − (q−1 − 1)2g2g1 − (q−1 − 1)2g1g2 +

+ (q − 1)(q−1 − 1)2g1 + q(q−1 − 1)g−1
2 + 1,
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and so

(q − 1)tt−1
1 g−1

2 g21g
−1
2 ≃̂ ((q − 1) + q−1(q − 1)3) · tt−1

1 − q−3(q−1 − 1)3z2 · 1+
+ 3q−3(q − 1)4z · 1− q−1(q − 1)2z · 1− q−3(q − 1)5 · 1,

qtt−1
1 g−1

2 g1g
−1
2 ≃̂ z · tt−1

1 + q−1(q−1 − 1)z2 · 1 + 2(q−1 − 1)2z · 1+
+ q(q−1 − 1)3 · 1.

3.5 The basis Λ of S(ST)
In this section we show that the set Λ is a linearly independent. This is done in two
steps:

• We first relate the two sets Λ and Λ′ via an infinite lower triangular matrix with
invertible elements in the diagonal.

• Then, using the matrix mentioned above, we prove that the set Λ is linearly
independent.

3.5.1 The infinite matrix

With the orderings given in Definition 3.2 we shall show that the infinite matrix con-
verting elements of the basis Λ′ to elements of the set Λ is a block diagonal matrix,
where each block is an infinite lower triangular matrix with invertible elements in the
diagonal. Note that applying conjugation and stabilization moves on an element of
some Λk followed by a braiding part won’t alter the sum of the exponents of the loop
generators and thus, the resulted terms will belong to the set of the same level Λk.
Fixing the level k of a subset of Λ′, the proof of Theorem 3.2 is equivalent to proving
the following claims:

(1) A monomial w′ ∈ Λ′
k ⊆ Λ′ can be expressed as linear combinations of elements

in Λk ⊆ Λ, vi, followed by monomials in Hn(q), with scalars in C such that
∃ j : vj = w ∼ w′.

(2) Applying conjugation and stabilization moves on all vi’s results in obtaining ele-
ments in Λk, ui’s, such that ui < vi for all i.

(3) The coefficient of w is an invertible element in C.

(4) Λk ∋ w < u ∈ Λk+1.

Indeed we have the following: Let w′ ∈ Λ′
k ⊂ Λ′. Then, by Theorem 3.3 the

monomial w′ is expressed as a sum of elements in Σn, where the only term that isn’t
followed by a braiding part is the homologous monomial w ∈ Λk ⊂ Λ. Other terms in
the sum involve lower order terms than w (with possible gaps in the indices and possible
non ordered exponents) followed by a braiding part and words of the form w · β, where
β ∈ Hn(q). Then, by Theorem 3.4 elements in Σn are expressed to linear combinations
of elements in Σn with no gaps in the indices of the looping generators (regularizing
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Fig. 3.8: From Λ′ to Λ.

elements with gaps) and obtaining words which are of less order than the initial word
w. Then, by Theorem 3.5 we express these elements to linear combinations of elements
in the Hn(q)-module Λ, again of less order than w. In Theorem 3.6 all elements that are
followed by a braiding part are expressed as sums of monomials in ti’s with coefficients in
C. It is essential to mention that when applying Theorem 3.6 to a word of the form w ·β
one obtains monomials in ti’s that are less ordered that w. Some of these monomials in
ti’s are in Λ and some have their exponents in non decreasing order, but all monomials
are of less order than w. We apply again Theorem 3.5 on these monomials τ that don’t
belong in the set Λ and obtain words of less order than τ , followed by a braiding part.
We only consider now the monomials not in Λ and perform Theorem 3.5. We obtain
elements in the Hn(q)-module Λ of less order than the initial monomials, followed by
a braiding part. Eventually this procedure stops at the lower order term of Λk, t

k. So
we have obtained elements in Λ of lower order terms than the initial element w, and
thus, we obtain a lower triangular matrix with entries in the diagonal of the form q−A

(see Theorem 3.3), which are invertible elements in C. The fourth claim follows directly
from Definition 3.2.

If we denote as [Λk] the block matrix converting elements in Λ′
k to elements in Λk

for some k, then the change of basis matrix will be of the form:
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S =




. . . 0 0 0 0 0
[Λk−2] 0 0 0 0

0 [Λk−1] 0 0 0
0 0 [Λk] 0 0
0 0 0 [Λk+1] 0
0 0 0 0 [Λk+2]

0 0 0 0 0
. . .




The infinite block diagonal matrix

3.5.2 Linear independence of Λ

Theorem 3.7. The set Λ is linearly independent.

Proof. Consider an arbitrary subset of Λ with finite many elements τ1, τ2, . . . , τk. With-
out loss of generality we consider τ1 < τ2 < . . . < τk according to Definition 3.2. We
convert now each element τi ∈ Λ to linear combination of elements in Λ′ according to
the infinite matrix. We have that

τi ≃̂ Aiτ
′
i +

∑

j

Ajτ
′
j ,

where τ ′i ∼ τi, Ai ∈ C \ {0}, τ ′j < t′i and Aj ∈ C, ∀j.
So, we have that:

τ1 ≃̂ A1τ
′
1 +

∑
j A1jτ

′
1j

τ2 ≃̂ A2τ
′
2 +

∑
j A2jτ

′
2j

...
...

τk−1 ≃̂ Ak−1τ
′
k−1 +

∑
j A(k−1)jτ

′
(k−1)j

τk ≃̂ Akτ
′
k +

∑
j Akjτ

′
kj

Note that each τ ′i can occur as an element in the sum
∑

j Apjτ
′
pj for p > i. We

consider now the equation
∑k

i=1 λi · τi = 0 , λi ∈ C, ∀i and we show that this holds
only when λi = 0, ∀i. Indeed, we have:

k∑

i=1

λi · τi = 0 ⇔ λkAkτ
′
k +

k∑

i=1

∑

j

λiAijτ
′
ij = 0,

where τ ′k > τ ′ij, ∀i, j. So we conclude that λk = 0. Using the same argument we have
that:

k∑

i=1

λi · τi = 0 ⇔
k−1∑

i=1

λi · τi = 0 ⇔ λk−1Ak−1τ
′
k−1 +

k−1∑

i=1

∑

j

λiAijτ
′
ij = 0,
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where τ ′k−1 > τ ′ij, ∀i, j. So, λk−1 = 0. Retrospectively we get:

k∑

i=1

λi · τi = 0 ⇔ λi = 0, ∀i,

and so an arbitrary finite subset of Λ is linearly independent. Thus, the set Λ is linearly
independent.

3.5.3 The proof of the main result

By Theorems 3.3, 3.4, 3.5 and 3.6 the set Λ is a spanning set of S(ST). By Theorem 3.7
the set Λ is also linearly independent. Thus, it forms a basis for S(ST) and the proof
of Theorem 3.2 is now concluded. QED

3.6 Appendix

In this section we prove a series of lemmas converting elements in Σn in sums of elements
in Σ′

n. The results presented in this section are used in Chapter 4 towards the computa-
tion of S(L(p, 1)). Moreover, they can be used in order provide a more straightforward
proof that the set Σ′

n forms a basis for H1,n(q), given that the set Σn is a basic set.

3.6.1 From Σn to Σ′
n

Following notation 3.1, we denote by τ ′
λ0,m

0,m the element tλ0 · t′mλm ∈ Λ′. The following
lemma is analogous to Lemma 3.11.

Lemma 3.16. For i ∈ N, k ∈ Z, the following relations hold in H1,n(q):

tki = qk·it′i
k

+
∑

j

fj(q, z) · τ ′0,jλ0,j ,

where
∑j

m=0 λm = k such that λj < k.

Proof. The proof is by induction on k and is analogous to that of Lemma 3.11.

Theorem 3.8. The following relations hold in H1,n(q) for k ∈ N:

tk0t1
k1 . . . tm

km = q
∑m

n=1 nkn · tk0t′1k1 . . . t′mkm +
∑

i

fi(q, z) · τ ′λ0,i

0,i

where τ ′
λ0,i

0,i < tk0t1
k1 . . . tm

km , ∀i, ∑i

j=0 λj =
∑m

i=0 ki, λj ∈ N∀j, such that λm < km
and if ∃v : λv = 0, then λj = 0 ∀j > v.

Proof. The relations are straightforward from the change of basis matrix. Alternatively,
induction on the order of τ

k0,m
0,m could also be applied.
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3.6.2 Useful lemmas

Lemma 3.17. For ε = ±1, the following relations hold in H1,n(q):

(i) g±1
1 t±kg∓1

1 t±1 = t±1g±1
1 t±kg±1

1 + (1− q∓1)t±kg±1
1 t±1 + (q∓1 − 1)g±1

1 t±(k+1)

(ii) g1t
kg−1

1 t−1 = t−1g1t
kg−1

1 + (1− q−1)t−1g1t
k + (q−1 − 1)t(k−1)g1

(iii) t−1g−1
1 tkg1 = g−1

1 tkg1t
−1 + (1− q−1)tkg1t

−1 + (q−1 − 1)g1t
(k−1)

Proof. We only prove relations (i) for ε = 1. Relations (ii) and (iii) follow similarly.

g1t
kg−1

1 t = q−1g1t
kg1t + (q−1 − 1)g1t

(k+1) =
= q−1

[
tg1t

kg1 − (q − 1)tg1t
k − (1− q)tkg1t

]
+ (q−1 − 1)g1t

k+1 =
= q−1tg1t

kg1 + q−1(1− q)tg1t
k + q−1(q − 1)tkg1t + q−1(1− q)g1t

k+1 =
= tg1t

kg−1
1 + (1− q−1)tg1t

k + (q−1 − 1)tg1t
k + (1− q−1)tkg1t+ (q−1 − 1)g1t

k+1 =
= tg1t

kg1 + (1− q−1)tkg1t + (q−1 − 1)g1t
(k+1).

Lemma 3.18. For ε = ±1, the following relations hold in H1,n(q):

gε1t
ǫkg−ε

1 tελ = tελgε1t
ǫkg−ε

1 + (1−q−ε)
λ∑

j=1

tε(k+λ−j)gε1t
εj + (q−1−1)

λ∑

j=1

tε(λ−j)g1
εtε(κ+j).

Proof. We only prove the case where ε = 1 by induction on λ:
For λ = 1 we have:

g1t
kg1

−1t = tg1t
kg1 + (1− q−1)tkg1t+ (q−1 − 1)g1t

(k+1).

Suppose that the relation holds for λ = i. Then for λ = i+ 1 we have:

g1t
kg1

−1ti+1 = (g1t
kg1

−1ti)t
ind.step
=

tig1t
kg1

−1t + (1− q−1)
∑i

j=1 t
(k+i−j)g1t

j)t + (q−1 − 1)
∑i

j=1 t
(i−j)g1t

(κ+j)t =

ti+1g1t
kg1

−1 + (1− q−1)tk+1g1t + (q−1 − 1)tig1t
k+1 +

+ (1− q−1)
∑i

j=1 t
(k+i−j)g1t

j+1 + (q−1 − 1)
∑i

j=1 t
(i−j)g1t

(κ+j+1) =

ti+1g1t
kg1

−1 + (1− q−1)
∑i+1

j=1 t
(k+i−j)g1t

j + (q−1 − 1)
∑i+1

j=1 t
(i−j)g1t

(κ+j).

Lemma 3.19. For the expression A = (gigi−1 . . . gj+2gj+1g
−1
j+2 . . . g

−1
i )t′k the following
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relations hold for the different values of k ∈ N:

(1) A = t′k(gigi−1 . . . gj+2gj+1g
−1
j+2 . . . g

−1
i ), for k > i or k < j

(2) A = (q − 1)t′i + qt′j(gigi−1 . . . gj+2gj+1g
−1
j+2 . . . g

−1
i ), for k = i

(3) A = t′i(gigi−1 . . . gj+2gj+1g
−1
j+2 . . . g

−1
i ), for k = j

(4) A = (q − 1)t′j+1(gigi−1 . . . gj+2gj+1gj+2g
−1
j+3 . . . g

−1
i )+

+ (q − 1)2t′i(gigi−1 . . . gj+2gj+1gj+2g
−1
j+3 . . . g

−1
i )−

− (q − 1)2t′j+1(gigi−1 . . . gj+3gj+1gj+2g
−1
j+3 . . . g

−1
i )+

+ q(q − 1)t′i(gigi−1 . . . gj+2g
−1
j+3 . . . g

−1
i )+

+ qt′j(gigi−1 . . . gj+2gj+1g
−1
j+3 . . . g

−1
i )+

+ q(1− q)t′j(gigi−1 . . . gj+2g
−1
j+3 . . . g

−1
i ), for k = j + 1 < i.

(5) A = (q − 1)t′k(gigi−1 . . . gj+2gj+1g
−1
j+2 . . . g

−1
k−1g

−1
k+2 . . . g

−1
i )+

+ (q − 1)2t′i(gigi−1 . . . gj+2gj+1g
−1
j+2 . . . g

−1
k−1g

−1
k+2 . . . g

−1
i )−

− (q − 1)2t′k(gigi−1 . . . gj+2gj+1g
−1
j+2 . . . g

−1
k−1g

−1
k+2 . . . g

−1
i )+

+ qt′j(gigi−1 . . . gj+2gj+1g
−1
j+2 . . . g

−1
k−1g

−1
k g−1

k+2 . . . g
−1
i )+

+ q(q − 1)t′i(gigi−1 . . . g
−1
k+1g

−1
k+2 . . . g

−1
i )−

− q(q − 1)t′j(gigi−1 . . . g
−1
k+1g

−1
k+2 . . . g

−1
i ), for j + 1 < k < i.

Proof. The first three relations come from the definition of t′i. We prove relations (4)
and (5), which are more complicated.

(4) A = gigi−1 . . . gj+2gj+1g
−1
j+2g

−1
j+3 . . . g

−1
i t′j+1 =

= gigi−1 . . . gj+2gj+1g
−1
j+2t

′
j+1(g

−1
j+3 . . . g

−1
i ) =

= gigi−1 . . . gj+2gj+1

(
(q − 1)t′j+2gj+2 + qt′j+1

)
(g−1

j+3 . . . g
−1
i ) =

= (q − 1)gigi−1 . . . gj+2t
′
j+2gj+1gj+2g

−1
j+3 . . . g

−1
i +

+ qgigi−1 . . . gj+2gj+1t
′
j+1g

−1
j+3 . . . g

−1
i =

= (q − 1)t′j+1(gigi−1 . . . gj+2gj+1gj+2g
−1
j+3 . . . g

−1
i )+

+ (q − 1)2t′i(gigi−1 . . . gj+2gj+1gj+2g
−1
j+3 . . . g

−1
i )−

− (q − 1)2t′j+1(gigi−1 . . . gj+q3gj+1gj+2g
−1
j+3 . . . g

−1
i )+

+ q(q − 1)t′i(gigi−1 . . . gj+2g
−1
j+3 . . . g

−1
i )+

+ qt′j(gigi−1 . . . gj+2gj+1g
−1
j+3 . . . g

−1
i )+

+ q(1− q)t′j(gigi−1 . . . gj+2g
−1
j+3 . . . g

−1
i )
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(5) A = gigi−1 . . . gj+2gj+1g
−1
j+2g

−1
j+3 . . . g

−1
i t′k =

= gigi−1 . . . gk+1gkgk−1 . . . gj+2gj+1g
−1
j+2 . . . g

−1
k−1g

−1
k g−1

k+1 . . . g
−1
i t′k =

= gigi−1 . . . gk+1gkgk−1 . . . gj+2gj+1g
−1
j+2 . . . g

−1
k−1g

−1
k

(
g−1
k+1t

′
k

)
. . . g−1

i =
= gigi−1 . . . gk+1gkgk−1 . . . gj+1g

−1
j+2 . . . g

−1
k

(
(q − 1)t′k+1gk + qt′k

)
. . . g−1

i =
= (q − 1)gigi−1 . . . gk+1t

′
k+1gkgk−1 . . . gj+2gj+1g

−1
j+2 . . . g

−1
k−1g

−1
k gkg

−1
k+2 . . . g

−1
i +

+ qgigi−1 . . . gk+1gkgk−1 . . . gj+2gj+1g
−1
j+2 . . . g

−1
k−1gkt

′
kg

−1
k+2 . . . g

−1
i =

= (q − 1)gigi−1 . . . gk+2t
′
kgk+1+

+ (q − 1)t′k+1 + (1− q)t′kgkgk−1 . . . gj+2gj+1g
−1
j+2 . . . g

−1
k−1g

−1
k+2 . . . g

−1
i +

+ qgigi−1 . . . gk+1gkgk−1 . . . gj+2gj+1g
−1
j+2 . . . g

−1
k−1t

′
k−1g

−1
k g−1

k+2 . . . g
−1
i =

= (q − 1)t′kgigi−1 . . . gk+1gkgk−1 . . . gj+2gj+1g
−1
j+2 . . . g

−1
k g−1

k+2 . . . g
−1
i +

+ (q − 1)2t′igigi−1 . . . gk+1gkgk−1 . . . gj+2gj+1g
−1
j+2 . . . g

−1
k−1g

−1
k+2 . . . g

−1
i −

− (q − 1)2t′kgigi−1 . . . gk+2gkgk−1 . . . gj+2gj+1g
−1
j+2 . . . g

−1
k−1g

−1
k+2 . . . g

−1
i +

+ qgigi−1 . . . gj+2

(
gj+1t

′
j+1

)
g−1
j+2 . . . g

−1
k−1g

−1
k g−1

k+2 . . . g
−1
i =

= (q − 1)t′k(gigi−1 . . . gj+2gj+1g
−1
j+2 . . . g

−1
k−1g

−1
k+2 . . . g

−1
i )+

+ (q − 1)2t′i(gigi−1 . . . gj+2gj+1g
−1
j+2 . . . g

−1
k−1g

−1
k+2 . . . g

−1
i )−

− (q − 1)2t′k(gigi−1 . . . gj+2gj+1g
−1
j+2 . . . g

−1
k−1g

−1
k+2 . . . g

−1
i )+

+ qt′j(gigi−1 . . . gj+2gj+1g
−1
j+2 . . . g

−1
k−1g

−1
k g−1

k+2 . . . g
−1
i )+

+ q(q − 1)t′i(gigi−1 . . . g
−1
k+1g

−1
k+2 . . . g

−1
i )−

− q(q − 1)t′j(gigi−1 . . . g
−1
k+1g

−1
k+2 . . . g

−1
i ).

Lemma 3.20. The following relations hold in H1,n(q):

(gi . . . g
2
1 . . . gi)t

′
i = t(gi . . . g

2
1 . . . gi) + qi−1(q2 − q + 1)(t′i − t)+

+
∑i−1

k=1 q
i−(k+1)(q − 1)(t′k − t)(gi . . . gk+1g

−1
k+2 . . . g

−1
i )(gk . . . g

2
1 . . . gk)+

+
∑i−1

k=1 q
i−(k+1)(q − 1)2(t′i − t′k)(gk . . . g

2
1 . . . gk)

Proof. We prove the relations by induction on i. For i = 1 we have: g21t
′
1 = tg21 + (q2 −

q + 1)(t′1 − t). Suppose that it holds for i = λ ∈ N∗. Then, for i = λ+ 1 we have:
(gλ+1 . . . g

2
1 . . . gλ)gλ+1t

′
λ+1 =

= (gλ+1 . . . g
2
1 . . . gλ)

(
t′λgλ+1 + (q − 1)t′λ+1 − (q − 1)t′λ

)
=

= gλ+1(gλ . . . g
2
1 . . . gλt

′
λ) (gλ+1 − (q − 1)) + (q − 1)gλ+1t

′
λ+1(gλ . . . g

2
1 . . . gλ) =

= t(gλ+1 . . . g
2
1 . . . gλ+1)− (q − 1)t(gλ+1 . . . g

2
1 . . . gλ) + qλ(q2 − q + 1)(t′λ+1 − t)+

+gλ+1

∑λ−1
k=1 q

λ−(k+1)(q − 1)(t′k − t)(gλ . . . gk+1g
−1
k+2 . . . g

−1
λ )(gk . . . g

2
1 . . . gk)qg

−1
λ+1+

+gλ+1

∑λ−1
k=1 q

λ−(k+1)(q − 1)2(t′λ − t′k)(gk . . . g
2
1 . . . gk)qg

−1
λ+1 + (q − 1)t′λgλ+1 . . . g

2
1 . . . gλ+

+(q − 1)2t′λ+1gλ . . . g
2
1 . . . gλ − (q − 1)2t′λgλ . . . g

2
1 . . . gλ =

= t(gλ+1 . . . g
2
1 . . . gλ+1) + (q − 1) (t′λ − t) (gλ+1 . . . g

2
1 . . . gλ)+

+(q − 1)2
(
t′λ+1 − t′λ

)
(gλ+1 . . . g

2
1 . . . gλ)+
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+q
∑λ−1

k=1 q
(λ+1)−(k+1)(q − 1)(t′k − t)(gλ+1 . . . gk+1g

−1
k+2 . . . g

−1
λ )(gk . . . g

2
1 . . . gk)+

+
∑λ−1

k=1 q
(λ+1)−(k+1)(q − 1)2(t′λ+1 − t′k)(gk . . . g

2
1 . . . gk) + qλ(q2 − q + 1)(t′λ+1 − t) =

= t(gλ+1 . . . g
2
1 . . . gλ+1) + q(λ+1)−1(q2 − q + 1)(t′λ+1 − t)+

+
∑λ

k=1 q
(λ+1)−(k+1)(q − 1)(t′k − t)(gλ+1 . . . gk+1g

−1
k+2 . . . g

−1
λ+1)(gk . . . g

2
1 . . . gk)+

+
∑λ

k=1 q
(λ+1)−(k+1)(q − 1)2(t′λ+1 − t′k)(gk . . . g

2
1 . . . gk).

Lemma 3.21. The following relations hold in H1,n(q):

(gi . . . g
2
1 . . . gi)t

′
i
λ = tλ(gi . . . g

2
1 . . . gi) + qi−1(q2 − q + 1)(t′i

λ − tλ)+

+
∑i−1

k=1 q
i−(k+1)(q − 1)(t′k

λ − tλ)(gi . . . g
−1
k+2 . . . g

−1
i )(gk . . . g

2
1 . . . gk)+

+
∑i−1

k=1 q
i−(k+1)(q − 1)2(t′i

λ − t′k
λ)(gk . . . g

2
1 . . . gk).

Proof. We prove the relation by induction on λ. For λ = 1 we have:

(gi . . . g
2
1 . . . gi)t

′
i = t(gi . . . g

2
1 . . . gi) + qi−1(q2 − q + 1)(t′i − t)+

+
∑i−1

k=1 q
i−(k+1)(q − 1)(t′k − t)(gi . . . gk+1g

−1
k+2 . . . g

−1
i )(gk . . . g

2
1 . . . gk)+

+
∑i−1

k=1 q
i−(k+1)(q − 1)2(t′i − t′k)(gk . . . g

2
1 . . . gk), which holds.

Suppose now that the relation holds for λ = ν ∈ Z. Then, for λ = ν + 1 we have:

(gi . . . g
2
1 . . . gi)t

′
i
ν+1 = (gi . . . g

2
1 . . . git

′
i
ν)t′i

ind.step
=

= tν(gi . . . g
2
1 . . . git

′
i) + qi−1(q2 − q + 1)(t′i

ν+1 − tνt′i)+

+
∑i−1

k=1 q
i−(k+1)(q − 1)(t′k

ν − tν)(gi . . . gk+1g
−1
k+2 . . . g

−1
i )(gk . . . g

2
1 . . .+ gkt

′
i)+

+
∑i−1

k=1 q
i−(k+1)(q − 1)2(t′i

ν − t′k
ν)(gk . . . g

2
1 . . . gkt

′
i) =

= tν+1(gi . . . g
2
1 . . . gi) + qi−1(q2 − q + 1)(tνt′i − tν+1)+

+
∑i−1

k=1 q
i−(k+1)(q − 1)(tνt′k − tν+1)(gi . . . g

2
1 . . . gkg

−1
k+2 . . . g

−1
i )+

+
∑i−1

k=1 q
i−(k+1)(q − 1)2(tνt′i − tνt′k)(gk . . . g

2
1 . . . gk) + qi−1(q2 − q + 1)(t′i

ν+1 − tνt′i)+

+
∑i−1

k=1 q
i−(k+1)(q − 1)(t′k

ν − tν)(gi . . . gk+1g
−1
k+2 . . . g

−1
i )t′i(gk . . . g

2
1 . . .+ gk)+

+
∑i−1

k=1 q
i−(k+1)(q − 1)2(t′i

ν − t′k
ν)t′i(gk . . . g

2
1 . . . gk) =

= tν+1(gi . . . g
2
1 . . . gi) + qi−1(q2− q+ 1)(t′i

ν+1− tν+1) +
∑i−1

k=1 q
i−(k+1)(q− 1)2tνt′i− tνt′k+

+t′i
ν+1−t′kνt′i(gk . . . g21 . . . gk)+

∑i−1
k=1 q

i−(k+1)(q − 1)(tνt′k − tν+1)(gi . . . g
2
1 . . . gkg

−1
k+2 . . . g

−1
i )+

+
∑i−1

k=1 q
i−(k+1)(q − 1)(t′k

ν − tν)
(
(q − 1)t′i + qt′k(gi . . . gk+2g

−1
k+1 . . . g

−1
i )

)
(gk . . . g

2
1 . . . gk) =

= tν+1(gi . . . g
2
1 . . . gi) + qi−1(q2 − q + 1)(t′i

ν+1 − tν+1)+∑i−1
k=1 q

i−(k+1)(q − 1)2(tνt′i − tνt′k + t′i
ν+1 − t′k

νt′i)(gk . . . g
2
1 . . . gk)+

+
∑i−1

k=1 q
i−(k+1)(q − 1)(tνt′k − tν+1)(gi . . . g

2
1 . . . gkg

−1
k+2 . . . g

−1
i )+

+
∑i−1

k=1 q
i−(k+1)(q − 1)2(t′k

νt′i − tνt′i)(gk . . . g
2
1 . . . gk)+

+
∑i−1

k=1 q
i−(k+1)(q − 1)q(t′k

ν+1 − tνt′k)(gi . . . gk+2g
−1
k+1 . . . g

−1
i )(gk . . . g

2
1 . . . gk) =

= tν+1(gi . . . g
2
1 . . . gi) + qi−1(q2 − q + 1)(t′i

ν+1 − tν+1)+

+
∑i−1

k=1 q
i−(k+1)(q − 1)2(t′i

ν+1 − tνt′k)(gk . . . g
2
1 . . . gk)+
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+
∑i−1

k=1 q
i−(k+1)(q − 1)(tνt′k − tν+1)(gi . . . g

2
1 . . . gkg

−1
k+2 . . . g

−1
i )+

+
∑i−1

k=1 q
i−(k+1)(q − 1)(t′k

ν+1 − tνt′k)(gi . . . g
2
1 . . . gkg

−1
k+2 . . . g

−1
i )+

+
∑i−1

k=1 q
i−(k+1)(q − 1)2(t′k

ν+1 − tνt′k)(gk . . . g
2
1 . . . gk) =

= tν+1(gi . . . g
2
1 . . . gi) + qi−1(q2 − q + 1)(t′i

ν+1 − tν+1)+

+
∑i−1

k=1 q
i−(k+1)(q − 1)2(t′i

ν+1 − t′k
ν+1)(gk . . . g

2
1 . . . gk)+

+
∑i−1

k=1 q
i−(k+1)(q − 1)(t′k

ν+1 − tνtν+1)(gi . . . g
2
1 . . . gkg

−1
k+2 . . . g

−1
i ).

Lemma 3.22. The following relations hold in H1,n(q):

(i) t′it
′
j = t′jt

′
i + (1− q−1)t′jt

′
i(gi . . . gj+1g

−1
j+2 . . . g

−1
i )+

+ (q−1 − 1)t′i
2(gi . . . gj+1g

−1
j+2 . . . g

−1
i )

(ii) t′i
kt′j

λ = t′j
λt′i

k+

+ (1− q−1)
∑λ

m=1 t
′
j
k+λ−mt′i

m(gi . . . gj+1g
−1
j+2 . . . g

−1
i )+

+ (q−1 − 1)
∑λ

m=1 t
′
j
λ−mt′i

k+m(gi . . . gj+1g
−1
j+2 . . . g

−1
i )

Proof. We only prove relation (i). Relation (ii) follows similarly.
t′it

′
j = gi . . . g1tg

−1
1 . . . g−1

i gj . . . g1tg
−1
1 . . . g−1

j =

gi . . . g1tg
−1
1 . . . g−1

j g−1
j+1g

−1
j+2 . . . g

−1
i gj . . . g1tg

−1
1 . . . g−1

j =

gi . . . g1tg
−1
1 . . . g−1

j g−1
j+1gj . . . g1tg

−1
1 . . . g−1

j g−1
j+2 . . . g

−1
i =

gi . . . g1t(gj+1 . . . g2g
−1
1 g−1

2 . . . g−1
j+1)tg

−1
1 . . . g−1

j g−1
j+2 . . . g

−1
i =

gigi−1 . . . gj+1(gjgj−1 . . . g1tgj+1gj . . . g2)g
−1
1 (g−1

2 . . . g−1
j+1tg

−1
1 . . . g−1

j )g−1
j+2 . . . g

−1
i =

(gigi−1 . . . gj+2)(gj+1gjgj+1)(gj−1gj) . . . (g2g3)(g1g2)tg
−1
1 t(g−1

2 g−1
1 ) . . . (g−1

j+1g
−1
j )(g−1

j+2 . . . g
−1
i ) =

(gi . . . gj+2)(gjgj+1)(gjgj−1gj) . . . (g1g2)tg
−1
1 t(g−1

2 g−1
1 ) . . . (g−1

j+1g
−1
j )(g−1

j+2 . . . g
−1
i ) =

(gi . . . gj+2)(gjgj+1) . . . (g2g3)(g2g1g2)tg
−1
1 t(g−1

2 g−1
1 ) . . . (g−1

j+1g
−1
j )(g−1

j+2 . . . g
−1
i ) =

(gi . . . gj+2)(gjgj+1) . . . (g2g3)(g1g2)(g1tg
−1
1 t)(g−1

2 g−1
1 ) . . . (g−1

j+1g
−1
j )(g−1

j+2 . . . g
−1
i ) =

(gi . . . gj+2)(gjgj+1) . . . (g2g3)(g1g2)
(
tg1tg

−1
1 + (1− q−1)tg1t+ (q−1 − 1)g1t

2
)
(g−1

2 g−1
1 ) . . .

(g−1
j+1g

−1
j )(g−1

j+2 . . . g
−1
i ) =

(gi . . . gj+2)(gjgj+1) . . . (g2g3)(g1g2)tg1tg
−1
1 (g−1

2 g−1
1 ) . . . (g−1

j+1g
−1
j )(g−1

j+2 . . . g
−1
i )

︸ ︷︷ ︸
A

+

(1− q−1)(gi . . . gj+2)(gjgj+1) . . . (g2g3)(g1g2)tg1t(g
−1
2 g−1

1 ) . . . (g−1
j+1g

−1
j )(g−1

j+2 . . . g
−1
i )

︸ ︷︷ ︸
B

+

(q−1 − 1)(gi . . . gj+2)(gjgj+1) . . . (g2g3)(g1g2g1)t
2(g−1

2 g−1
1 ) . . . (g−1

j+1g
−1
j )(g−1

j+2 . . . g
−1
i )

︸ ︷︷ ︸
C

.

A = gj . . . g1tgi . . . gj . . . g1t(g
−1
1 g−1

2 )g−1
1 (g−1

3 g−1
2 ) . . . (g−1

j+1g
−1
j )(g−1

j+2 . . . g
−1
i ) =

gj . . . g1tgi . . . gj . . . g1tg
−1
2 g−1

1 (g−1
2 g−1

3 g−1
2 ) . . . (g−1

j+1g
−1
j )(g−1

j+2 . . . g
−1
i ) =

gj . . . g1tgi . . . gj . . . g1g
−1
2 tg−1

1 g−1
3 g−1

2 (g−1
3 g−1

4 g−1
3 ) . . . (g−1

j+1g
−1
j )(g−1

j+2 . . . g
−1
i ) =
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gj . . . g1tgi . . . gj+1 . . . g1g
−1
2 . . . g−1

j+1tg
−1
1 . . . g−1

i =

gj . . . g1t(gi . . . gj+2)(g
−1
1 . . . g−1

j )(gi . . . g1tg
−1
1 . . . g−1

i ) = t′jt
′
i

B = (1− q−1)(gj . . . g1)t(gi . . . g1g
−1
2 . . . g−1

i )t(g−1
1 . . . g−1

j ) =

(1− q−1)(gj . . . g1)t(g
−1
1 . . . g−1

i−1gigi−1 . . . g1)t(g
−1
1 . . . g−1

j ) =

(1− q−1)t′j(g
−1
j+1 . . . g

−1
i−1gigi−1 . . . g1tg

−1
1 . . . g−1

j ) =

(1− q−1)t′j(g
−1
j+1 . . . g

−1
i−1gigi−1 . . . gj+1)gj . . . g1tg

−1
1 . . . g−1

j =

(1− q−1)t′jgi . . . gj+1(g
−1
j+2 . . . g

−1
i )gj . . . g1tg

−1
1 . . . g−1

j =

(1− q−1)t′jgi . . . gj+1 . . . g1tg
−1
1 . . . g−1

j g−1
j+2 . . . g

−1
i =

(1− q−1)t′jt
′
igi . . . gj+1g

−1
j+2 . . . g

−1
i

C = (q−1 − 1)(gj . . . g1)(gi . . . g1g
−1
2 . . . g−1

i )t2g−1
1 . . . g−1

j =

(q−1 − 1)(gj . . . g1)(g
−1
1 . . . g−1

i−1gigi−1 . . . g1)t
2g−1

1 . . . g−1
j =

(q−1 − 1)g−1
i−1gigi−1 . . . g1t

2g−1
1 . . . g−1

j =

(q−1 − 1)gigi−1g
−1
i gi−2 . . . g1t

2g−1
1 . . . g−1

j =

(q−1 − 1)gigi−1 . . . g1t
2g−1

1 . . . g−1
j g−1

i =

(q−1 − 1)t′i
2(gigi−1 . . . gj+1g

−1
j+2 . . . g

−1
i ).

Using the lemmas above we have the following relations in H1,n(q):

(iii) t2i = t′it (gi . . . g
2
1 . . . gi)+

+ qi−1(q2 − q + 1)(t′i
2 − t′it)(gi . . . g

2
1 . . . gi)+

+ +
∑i−1

k=1 q
i−(k+1)(q − 1)(t′it

′
k − t′it)(gi . . . g

−1
k+2 . . . g

−1
i )·

(gk . . . g
2
1 . . . gk)(gi . . . g

2
1 . . . gi)+

+
∑i−1

k=1 q
i−(k+1)(q − 1)2(t′i

2 − t′it
′
k)(gk . . . g

2
1 . . . gk)·

(gi . . . g
−1
k+2 . . . g

−1
i )
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4

THE HOMFLYPT SKEIN MODULE OF THE LENS

SPACES L(P, 1) VIA BRAIDS

In this chapter we propose a new method for computing skein modules of 3-manifolds
via braids and we demonstrate this approach in the case of the Homflypt skein module
of L(p, 1), S(L(p, 1)). The computation of S(L(p, 1)) is equivalent to constructing all
possible analogues of the Homflypt or 2-variable Jones polynomial for knots and links
in L(p, 1), since the linear dimension of S(L(p, 1)) means the number of independent
Homflypt-type invariants defined on knots and links in L(p, 1). In [GM14] a basis
for S(L(p, 1)) is presented using diagrammatic methods. The diagrammatic approach
could in theory be generalized to the case of arbitrary c.c.o. 3-manifolds, but the
diagrams become more cumbersome to analyze and several induction arguments fail.
The advantage of the braid approach is that it gives more control over the band moves
than the diagrammatic approach and much of the diagrammatic complexity is absorbed
into the proofs of the algebraic statements. We only need to consider one type of
orientations patterns and the braid band moves are limited.

The importance of our approach is that it can shed light to the problem of computing
skein modules of arbitrary c.c.o. 3-manifolds, since any c.c.o. 3-manifold can be obtained
by surgery on S3 along unknotted closed curves. Indeed, one can use our results on
S(L(p, 1)) and our results of braid equivalence in arbitrary c.c.o. 3-manifolds (Chapter 2,
[DL13]) in order to apply a braid approach to the skein module of an arbitrary c.c.o. 3-
manifold. The braid approach is based on the knowledge of the Homflypt skein module
of the solid torus ST [HK90, Tur88, Lam99, DL15]. The main difficulty of the problem
lies in selecting from the infinitum of band moves (or handle slide moves) some basic
ones, solving the infinite system of equations and proving that there are no dependencies
in the solutions. It may be worth adding that the Kauffman bracket skein module of the
lens spaces L(p, q), any q, is far easier to compute and has been done long ago by J. H.
Przytycki and J. Hoste [HP93, HP95]. Finally, it is worth mentioning that knowledge of
the skein modules of a 3-manifold renders topological information about the 3-manifold.



4.1 Introduction

The Lambropoulou invariant X (recall Theorem 1.10) for knots and links in ST recovers
the Homflypt skein module of ST since it gives different values for different elements
of Λ′ by rule 4 of the trace (recall Theorem 1.9). This invariant is appropriate for
computing the Homflypt skein module of L(p, 1). Indeed, we first show that a braid
band move may always be assumed to take place on the first moving strand of a mixed
braid in B1,n. Then, we show that it suffices to consider braid band moves performed on
elements in the linear basis Σ′

n of the algebra H1,n(q), and this is the first step in order
to restrict the performance of braid band moves only on elements in an expanded set L
(see Notation 4.1). Note that the expanded set L has the basis of S(ST), Λ :=

⋃
n Λ(n),

as a proper subset, and elements in Λ describe the braid band moves naturally. In fact,
this important property of the set Λ reflects the initial motivation behind the results
presented in Chapter 3. Then, using the technique of cabling, we show that it suffices
to consider elements in the basis Σn. Note that elements in Σn may have gaps in the
indices of the looping generators ti. So, for T · w ∈ Σn, where T is a monomial of the
ti’s and w ∈ Hn(q), we obtain the following equations:

X
T̂ ·w =

{
X ̂tpT+·w+·σ1

X ̂
tpT+·w+·σ−1

1

(♦)

Finally, we show that equations of type (♦) reduce to equations of the same type
with T ∈ Λ, but with the performance of braid band move on any moving strand of
T · w. Then, we show that these equations are equivalent to equations obtained from
elements τ in L, where the performance of the braid band move is only taking place on
the first moving strand of τ . Namely, we show the following:

XT̂ = X ̂
tpT+·σjσj−1...σ2σ

±1
1 σ−1

2 ...σ−1
j

⇔
∑

i

(
Xτ̂i = X ̂

tpτi+ ·σ±1
1

)
,

where the braid band move on T ∈ Λk ⊂ Λ is performed on the jth-moving strand and
τi ∈ L such that τi ≤ T, ∀i.

We work towards solving an infinite system of equations coming from the braid band
moves, by showing first that the system splits into infinite self-contained subsystems.
We then present some combinatorial results in order to show that each subsystem admits
unique solution and translate this difficult problem to a simple conjecture, a solution of
which leads to the following basis for S(L(p, 1)):

Bp,1 = {tk0 . . . tknn : p− 1 ≥ k0 ≥ . . . ≥ kn ≥ 0, ki ∈ Z∗ ∀ i}.

4.2 Topological steps towards S(L(p, 1))

In [LR06, DL15] the braid band move (denoted by bbm) is defined from the last strand.
We show that this is equivalent to performing a bbm on the first moving strand of a
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Fig. 4.1: Proof of Lemma 4.1.

mixed braid in B1,n. We denote the result of a positive or negative braid band move
performed on the ith-moving strand of a mixed link β by sl±i(β).

Lemma 4.1. A braid band move may always be assumed to be performed on the first
moving strand of a mixed braid.

Proof. In a mixed braid B ∪ β consider the last strand of β approaching the surgery
strand B from the right. Before performing a bbm we apply conjugation (isotopy in
ST) and obtain an equivalent mixed braid where the first strand is now approaching B.
In terms of diagrams we have the following:

β ∼ (σi−1 . . . σ1σ
−1
1 . . . σ−1

i−1) · β∼ (σ−1
1 . . . σ−1

i−1) · β · (σi−1 . . . σ1)︸ ︷︷ ︸
α

= α

↓ ↓
sl±i(β) sl±1(α)

Our method for computing S(L(p, 1) is the following:

1. We start with diagrams in ST and perform bbm’s on the first strand and we reduce
to working with elements in Σ′

n.

2. We impose on the Lambropoulou invariant X for knots and links in ST the rela-
tions Xα̂ = X ̂sl±1(α)

and obtain an infinite system.

3. We show that the equations obtained only from elements in the basis Λ of S(ST),
but with the bbm performed on any strand, suffice to compute S(L(p, 1)).

4. We then show that the equations obtained from elements in an expanded set
L, where the bbm is only performed on the first strand, are equivalent to the
equations described in step 3.

5. We finally work towards the solution of the system, which is equivalent to com-
puting S(L(p, 1)).
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4.2.1 From diagrams in ST to elements in Σ′
n

In this paragraph we show that it suffices to perform bbm’s on elements in the linear
basis of H1,n(q), Σ

′
n. This is the first step in order to restrict the performance of bbm’s

only on elements in Λ. For this we need the following lemma:

Lemma 4.2. Braid band moves and skein relation are interchangeable, that is, for
w ∈ Hn(q) the following diagram commutes:

τ ′1 · w
(±)(p,1)bbm−−−−−−−→ τ ′2 · w+g

±1
1yquadratic

yquadratic

∑
j fj(q)τ

′
1 · wj

(±)(p,1)bbm−−−−−−−→ ∑
j fj(q)τ

′
2 · wj+g

±1
1

Proof. Let τ ′1 a monomial in t′i’s, w ∈ Hn(q) such that w =
∑n

i=1 fi(q)wi, where wi

are words in canonical form and fi(q) a one parameter expressions in C for all i. We
perform a braid band move on τ ′1 · w and obtain:

τ ′1 · w
(±)(p,1)−−−−→
bbm

τ ′2 · w+g
±1
1 ,

where w+ =
∑n

i=1 fi(q)wi+ . Then:

τ ′1 · w = τ ′1 ·
n∑

i=1

fi(q)wi

(±)(p,1)−−−−→
bbm

τ ′2 ·
n∑

i=1

fi(q)wi+g
±1
1 .

We also have that:

τ ′1 · wj

(±)(p,1)−−−−→
bbm

τ ′2 · wj+g
±1
1 ∀ j, and thus

τ ′2 ·
n∑

i=1

fi(q)wig
±1
1 = τ ′2 · w+g

±1
1 ,

and this concludes the proof.

Proposition 4.1. It suffices to consider the performance of braid band moves only on
elements in the linear basis Σ′

n.

Proof. By Artin’s combing we can write words in B1,n in the form τ ′ · w, where τ ′ is a
monomial in t′i’s and w ∈ Bn. By Lemma 4.2 we have that:

X
τ̂ ′·w = X ̂

tpτ ′′·g±1
1 ·w+

quad.rel.⇒

∑
i Ai ·Xτ̂ ′·wi

=
∑

i Ai ·X ̂
tpτ ′′·g±1

1 ·wi+

,

where wi are words in reduced form in H1,n(q), ∀i and Ai ∈ R.
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4.2.2 From the set Σ′
n to the set Σn

In this paragraph we show that it suffices to perform bbm’s on elements in the linear
bases of the algebra H1,n(q), Σn, which include Λ(n) as a proper subset.

Let τ ′ · w ∈ Σ′
n. We have that:

τ ′ · w = (tk0t′1
k1 . . . t′m

km) · w = tk0(t1g
−2
1 )k1 . . . (tmg

−1
m . . . g−1

2 g−2
1 g−1

2 . . . g−1
m )km︸ ︷︷ ︸

τ

· w =

= τ · w

Perform a bbm on the first moving strand of both τ ′ ·w and τ ·w and cable the new
parallel strand together with the surgery strand. Denote the result as cbl(ps). Then:

τ ′ · w bbm→ cbl(ps) · τ ′ · w · σ±1
1

‖ ‖
τ · w bbm→ cbl(ps) · τ · w · σ±1

1

So: X
τ̂ ′·w = X ̂sl(τ ′·w)

⇔ Xτ̂ ·w = X ̂sl(τ ·w)
. But since τ ·w ∈ H1,n(q), we can express τ ·w

as a sum of elements in the linear basis of H1,n(q), Σn, that is τ ·w =
∑

i aiTi · wi, where
Ti · wi ∈ Σ, ∀i, Ti a monomial in ti’s with possible gaps in the indices and unordered
exponents, and ai ∈ C, ∀i.

Xτ̂ ·w = X ̂sl(τ ·w)
⇒ α · tr(τ · w) = b · tr

(
cbl(ps)τ · w · g±1

1

)

⇒ α ·∑i ai · tr(Ti · wi) = b ·∑i tr
(
ai · cbl(ps)Ti · wi · g±1

1

)

We conclude that:

τ ′ · w bbm→ cbl(ps) · τ ′ · w · σ±1
1 (∗)

‖ ‖
τ · w bbm→ cbl(ps) · τ · w · σ±1

1

‖ ‖∑
i ai · Ti · wi

bbm→ ∑
i ai · tpTi+ · wi+g

±1
1 (∗∗)

The above are summarized in the following proposition:

Proposition 4.2. The equations X
T̂ ′·w = X ̂

tpT ′′·g±1
1 ·w+

result from equations of the

form X
T̂ ·w = X ̂

tpT+·g±1
1 ·w+

, where T · w ∈ Σn, ∀i.

Elements in Σn consist of two parts:

• A monomial in ti’s with possible gaps in the indices and unordered exponents,
followed by

• a braiding “tail” in the basis of Hn(q).
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In order to prove that the system obtained from elements in Σn is equivalent to
the system obtained from elements in Λ(n), we first manage the gaps in the indices in
the monomials in ti’s, we then order the exponents and finally we eliminate the tails.
The procedure is similar to the one described in Chapter 2, but in this case we do that
simultaneously before and after the performance of a braid band move and show that
the equations obtained from elements in the sets Σn and Λ(n) are equivalent.

4.2.3 From Σn to the Hn(q)-module Λ(n): managing the gaps and ordering the

exponents

In order to restrict the bbm’s only on elements in Λ we need first to introduce the
expanded set L:

Notation 4.1. We denote by L(n), the set:

L(n) := {tk0tk11 . . . tknn , ki ∈ Z∗},

L :=
⋃

n L(n), and the subset of level k, Lk, of L:

Lk := {tk0tk11 . . . tkmm |
m∑

i=0

ki = k, ki ∈ Z∗}.

We now show that equations of type (∗∗) reduce to equations of the same type, but
from elements in the set Λ (i.e. no gaps in the indices). We will need the following
lemma:

Lemma 4.3. The equations X
t̂k1

= X ̂
tptk2σ

±1
1

are equivalent to the equations

X ̂tu0 t1u1
= X ̂

tpt
u0
1 t

u1
2 σ±1

1

, ∀ u0, u1 < k : u0 + u1 = k,

X
t̂k

= X ̂
tptk1σ

±1
1

,

X
t̂k

= X ̂
tptk1σ2σ

±1
1 σ−1

2

.

Proof. We have that:

tk1 = tk−1
1 σ1tσ1 = (q − 1)

∑k−2
j=0 q

jtj+1tk−1−j
1 σ1 + qk−1σ1t

kσ1

↓ ↓
tptk2σ

±1
1 = tptk−1

2 σ2t1σ2σ
±1
1 = (q − 1)

∑k−2
j=0 q

jtptj+1
1 tk−1−j

2 σ2σ
±1
1 + qk−1tpσ2t

k
1σ2σ

±1
1

Now,

qk−1σ1t
kσ1 =̂ qk−1tkσ2

1
skein
= qk−1(q − 1)tkσ1 + qktk

qk−1tpσ2t
k
1σ2σ

±1
1 =̂ qk−1tptk1σ2σ

±1
1 σ2

skein
= qktptk1σ2σ

±1
1 σ−1

2 + qk−1(q − 1)tptk1σ2σ
±1
1
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and by applying a stabilization move we have:

qk−1(q − 1)tkσ1 + qktk ≃ qk−1(q − 1)ztk + qktk

↓ ↓
qktptk1σ2σ

±1
1 σ−1

2 + qk−1(q − 1)tptk1σ2σ
±1
1 ≃ qk−1(q − 1)ztptk1σ

±1
1 + qktptk1σ2σ

±1
1 σ−1

2

Moreover,
(q − 1)

∑k−2
j=0 q

jtj+1tk−1−j
1 σ1 =

= (q − 1)
∑k−2

j=0 q
jtj+1 ·

[
(q − 1)

∑k−2−j

φ=0 qφtφt1
k−1−j−φ + qk−1−jσ1t

k−1−j
]

=

= (q − 1)2
∑k−2

j=0

∑k−2−j

φ=0 qj+φtj+1+φtk−1−j−φ
1 + (q − 1)

∑k−2
j=0 q

k−1tj+1tσ1t
k−1−j ≃

≃ (q − 1)2
∑k−2

j=0

∑k−2−j

φ=0 qj+φtj+1+φtk−1−j−φ
1 + (q − 1)(k − 1)qk−1ztk,

and
(q − 1)

∑k−2
j=0 q

jtptj+1
1 tk−1−j

2 σ2σ
±1
1 =

= (q − 1)
∑k−2

j=0 q
jtptj+1

1 ·
[
(q − 1)

∑k−2−j

φ=0 qφtφ1 t2
k−1−j−φ + qk−1−jσ2t

k−1−j
1

]
σ±1
1 =

= (q−1)2 ∑k−2
j=0

∑k−2−j

φ=0 qj+φtptj+1+φ
1 tk−1−φ

2 σ±1
1 + (q−1)∑k−2

j=0 q
k−1tptj+1

1 tσ2t
k−1−j
1 σ±1

1 ≃

≃ (q − 1)2
∑k−2

j=0

∑k−2−j

φ=0 qj+φtptj+1+φ
1 tk−1−j−φ

2 σ±1
1 + (q − 1)(k − 1)qk−1ztptk1σ

±1
1 .

So we have the following:

tk1
bbm 1st−str.−→ tptk2σ

±1
1

≃̂ ≃̂
(q−1)2

∑k−2
j=0

∑k−2−j
φ=0 qj+φtj+1+φt

k−1−j−φ
1

bbm 1st−str.−→ (q−1)2
∑k−2

j=0

∑k−2−j
φ=0 qj+φtpt

j+1+φ
1 t

k−1−j−φ
2 σ±1

1

(q − 1)(k − 1)qk−1ztk
bbm 1st−str.−→ (q − 1)(k − 1)qk−1ztptk1σ

±1
1

(q − 1)qk−1ztk
bbm 1st−str.−→ (q − 1)qk−1ztptk1σ

±1
1

qktk
bbm 2nd−str.−→ qkztptk1σ2σ

±1
1 σ−1

2

Proposition 4.3. It suffices to consider monomials in L(n) followed by braiding tails in
Hn(q) and perform a braid band move on any strand, in order to obtain an equivalent
infinite system to the one obtained from elements in Σn.

Proof. Let τgaps a word containing gaps in the indices but not starting with one. We
use Lemma 13 and 14 in [DL15]. The point is that when managing the gaps, the first
part of the words (before the first gap) remains in tact after managing the gaps and the
same carries through after the performance of a braid band move. That is, the following
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diagram commutes:

τ · w 1ststr.−→
bbm

tpτ+ · w+g
±1
1

| |
man.gaps man.gaps

↓ ↓
∑

i Aiτi · wi
1ststr.−→
bbm

∑
i Ait

pτi+ · wi+g
±1
1

where τ · w ∈ Σn and τi ∈ L, ∀i.
In the case where the word τ · w ∈ Σn starts with a gap, we show that equations

obtained from τ · w are equivalent to equations obtained from elements τi · wi ∈ Σn,
where τi are monomials in ti’s not starting with a gap, but with the bbm performed on
any strand. We prove this by induction on the strand m where the first gap occurs and
the order of τ in Σn:

The case m = 1 is Lemma 4.3. Suppose that it holds for all elements where the first
gap occurs on the mth-strand. Let τ · w = tkm+1 · α. Then, using Lemma 13 and 14 in
[DL15], for m+ 1 we have:

tkm+1 · α
bbm 1st−str.−→ tptkm+2α+σ

±1
1

=̂ =̂

(q − 1)
∑k−1

u=0 q
u−1tumt

k−u
m+1ασm+1

bbm 1st−str.−→ (q − 1)
∑k−1

u=0 q
u−1tptum+1t

k−u
m+2α+σm+1σ

±1
1

qk−1tkmσm+1ασm+1
bbm 1st−str.−→ qk−1tptkm+1σm+2α+σm+2σ

±1
1

Interacting now on the left part the braiding generator σm+1 with the looping gener-
ators in α, we obtain words in Σn where the first gap occurs on the mth-moving strand.
We follow the same procedure on the right part and the result follows by the induction
hypothesis.

We also have the following more explicit formula:

Definition 4.1. (i) Let tki , i, k ∈ N∗. We call the corresponding maximum word of
tki , denoted by cor(tki ), the word tt1 . . . ti−1t

k−i
i if k ≥ i, and tt1 . . . tk−1, if k < i.

(ii) We define corm(t
k
i ) to be the corresponding maximum word of tki , where the first

looping generator in corm(t
k
i ) is tm+1.

(iii) We define the map f on arbitrary monomials in ti’s to be f(tki · tλj ) = f(tki ) · f(tλj ),
where f(tki ) = cor(tki ) and f(tλj ) = corm(t

λ
j ), and m is the maximum index in

cor(tki ).
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Let now T ·w ∈ Σn, where T is a monomial in ti’s with possible gaps in the indices.
We set as ΛT all elements in Λk of less or equal order than the corresponding maximum
word of T , f(T ) = cor(T ). Then, the equation obtained from T · w by performing a
bbm on the first strand is equivalent to equations obtained from elements in ΛT by
performing bbm’s on any strand.

Example 4.1. Let t42 ·t25 ∈ Σn. The corresponding maximum word of t42 · t25 is f(t42 · t25) =
tt1t

2
2t3t4. Then,

X
t̂42·t25

= X ̂
tp·t43·t26·σ

±1
1

⇔
∑

i Xτ̂i =
∑

i,j X ̂
tp·τi+1·(σj ...σ2σ

±1
1 σ−1

2 ...σ−1
j )

,

where τi ∈ Λ6 : τi ≤ tt1t2
2t3t4, ∀i and j the strand where the bbm is performed.

We now order the exponents and show that equations obtained from elements in the
Hn(q)-module L(n), reduce to equations obtained from elements in the Hn(q)-module
Λ(n).

Proposition 4.4. Equations of the infinite system obtained from elements in L(n) fol-
lowed by braiding tails in H1,n(q) are equivalent to equations obtained from elements in
Λ(n) followed by braiding tails, where a braid band move can be performed on any moving
strand.

Proof. It follows from Theorem 9 in [DL15], since all steps followed so as to order the
exponents in a monomial in ti’s, remain the same after the performance of a bbm.

4.2.4 From the Hn(q)-module Λ(n) to Λn: eliminating the tails

We now deal with the braiding tails and prove that equations obtained from elements
in Λ(n) followed by words in Hn(q) reduce to equations obtained from elements in L(n)

by performing a bbm on any strand.

Proposition 4.5. Equations of the infinite system obtained from elements in Λ(n) fol-
lowed by words in Hn(q) are equivalent to equations obtained from elements in L(n) by
performing a braid band move on any moving strand.

Proof. We perform a bbm and we cable the parallel strand with the surgery strand. We
then apply Theorem 3.6 before and after the performance of the bbm and uncable the
parallel strand. The proof is illustrated in Figure 4.2.
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Fig. 4.2: Proof of Proposition 4.5.

Example 4.2.

tt1t2 · g1g2g1 1ststr.−→
bbm

tpt1t2t3 · g2g3g2g±1
1

| |
el.tails el.tails
↓ ↓

(q − 1)(q2 − q + 1)tt1t2
1ststr.−→
bbm

(q − 1)(q2 − q + 1)tpt1t2t3g
±1
1

+ +

q(q − 1)2ztt21
1ststr.−→
bbm

q(q − 1)2ztpt1t
2
2g

±1
1

+ +

a · t2t1 1ststr.−→
bbm

a · tpt21t2g±1
1

+ +

[q2(q − 1)(q2 − q + 1)z2]t3
1ststr.−→
bbm

[q2(q − 1)(q2 − q + 1)z2]tpt31g
±1
1

where a = q3z + q2(q − 1)2 + 2q2(q − 1)2z + q(q − 1)4z.

Following the exact same procedure as explained in § 3.5.1 and as illustrated in
Figure 3.8, we have the following:

Theorem 4.1. It suffices to consider elements in the basis of S(ST), Λ, and perform
braid band moves on all strands in order to obtain the equations needed to compute the
Homflypt skein module of the lens spaces L(p, 1).

Proof. The proof is based on Theorems 4.3, 3.5 and 3.6 and the fact that the braid band
moves commute with the stabilization moves and the skein (quadratic) relation. The
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fact that the braid band moves and conjugation do not commute, results in the need of
performing braid band moves on all moving strands of the elements in Λ.

We have shown so far that it in order to compute the Homflypt skein module of the
lens spaces L(p, 1), it suffices to:

(i) consider elements in Λ and

(ii) perform bbm’s on any strand.

4.2.5 From Λ to L: restrictions on the braid band moves

We now pass to the expanded set L. The advantage of this is that we restrict the
performance of the braid band moves only on the first moving strand of elements in L
and thus, we obtain less number of equations for the system.

Let now τ ∈ Λk and perform a braid band move on the jth-strand. Then, we obtain
the equations:

X(τ̂) = X(t̂pτ+·gj ...g±1
1 ...g−1

j ),

that is:

tr(τ) =
1

z
√
λ

√
λ
e1−e2 · tr(tpτ+ · gj . . . g±1

1 . . . g−1
j ) (4.1)

where e1 =
∑m

i=1 2iki, since τ ∈ Λk is of the form tk0tk11 . . . tkmm and
e2 =

∑m

i=0 2(i+ 1)ki ± 1. Substituting to Equation 4.1 we have:

tr(τ) = λk

z
· tr(tpτ+ · gj . . . g1 . . . g−1

j ) for pos. bbm

tr(τ) = λk−1

z
· tr(tpτ+ · gj . . . g−1

1 . . . g−1
j ) for neg. bbm

Let now τi ∈ L, such that τi < τ, ∀ i. Performing a bbm on all τi’s on the first
moving strand, we obtain the equations:

tr(τi) = λk

z
· tr(tpτi+ · g1) for pos. bbm

tr(τi) = λk−1

z
· tr(tpτi+ · g−1

1 ) for neg. bbm

Applying Theorem 3.6 and the technique of cabling, we have that:

tr(τ) = λk

z
· tr(tpτ+ · gj . . . g1 . . . g−1

j ) ≃̂ ∑
i fi(q, z)

λk

z
· tr(tpτi+ · g1)

tr(τ) = λk−1

z
· tr(tpτ+ · gj . . . g−1

1 . . . g−1
j ) ≃̂ ∑

i hi(q, z)
λk−1

z
· tr(tpτi+ · g−1

1 )

that is, it suffices to consider elements in the set L and perform braid band moves on
their first moving strand in order to obtain equations for the system.

The above are summarized in the following Theorem:
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Theorem 4.2. The system consisting of equations obtained from elements in Λ by
performing braid band moves on all their strands, is equivalent to the system consisting
of equations obtained from elements in L by performing braid band moves only on their
first moving strand.

Remark 4.1. It is worth mentioning that by performing L-moves and braid band moves
on elements in the expanded set L, we can always obtain elements in L+, that is, el-
ements in L where the loop generators have only positive exponents. Moreover, with
the use of L-moves and braid band moves one can obtain elements in L+ where the
maximum exponent of the loop generators is p− 1.

4.3 The infinite system

In this section we present results towards the solution of the infinite system. We first
simplify the equations in the system and we show that the unknowns of the system
commute. The main result of this section is that the system splits into self-contained
subsystems.

Lemma 4.4. Let τ
k0,m
0,m ∈ Λk, that is

∑m

i=0 ki = k. Then, the system





X̂
τ
k0,m
0,m

= X ̂
tpτ

k0,m
1,m+1g1

(♠)
X̂

τ
k0,m
0,m

= X ̂
tpτ

k0,m
1,m+1g

−1
1

is equivalent to





tr(τ
k0,m
0,m ) = 1

z
· λ

∑m
j=0 kj · tr(tpτ k0,m1,m+1g1)

(♣)
tr(τ

k0,m
0,m ) = 1

z
· λ

∑m
j=0 kj−1 · tr(tpτ k0,m1,m+1g

−1
1 )

Proof. Applying a bbm on τ
k0,m
0,m obtain tpτ

k0,m
1,m+1g

±1
1

ui+1=ki
= tpτ

u1,m+1

1,m+1 g
±1
1

u0=p
= τ

u0,m+1

0,m+1 g
±1
1 .

We have that:

X̂
τ
k0,m
0,m

=
[

1√
λz

]m+1

·
√
λ
e1 · tr(τ k0,m0,m ), e1 =

∑m

j=1 2jkj (1′)

X ̂
τ
u0,m+1
0,m+1 g1

=
[

1√
λz

]m+2

·
√
λ
e2 · tr(τu0,m+1

0,m+1 g1), e2 =
∑m+1

j=1 2jkj−1 + 1 (2′)

X ̂
τ
u0,m+1
0,m+1 g−1

1

=
[

1√
λz

]m+2

·
√
λ
e2 · tr(τu0,m+1

0,m+1 g
−1
1 ), e3 =

∑m+1
j=1 2jkj−1 − 1 (3′)

We now impose (1′) = (2′) , (1′) = (3′) and (2′) = (3′) and since e2 − e1 =
2
∑m

j=0 kj + 1 and e3 − e1 = 2
∑m

j=0 kj − 1, we obtain:
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Fig. 4.3: t−1t′1 = tt′1
−1.

(1′) = (2′) → tr(τ
k0,m
0,m ) = 1

z
λ
∑m

j=0 kj · tr(τu0,m+1

0,m+1 g1) (4′)

(1′) = (3′) → tr(τ
k0,m
0,m ) = 1

z
λ
∑m

j=0 kj−1 · tr(τu0,m+1

0,m+1 g
−1
1 ) (5′)

(2′) = (3′) → tr(τ
u0,m+1

0,m+1 g1) = 1
λ
· tr(τu0,m+1

0,m+1 g
−1
1 ) (6′)

From Eq. (6′) we obtain tr(τ
u0,m+1

0,m+1 g1) = ztr(τ
u0,m+1

0,m+1 ) and so Eq. (3′) becomes

tr(τ
k0,m
0,m ) = λ

∑m
j=0 kj · tr(τu0,m+1

0,m+1 ).

Theorem 4.3. The unknowns s1, s2, . . . of the system commute.

Proof. Consider the set of all permutations of the set S = k1, . . . kn and let ϕ be a
bijection from the set S to itself. We consider now the elements α = t′i1

k1 . . . t′in
kn and

β = t′i1
ϕ(k1) . . . t′in

ϕ(kn), where 0 ≤ i1 ≤ i2 ≤ . . . ≤ in of the basis of S(ST ). We have
that: tr(α) = skn . . . sk1 and tr(β) = sϕ(kn) . . . sϕ(k1). We compute the invariant X on

the closures α̂, β̂ of α and β, respectively, and we obtain: X(α̂) = [−1−λq√
λ
]n−1

√
λ
0
tr(α) =

[−1−λq√
λ
]n−1skn . . . sk1 and X(β̂) = [−1−λq√

λ
]n−1

√
λ
0
tr(β) = [−1−λq√

λ
]n−1sϕ(kn) . . . sϕ(k1). Now,

the n-component link α̂ is isotopic to β̂ in ST , as illustrated in Figure 4.3 for the case
of two components. So, we have that X(α̂) = X(β̂), equivalently,

skn . . . sk1 = sϕ(kn) . . . sϕ(k1) (4.2)

and so the unknowns of the system commute.
Equation 4.2 holds for any subset S of Z and for any permutation φ of S, hence the
unknowns si of the system (♠) must commute.

Theorem 4.4. Let τ ∈ Λk ⊆ Σn. Then tr(τ) =
∑

i fi(q, z) · s
u1,v

1,v , where s
u1,v

1,v :=
su1
1 su2

2 . . . suv
v , such that ui ∈ Z for all i and

∑v

i=1 iui = k.

Proof. It derives directly from the fourth rule of the trace.

Corollary 4.1. For k ∈ Z we obtain an infinite self-contained system from elements in
Λk. That is, the system (♠) splits into infinite self-contained infinite subsystems.
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We now deal with elements in Λ where all loop generators have negative exponents.
We do that in order to restrict the performance of the braid band moves only on elements
in the set Λ where all loop generators have positive exponents (see also Remark 4.1).

Definition 4.2. (i) We define the map f : Λ→ Λ such that:

f(τ1 · τ2) = f(τ1) · f(τ2), ∀τ1, τ2 ∈ Λ
tki 7→ t−k

i , ∀ i ∈ N∗, ∀ k ∈ Z \ N
gi 7→ g−1

i , ∀ i ∈ N∗

(ii) We define the map M : R[z±1, sk]→ R[z±1, sk] such that:

M(τ1 + τ2) = M(τ1) +M(τ2), ∀τ1, τ2
M(τ1 · τ2) = M(τ1) ·M(τ2), ∀τ1, τ2

s−k 7→ sk, ∀k ∈ N
sp−k 7→ sp+k, ∀k : 0 ≤ k ≤ p

z 7→ λ · z
q±1 7→ q∓1

λk

z
7→ 1

λk+1z
, ∀k

Remark 4.2. The maps f and M are well defined. Moreover, the map f is an auto-
morphism.

We observe now that the following diagram commutes:

τ
bbm→ sl±1(τ) ⇒ Xτ̂ = X

ŝl1(τ)
, Xτ̂ = X ̂sl−1(τ)

↓ f ↓M ↓M
f(τ)

bbm→ sl∓1(τ) ⇒ X
f̂(τ)

= X ̂sl−1(f(τ))
, X

f̂(τ)
= X ̂sl+1(f(τ))

that is:

M(Xτ̂ = X ̂sl±1(τ)
)⇔ X

f̂(τ)
= X ̂sl∓1(f(τ))

.

This comes from the fact that the relations in Lemmas 3.1, 3.2, 3.3 and 3.4 are
symmetric (up to the sign of the exponents).

We introduce now the following notation:

Notation 4.2. We denote su0
0 su1

1 . . . sui

i by s
u0,i

0,i . We also set s0 = 1.

Conjecture 4.1. The map M : R[z±1, s1, s2, . . .]→ R[z±1, s1, s2, . . .] (Definition 4.2(ii))
is an isomorphism.

From the discussion above and Remark 4.2, we have the following corollary of Con-
jugation 4.1:
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Corollary 4.2. For all m ∈ N the following relations hold:

s−m =

p−1∑

i=1

fi(q, z) · su0,i

0,i , where
i∑

j=0

j · uj = p−m.

The following example demonstrates this result.

Example 4.3. For the element t−1 we have: t−1 bbm→ tpt−1
1 σ±1

1 ⇔ s−1 = sp−1 and s−1 =
a1sps−1 + a2sp−1, where a1, a2 ∈ C.

4.3.1 Some combinatorial results on the system

We now present some combinatorial results on the infinite system. The aim is to find
the minimum number of equations needed for the computation of S(L(p, 1)). In other
words, the aim is to exclude all linearly dependent equations so as to obtain even more
control on the system.

The subset of level k of L, Lk has
∑k−1

i=0

(
k−1
i

)
= 2k−1 elements and by performing

a positive and a negative bbm on each element in Lk, we obtain 2k equations. We
denote the subsystem obtained from elements in Lk by [Sk] and by [Sk]− (respectively
[Sk]+) we denote the subsystem obtained from elements in Lk by only performing a
negative (respectively, a positive) bbm. It is straightforward from the trace rules that
the subsystem [Sk]− is obtained from [Sk−1]+ by substituting p by p+1. More precisely,
the following lemma holds:

Lemma 4.5. If [Sk−1] admits unique solution, then so does the [Sk]− subsystem.

Lemma 4.6. Let τ ∈ Lk\Λk. Then the equation Xτ̂ = X ̂
tpτ+σ−1

1

is obtained from the

equations:
∑

i

(
Xτ̂i = X ̂

tpτi+σ−1
1

)
,

where τi ∈ Λk such that τi < τ, ∀ i.

We now define the following ordering relation on the unknowns of the system si’s,
with respect to the ordering relation defined on the sets Λ′ and Λ.

Definition 4.3. Let S1 = s
k1,m
1,m := sk11 sk22 . . . skmm and S2 = s

l1,n
1,n := sl11 s

l2
2 . . . slnn . Then:

(a) If
∑m

i=1 ki · i <
∑n

j=1 lj · j, then S1 < S2.

(b) If
∑m

i=1 ki · i =
∑n

j=1 lj · j and
∑m

i=1 ki <
∑n

j=1 lj, then S1 < S2.

(c) If
∑m

i=1 ki · i =
∑n

j=1 lj · j,
∑m

i=1 ki =
∑n

j=1 lj and k1, l1 6= 0, k2, l2 6= 0, . . . ki 6=
0, li = 0, then S1 < S2.
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Remark 4.3. (a) If ki, li 6= 0 for the same indices, then
∑m

i=1 ki 6=
∑n

j=1 lj.

(b) Let sk11 sk22 . . . skmm such that
∑m

i=1 ki · i = k. It follows from Definition 4.3 the
maximum unknown element is sk1 and the minimum is sk.

(c) Let τ1 ∈ Lk and τ2 ∈ Lm such that k < m, then the equation Xτ̂2 = X ̂
tpτ2+σ−1

1

contains more unknowns (which are higher ordered) than the equation Xτ̂1 =
X ̂

tpτ1+σ−1
1

.

Proposition 4.6. For τ
k0,m
0,m ∈ L, the following relation holds:

tr(τ
k0,m
0,m ) = q

∑m
i=1 ki·isk0,km +

∑
f(q, z)sλ0,λm

,

where sλ0,λm
< sk0,km for all sλ0,λm

.

Proof. It follows from Proposition 3.8.

Lemma 4.7. i) Let τ1 < τ2 ∈ Λ+
k such that ∄τ3 ∈ Λ+

k : τ1 < τ3 < τ2, then, if the
number of unknowns in Xτ̂1 = X ̂

tpτ1+σ−1
1

is R, then the number of unknowns in

Xτ̂2 = X ̂
tpτ2+σ−1

1

is R + 1.

ii) If τ ∈ L+\Λ+ and τ1 ∈ Λ+ such that τ1 < τ and such that ∄τ2 ∈ Λ+ : τ1 < τ2 < τ ,
then the (number of) unknowns in Xτ̂ = X ̂

tpτ+σ−1
1

are (is) the same as in Xτ̂1 =

X ̂
tpτ1+σ−1

1

.

Proof. It follows from the trace rules.

Note that the equation X ̂tt1...tk−1
= X ̂tpt1...tkσ1

contains all the unknowns of the

[Sk] subsystem, since tt1 . . . tk−1 is the maximum element in Λk. We also have that

tr(tpt1 . . . tkσ1) =
∑

i fi(q, z)sp+is
ki1
1 . . . s

kim
m , such that

m∑

j=1

kij · j = k − i (4.3)

and such that kij > 0 for all i, j. This is equivalent to finding the number of non negative

solutions of the linear Diophantine equation 4.3. This equations has
∑k

i=0 Hi solutions,
where

Hi =

[ k
1
]∑

w1=0

[
k−w1

2
]∑

w2=0

. . .

[
k−w1−2w2−...(k−1)wk−2

k−1
]∑

wk−1=0

I(k;w1, w2, . . . wk−1),

and where I(k;w1, w2, . . . wk−1) = 1, if k/k − w1 − 2w2 − . . . (k − 2)wk−2 and
I(k;w1, w2, . . . wk−1) = 0, otherwise (see [RM10]).
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The point now is to find the infinite many linearly independent equations obtained
for the system and prove that the number of those equations equal the number of the
unknowns. Then, the system would admit unique solution, or equivalently, the following
set, which is different than the one found in [GM14], would be a basic set for S(L(p, 1)):

Bp = {td0t′1d1 . . . t′mdm : m ∈ N, di ∈ N∗ ∀ i : d0 < d1 < . . . < dm ≤ p− 1} ∪ {∅}.

This is equivalent to proving the following conjecture:

Conjecture 4.2. For j ∈ N such that j > p, the following relations hold:

sj =

p−1∑

i=1

fi(q, z) · su0,i

0,i , where
i∑

j=0

j · uj = j − p.

Example 4.4. For the element t ∈ L1 we have: t
bbm→ tpt1σ

±1
1 ⇔ sp+1 = s1.

For the elements in L2 we have:

• t2
bbm→ tpt21σ

±1
1 : {

s2 = a1sp+2 + a2sp+1s1 + a3sps2
s2 = b1sp+2 + b2sp+1s1

• tt1
bbm→ tpt1t2σ

±1
1 :

{
s2 + s21 = c1sp+2 + c2sp+1s1
s2 + s21 = d1sp+2 + d2sp+1s1 + d3sps2 + d4sps

2
1

and thus: 



sp+2 = A1s2 + A2s
2
1

s2sp = B1s2 +B2s
2
1

s1sp+1 = C1s2 + C2s
2
1

sps
2
1 = D1s2 +D2s

2
1

where ai, Ai, bi, Bi, ci, Ci, di, Di ∈ C, ∀ i.

4.4 Appendix

In this section we provide some lemmas in order to investigate some further properties
of the system and prove Conjecture 4.2.
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Lemma 4.8. For k ∈ N the following relations hold.

(i) tr(tptk1g1) = qkzsp+k +
∑k−1

j=0 q
j(q − 1)tr(tp+jtk−j

1 )

(ii) tr(tptk1g
−1
1 ) = qk−1zsp+k +

∑k−2
j=0 q

j(q − 1)tr(tp+1+jtk−1−j
1 )

(iii) tr(tptk1g1) = (q2 − q + 1)tr(tp+1tk−1
1 g1) + qk(q − 1)sksp +

+
∑k

j=2 q
j−1(q − 1)2tr(tp+k−jtj1g1)

(iv) tr(tptk1) =
∑k

j=0 fj(q, z)sp+k−jsj

Proof. (i) We prove relations (i) by induction on k. For k = 1 we have tr(tpt1g1) =
(q − 1)tr(tpt1) + qtr(tpg1t) = (q − 1)tr(tpt1) + qzsp+1. Suppose that the relation holds
for k − 1. Then for k we have:

tr(tptk1g1) = (q − 1)tr(tptk1) + qtr(tp+1tk−1
1 g1)

ind.step
=

= (q − 1)tr(tptk1) + q
∑k−2

j=0 q
j(q − 1)tr(tp+1+jtk−1−j

1 ) + qkzsp+k
j=u−1
=

= qkzsp+k + q0(q − 1)tr(tptk1) +
∑k−1

u=1 q
u(q − 1)tr(tp+utk−u

1 ) =

= qkzsp+k +
∑k−1

u=0 q
u(q − 1)tr(tp+utk−u

1 ).

(ii) Relations (ii) follow similarly since tr(tptk1g
−1
1 ) = tr(tp+1tk−1

1 g1).

(iii) Relations (iii) follow by induction on k.

(iv) We have that: tk1 = qkt′1
k − ∑k

j=1 q
j(q−1 − 1)tj−1tk+1−j

1 g−1
1 (Lemma 9 [DL15]) and

so
tr(tptk1) = qksksp −

∑k

j=1 q
j(q−1 − 1)tr(tp+j−1tk+1−j

1 g−1
1 ).

We also have that:
tr(tp+j−1tk+1−j

1 g−1
1 ) = qk−jzsp+k +

∑k−1−j

i=0 qi(q − 1)tr(tp+i+jtk−i−j
1 ) and thus

tr(tptk1) = qksksp − kqk(q−1 − 1)zsp+k −
− ∑k

j=1

(∑k+1−j

i=0 qj+i(q − 1)(q−1 − 1)tr(tp+j+itk−j−i
1 )

)
(a).

We prove now relations (iv) by induction on k. For k = 1 we have tr(tpt1) =
qs1sp + (q − 1)zsp+1. Suppose that it holds for k = 1, . . . ,m− 1.

Then for k = m we have:
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tr(tptm1 )
(a)
= qmsmsp −mqm(q−1 − 1)zsm+p −
− ∑m

j=1

(∑m+1−j

i=0 qj+i(q − 1)(q−1 − 1)tr(tp+j+itm−j−i
1 )

)
ind.step
=

= qmsmsp −mqm(q−1 − 1)zsm+p −
− ∑m

j=1

∑m+1−j

i=0 qj+i(q − 1)(q−1 − 1)
(∑m−i−j

r=0 fr(q, z)sp+m−rsr

)
=

=
∑m

µ=0 fµ(q, z)sp+k−µsµ
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