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Abstract. The pseudospectra of a matrix polynomial P (λ) are sets of complex numbers that
are eigenvalues of matrix polynomials which are near to P (λ), i.e., their coefficients are within
some fixed magnitude of the coefficients of P (λ). Pseudospectra provide important insights into
the sensitivity of eigenvalues under perturbations, and have several applications. First, qualitative
properties concerning boundedness and connected components of pseudospectra are obtained. Then
an accurate continuation algorithm for the numerical determination of the boundary of pseudospectra
of matrix polynomials is devised and illustrated. This algorithm is based on a prediction-correction
scheme.
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1. Introduction and definitions. Let Cn×n be the algebra of all n×n complex
matrices and consider the matrix polynomial

P (λ) = Amλm + Am−1λ
m−1 + · · ·+ A1λ + A0,(1.1)

where λ is a complex variable and Aj ∈ Cn×n, j = 0, 1, . . . ,m, with det Am 6= 0. The
study of matrix (and operator) polynomials has a long history, especially with regard
to their spectral analysis, see [7, 8, 13, 16]. If A∗j = Aj (j = 0, 1, . . . ,m), i.e., if all
the coefficients of P (λ) are hermitian, then P (λ) is said to be a selfadjoint matrix
polynomial.

A scalar λ0 ∈ C is said to be an eigenvalue of the matrix polynomial P (λ) in (1.1)
if the system P (λ0)v = 0 has a nonzero solution v0 ∈ Cn. This solution v0 is known
as an eigenvector of P (λ) corresponding to λ0. The set of all eigenvalues of P (λ) is
the spectrum of P (λ), namely, σ(P ) = {λ ∈ C : det P (λ) = 0}. Since det Am 6= 0,
σ(P ) contains no more than nm distinct eigenvalues.

Consider the spectrum of perturbations of the matrix polynomial P (λ) in (1.1)
of the form

P∆(λ) = (Am + ∆m)λm + (Am−1 + ∆m−1)λm−1 + · · ·+ (A1 + ∆1)λ + A0 + ∆0,

where the matrices ∆0, ∆1, . . . , ∆m ∈ Cn×n are arbitrary. A weighted pseudospec-
trum (introduced by Tisseur and Higham [22]) is defined as follows: For a given ε > 0
and a given set of nonnegative weights w = {w0, w1, . . . , wm} (written w ≥ 0), the
ε-pseudospectrum of P (λ) with respect to w is defined to be

σε,w(P ) = {λ ∈ C : det P∆(λ) = 0, ‖∆j‖ ≤ εwj , j = 0, 1, . . . , m} ,
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where ‖·‖ is any subordinate matrix norm. The parameters w0, w1, . . . , wm ≥ 0 allow
freedom in how perturbations are measured; for example, in an absolute sense when
w0 = w1 = · · · = wm = 1, or in a relative sense when wj = ‖Aj‖ (j = 0, 1, . . . ,m).
Also, different values for the wj admit different levels of confidence in the coefficients
Aj . Note also that, when ε = 0, σ0,w(P ) = σ(P ).

Defining the associated compact set of perturbations of P (λ),

B(P, ε,w) = {P∆(λ) : ‖∆j‖ ≤ εwj , j = 0, 1, . . . ,m},

the ε-pseudospectrum of P (λ) can also be expressed in the form

σε,w(P ) = {λ ∈ C : det P∆(λ) = 0, P∆(λ) ∈ B(P, ε,w)} .

Observe that, if P (λ) = Iλ − A for some A ∈ Cn×n, then σ(P ) coincides with the
spectrum of A, σ(A), in the usual sense. Furthermore, if we set w = {w0, w1} =
{1, 0}, then σε,w(P ) coincides with the ε-pseudospectrum of the matrix A, that is,

σε(A) = {λ ∈ C : λ ∈ σ(A + ∆0), ‖∆0‖ ≤ ε} .

The literature on pseudospectra of matrices (and operators) and their applications
is extensive, see [2, 4, 15, 25] and the references therein. Also, the special case
n = 1, is well-understood. Thus, the ε-pseudospectrum of the scalar polynomial
p(λ) = amλm + am−1λ

m−1 + · · ·+ a1λ + a0 coincides with the root neighborhood of
p(λ) introduced by Mosier [20] and the ε-pseudozero set of p(λ) investigated by Toh
and Trefethen [23].

The case for further development of algorithms for matrix polynomials rests
largely on the pervasive second (and higher) degree polynomials used in the anal-
ysis of vibrating systems. Efficiencies are gained by avoiding linearizations and, as
with problem areas already developed, pseudospectra give valuable insights into the
sensitivities of spectra and, particularly, can be expected to clarify the effects of clus-
tered and multiple eigenvalues.

The following lemma is one of the main tools used in this paper. Here, smin(·)
denotes the minimum singular value of a complex matrix. The spectral norm is
the matrix norm subordinate to the Euclidean vector norm and is consistently used
throughout the remainder of this work. First define the scalar polynomial

qw(λ) = wmλm + wm−1λ
m−1 + · · ·+ w1λ + w0.

Lemma 1.1. If the pseudospectrum is defined in terms of the spectral norm then

σε,w(P ) = {λ ∈ C : smin(P (λ)) ≤ ε qw(|λ|)} .(1.2)

Proof. This is just a special case of the important Lemma 2.1 of [22], which
applies for any subordinate matrix norm. Here, one needs only that the spectral
norm is unitarily invariant.
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As the eigenvalues of P∆(λ) are continuous with respect to the entries of the coef-
ficient matrices, it follows from the lemma that the boundary of the ε-pseudospectrum
can be written in the form

∂σε,w(P ) = {λ ∈ C : smin(P (λ)) = ε qw(|λ|)} ,(1.3)

and ∂σε,w(P ) depends continuously on ε.
By using efficient algorithms for computing singular values, equations (1.2) and

(1.3) become the main tools for estimation of the ε-pseudospectrum of a matrix poly-
nomial. In particular, Tisseur and Higham (see [22]) obtain a graphical representation
of σε,w(P ) by evaluating smin(P (z)) on a grid of points in the complex plane. One
of our main objectives is the design of an alternative algorithm using a curve-tracing
technique.

First of all, however, the geometry and the connected components of pseudospec-
tra of matrix polynomials are studied. In the next two sections, basic boundedness
properties of σε,w(P ) are obtained, as well as eigenvalue inclusion properties of the
connected components of σε,w(P ). Section 4 contains the development of a curve-
tracing algorithm for computing the boundary of pseudospectra. Our objective is
to demonstrate that curve-following procedures for graphing pseudospectra for the
classical eigenvalue problem (see [1, 2]) can be extended to apply directly to matrix
polynomials with nonsingular leading coefficients. Numerical examples are given in
the last section to demonstrate the feasibility of the method. Optimization of the
algorithm with respect to efficiency is not considered here. Generalization of the
method to admit matrix polynomials with singular leading coefficients (using ideas
developed in [9]) should also be possible.

2. General properties. If the matrix polynomial P (λ) in (1.1) is real (i.e., all
its coefficients are real matrices) or selfadjoint, then it is well known that the spectrum
of P (λ) is symmetric with respect to the real axis. This symmetry also holds for the
pseudospectra of matrix polynomials.

Proposition 2.1. Let P (λ) = Amλm + · · · + A1λ + A0 be an n × n real or
selfadjoint matrix polynomial. Then for any ε > 0 and w ≥ 0, the ε-pseudospectrum
σε,w(P ) is symmetric with respect to the real axis.

Proof. Suppose µ ∈ σε,w(P ). Then there is a matrix polynomial (Am+∆m)λm+
· · ·+ (A1 + ∆1)λ + A0 + ∆0 ∈ B(P, ε,w) such that

det [(Am + ∆m)µm + · · ·+ (A1 + ∆1)µ + A0 + ∆0] = 0.

If the coefficients of P (λ) are real, then

det
[
(Am + ∆m)µm + · · ·+ (A1 + ∆1)µ + A0 + ∆0

]
=

det
[
(Am + ∆m)µm + · · ·+ (A1 + ∆1)µ + A0 + ∆0

]
= 0,

where (Am + ∆m)λm + · · · + (A1 + ∆1)λ + A0 + ∆0 also lies in B(P, ε,w). Hence,
µ ∈ σε,w(P ).

3



Similarly, if all the coefficients of P (λ) are hermitian, then

det [(Am + ∆m)µm + · · ·+ (A1 + ∆1)µ + A0 + ∆0]
∗ =

det [(Am + ∆∗
m)µm + · · ·+ (A1 + ∆∗

1)µ + A0 + ∆∗
0] = 0,

where (Am + ∆∗
m)λm + · · · + (A1 + ∆∗

1)λ + A0 + ∆∗
0 ∈ B(P, ε,w). Thus, µ lies in

σε,w(P ).
Notice that, if there is a perturbation P∆(λ) ∈ B(P, ε,w) with identically zero

determinant, then σε,w(P ) coincides with the whole complex plane so, a priori, the
pseudospectrum may be unbounded. On the other hand, since the leading coefficient
Am is nonsingular, the matrix polynomial P (λ) has exactly nm (finite) eigenvalues,
counting multiplicities, so that for ε sufficiently small, the pseudospectrum must be
bounded and consist of no more than nm connected components. By extending a
technique of Li and Rodman [14, Theorem 2.3], the next result establishes a necessary
and sufficient condition for σε,w(P ) to be bounded (see also Proposition 3.5 of [10]
for a similar result on stability radii of matrix polynomials).

Theorem 2.2. Let P (λ) be an n × n matrix polynomial as in (1.1). Then
the pseudospectrum σε,w(P ) is bounded if and only if the εwm-pseudospectrum of the
leading coefficient Am of P (λ) does not contain the origin.

Proof. For fixed ε > 0 and w = {w0, w1, . . . , wm} ≥ 0, suppose that 0 /∈
σεwm(Am). Then det(Am + ∆m) 6= 0 whenever ‖∆m‖ ≤ εwm, and

ζε = min{| det(Am + ∆m)| : ‖∆m‖ ≤ εwm} > 0.

Since the set B(P, ε,w) is compact, there is an Mε > 0 such that for any perturbation
of P (λ),

P∆(λ) = (Am + ∆m)λm + · · ·+ (A1 + ∆1)λ + A0 + ∆0 ∈ B(P, ε,w),

and for any λ ∈ C with |λ| > Mε, we have

| detP∆(λ)− det(Am + ∆m)λnm| < ζε|λmn| ≤ | det(Am + ∆m)λmn|
(keeping in mind that det P∆(λ) is a scalar polynomial with leading term det(Am +
∆m)λmn). Hence, det P∆(λ) 6= 0, i.e., σε,w(P ) ⊆ {λ ∈ C : |λ| ≤ Mε}; σε,w(P ) is
bounded.

To prove the converse, assume that σε,w(P ) is bounded but there is a

P∆̂(λ) = (Am + ∆̂m)λm + · · ·+ (A1 + ∆̂1)λ + A0 + ∆̂0 ∈ B(P, ε,w)

with det(Am +∆̂m) = 0. Then at least one of the coefficients of the scalar polynomial
detP∆̂(λ) is nonzero; otherwise σε,w(P ) = C, a contradiction. Let the coefficient of
λτ (τ ∈ {0, 1, . . . , nm− 1}) in det P∆̂(λ) be nonzero and denote it by βτ . Construct
a sequence {∆̂m,k}k∈N ⊂ Cn×n such that limk→∞ ∆̂m,k = ∆̂m and

det(Am + ∆̂m,k) 6= 0 and ‖∆̂m,k‖ ≤ εwm (k = 1, 2, . . .).
4



Clearly, for a fixed δ > 0, | det(Am + ∆̂m,k)| < δ for all sufficiently large k.
Since σε,w(P ) is bounded, the (nm − τ)th elementary symmetric function of the
roots of det[(Am + ∆̂m,k)λm + · · · + (A1 + ∆̂1)λ + A0 + ∆̂0], which is equal to
±βτ/ det(Am + ∆̂m,k), is bounded for all k. This contradicts the construction of the
sequence {∆̂m,k}k∈N.

Theorem 2 of [20] can be generalized as follows:
Theorem 2.3. If σε,w(P ) is bounded, then it has no more than nm connected

components, and any P∆(λ) ∈ B(P, ε,w) has an eigenvalue in each one of these
components. Furthermore, P (λ) and P∆(λ) have the same number of eigenvalues,
counting multiplicities, in each connected component of σε,w(P ).

Proof. Suppose σε,w(P ) is bounded. It follows from Theorem 2.2 that, for any
perturbation of P (λ),

P∆(λ) = (Am + ∆m)λm + · · ·+ (A1 + ∆1)λ + A0 + ∆0 ∈ B(P, ε,w),

det(Am +∆m) 6= 0, i.e., the leading coefficient of the polynomial detP∆(λ) is nonsin-
gular. As a consequence, P∆(λ) has exactly nm eigenvalues, counting multiplicities,
as does every member of the family of matrix polynomials

P∆,t(λ) = (1− t) P (λ) + tP∆(λ) ; t ∈ [0, 1].

Moreover, for any t ∈ [0, 1], P∆,t(λ) belongs to B(P, ε,w) and its eigenvalues lie in
σε,w(P ).

The coefficients of the scalar polynomial det P∆,t(λ) are continuous functions of
t ∈ [0, 1]. Hence, by the continuity of the zeros of det P∆,t(λ) with respect to its
coefficients, as t varies from 0 to 1, the eigenvalues of P∆,t(λ) trace continuous paths
from the eigenvalues of P (λ) (= P∆,0(λ)) to the eigenvalues of P∆(λ) (= P∆,1(λ)).
Thus, if P (λ) has k eigenvalues (counting multiplicities) in a connected component G
of σε,w(P ) and its nm − k remaining eigenvalues are isolated in σε,w(P ) \ G, then
this is true for the eigenvalues of every P∆,t(λ), t ∈ [0, 1]. Consequently, P∆(λ) has
exactly k eigenvalues in G, counting multiplicities.

Finally, note that each bounded connected component of σε,w(P ) contains at
least one eigenvalue of P (λ), and by the above discussion, it contains at least one
eigenvalue of the perturbation P∆(λ). Hence, σε,w(P ) cannot have more than nm
connected components.

Since the origin lies in σεwm(Am) if and only if smin(Am) ≤ εwm, it also follows
that:

Corollary 2.4. For any ε > 0 such that εwm < smin(Am), σε,w(P ) consists
of no more than nm bounded connected components.

3. Matrix polynomials with bounded numerical range. The numerical
range of the matrix polynomial P (λ) is defined by

W (P ) = {λ ∈ C : v∗P (λ)v = 0, v ∈ Cn, v∗v = 1}
(see e.g., [14, 17, 18]), and it is always closed and contains σ(P ). For the linear pencil
Iλ − A (A ∈ Cn×n), W (Iλ − A) coincides with the classical numerical range (also
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known as the field of values) of the matrix A, F (A) = {v∗Av : v ∈ Cn, v∗v = 1},
which is always compact and convex [11]. The inner numerical radius of A is defined
by r̂(A) = min{|λ| : λ ∈ ∂F (A)}. By Theorem V.3.2 of [12], the ε-pseudospectrum
of A lies in the region

F (A) + S(0, ε) = {λ ∈ C : dist(λ, F (A)) ≤ ε} ,

where dist(λ, F (A)) denotes the distance between the point λ and the numerical range
F (A). Thus, F (A) + S(0, ε) is often used as an initial region for the estimation of
σε(A).

The numerical range W (P ) is bounded if and only if 0 /∈ F (Am), and in this
case, it has no more than m connected components [14]. If G is a bounded connected
component of W (P ), then for any unit vector v ∈ Cn, the number of zeros of the
scalar polynomial v∗P (λ)v in G, counting multiplicities, does not depend on v [16,
Lemma 26.8], i.e., it is constant. If we denote this constant number by c(G), then
P (λ) has exactly n c(G) eigenvalues in G, counting multiplicities, [18, Theorem 2.1].
Now Theorem V.3.2 of [12] can be generalized to the case of matrix polynomials.
Although this result is mainly of theoretical interest, note that estimates of the inner
numerical radius are available in [3].

Theorem 3.1. Let P (λ) = Amλm + · · · + A1λ + A0 be an n × n matrix poly-
nomial with bounded numerical range that consists of ξ (≤ m) connected components
G1,G2, . . . ,Gξ. Then for given ε > 0 and w ≥ 0,

σε,w(P ) ⊆


λ ∈ C :

ξ∏

j=1

dist(λ,Gj)c(Gj) ≤ ε qw(|λ|)
r̂(Am)



 ,

where it is assumed that dist(λ,Gj) = 0 when λ ∈ Gj.
Proof. Suppose that λ0 ∈ σε,w(P ). Then there exist a perturbation of P (λ),

P∆(λ) = (Am + ∆m)λm + · · ·+ (A1 + ∆1)λ + A0 + ∆0 ∈ B(P, ε,w),

and a unit vector v0 ∈ Cn such that P∆(λ0)v0 = 0. Hence,

v∗0(∆mλm
0 + · · ·+ ∆1λ0 + ∆0)v0 = −v∗0P (λ0)v0,

and consequently,

m∑

j=0

|v∗0∆jv0| |λ0|j ≥
∣∣∣∣∣∣

m∑

j=0

(v∗0∆jv0)λj
0

∣∣∣∣∣∣
= |v∗0P (λ0)v0|

= |v∗0Amv0|
m∏

j=1

|λ0 − λj(v0)|,

where λ1(v0), λ2(v0), . . . , λm(v0) are the zeros of the polynomial v∗0P (λ)v0. Since
εwj ≥ ‖∆j‖ ≥ |v∗0∆jv0|, j = 0, 1, . . . , m, it follows that

ε qw(|λ0|) ≥
m∑

j=0

‖∆j‖ |λ0|j ≥
m∑

j=0

|v∗0∆jv0| |λ0|j
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≥ r̂(Am)
m∏

j=1

|λ0 − λj(v0)| ≥ r̂(Am)
ξ∏

j=1

dist(λ0,Gj)c(Gj).

The proof is complete.

4. A curve-tracing algorithm. For fixed ε > 0 and w = {w0, w1, . . . , wm} ≥
0, the boundary of the ε-pseudospectrum of the matrix polynomial P (λ) = Amλm +
· · ·+ A1λ + A0 is given by (1.3). In this section, we describe a prediction-correction
continuation methodology for the computation of ∂σε,w(P ), extending an algorithm of
Brühl [1, 2] for matrices. As noted in Section 1, for our purposes, the pseudospectrum
is that defined in terms of the spectral norm.

For convenience, define the function

gP (x, y) = smin(P (x + iy)) ; x, y ∈ R.

When there is no fear of confusion, we write gP (λ) = smin(P (λ)) for λ ∈ C.
Our approach is based on the following result of Sun [21] concerning the differ-

entiability of simple singular values.
Theorem 4.1. Let the matrix valued function F (b) : Rd 7→ Cn×n be real

analytic in a neighborhood of b0 =
(
b
(1)
0 , b

(2)
0 , . . . , b

(d)
0

)
∈ Rd. Suppose that s0 is a

simple nonzero singular value of F (b0), and u0 and v0 are associated left and right
singular vectors, respectively.

Then there is a neighborhood N of b0 on which a simple nonzero singular value
s(b) of F (b) is defined together with corresponding left and right singular vectors
u(b) and v(b), respectively, such that s(b0) = s0, u(b0) = u0 and v(b0) = v0, and
the functions s, u and v are real analytic on N .

Moreover, the partial derivatives of s(b) at b0 are given by

∂s(b0)
∂b(j)

= Re
(

u∗0
∂F (b0)
∂b(j)

v0

)
; j = 1, 2, . . . , d.

The next corollary is a direct consequence of this theorem.
Corollary 4.2. Let λ0 = x0 + iy0 ∈ C \ σ(P ). If smin(P (λ0)) is a simple

singular value of the matrix P (λ0), and u0, v0 are associated left and right singular
vectors, respectively, then gP (x, y) is real analytic in a neighborhood of (x0, y0) ∈ R2,
and

∇gP (x0, y0) =
(

Re
(

u∗0
∂P (x0 + iy0)

∂x
v0

)
, Re

(
u∗0

∂P (x0 + iy0)
∂y

v0

))
.

The basic continuation method investigated here for finding points on the implic-
itly defined curve

∂σε,w(P ) = {λ ∈ C : gP (λ)− ε qw(|λ|) = 0} ,
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consists of an initial step to find a starting point on the curve followed by a sequence
of “predictor” steps tangential to the boundary and “corrector” steps to go back to
the boundary.

Initial step: For calculation of a first point on the boundary of σε,w(P ), let λ0 =
x0 + iy0 ∈ σε,w(P ) \ σ(P ) and d0 ∈ C be nonzero, and consider the function

h(t) = gP (λ0 + t d0)− ε qw(|λ0 + t d0|) ; t ∈ R.

Then use Newton’s method to find a solution of h(t) = 0 along the straight line
{λ0 + t d0 : t ∈ R} in the complex plane. Without loss of generality, it may be as-
sumed that the initial value of t is t0 = 0. Moreover, we assume that gP is differen-
tiable at λ0 and the gradient ∇gP (x0, y0) given by Corollary 4.2 is nonzero.

Then the first Newton iterate is

t1 = t0 − h(t0)
h′(t0)

= − gP (λ0)− ε qw(|λ0|)
h′(0)

,

where

h′(0) =
∂[gP (λ0)− ε qw(|λ0|)]

∂d0
=

∂
[
gP (x0 + iy0)− ε qw

(√
x2

0 + y2
0

)]

∂d0

= (Re d0)


Re

(
u∗0

∂P (x0 + iy0)
∂x

v0

)
− ε

∂qw

(√
x2

0 + y2
0

)

∂x




+(Im d0)


Re

(
u∗0

∂P (x0 + iy0)
∂y

v0

)
− ε

∂qw

(√
x2

0 + y2
0

)

∂y


 .

For brevity, write the partial derivatives on the right in the form

Re
(

u∗0
∂P (x0 + iy0)

∂x
v0

)
− ε

∂qw

(√
x2

0 + y2
0

)

∂x
= Rε,w(λ0, x)

and

Re
(

u∗0
∂P (x0 + iy0)

∂y
v0

)
− ε

∂qw

(√
x2

0 + y2
0

)

∂y
= Rε,w(λ0, y).

Then

z1 = λ0 + t1d0 = x0 + iy0 −
gP (x0 + iy0)− ε qw

(√
x2

0 + y2
0

)

(Re d0)Rε,w(λ0, x) + (Im d0)Rε,w(λ0, y)
d0.(4.1)

Since the point λ0 = x0 +iy0 lies in σε,w(P ), for suitably chosen direction d0, we can
estimate a boundary point of σε,w(P ) (in particular, an intersection point of ∂σε,w(P )
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and {λ0 + t d0 : t ∈ R}) by repeating (4.1) until the quantity |smin(P (z))− ε qw(|z|)|
is small enough.

It is also worth noting that

(Re d0)Rε,w(λ0, x) + (Im d0)Rε,w(λ0, y) = Re
[
d0 (Rε,w(λ0, x) + iRε,w(λ0, y))

]
,

and on choosing the direction d0 = Rε,w(λ0, x) + iRε,w(λ0, y), the equation (4.1)
implies

z1 = x0 + iy0 −
gP (x0 + iy0)− ε qw

(√
x2

0 + y2
0

)

Rε,w(λ0, x)− iRε,w(λ0, y)
.(4.2)

Prediction: Assuming now that the point zk−1 ∈ ∂σε,w(P ) has been computed and
τk is the corresponding step-length, the (tangential) prediction for the kth boundary
point of σε,w(P ), zk, is

ẑk = zk−1 + τk

(
i
∇ [gP (zk−1)− ε qw(|zk−1|)]
|∇ [gP (zk−1)− ε qw(|zk−1|)]|

)

= zk−1 + τk

(
i

(Rε,w(zk−1, x),Rε,w(zk−1, y))
|(Rε,w(zk−1, x),Rε,w(zk−1, y))|

)
,

i.e., the direction tangential to ∂σε,w(P ) is chosen.

Correction: For sufficiently small τk, the correction step consists of a single Newton
iterate with respect to the equation gP (ẑk + t dk) − ε qw(|ẑk + t dk|) = 0, with an
appropriate direction dk and initial value t0 = 0. It has been found that one Newton
step gives adequate numerical performance, although the effect of taking more steps
at this stage could be a subject for further investigation.

A natural choice for dk is the gradient

∇ [gP (ẑk)− ε qw(|ẑk|)] = (Rε,w(ẑk, x),Rε,w(ẑk, y)) .

In this case, the step (4.2) is applied, and the estimation of zk requires the computation
of the singular values smin(P (zk−1)) and smin(P (ẑk)), and their associated left and
right singular vectors.

However, the computation of smin(P (ẑk)) and the corresponding singular vectors
can be avoided (and the computational cost of the algorithm reduced by about a half)
if the correction step is taken in the direction of

∇ [gP (zk−1)− ε qw(|zk−1|)] = (Rε,w(zk−1, x),Rε,w(zk−1, y))

and (4.2) is written in the form

zk = ẑk − gP (zk−1)− ε qw(|zk−1|)
Rε,w(zk−1, x)− iRε,w(zk−1, y)

.

In Figure 4.1, a graphical illustration of the directions dk = ∇ [gP (ẑk)− ε qw(|ẑk|)]
(left part) and dk = ∇ [gP (zk−1)− ε qw(|zk−1|)] (right part) is given. The prediction
points are marked with asterisks, the correction points are plotted as ‘o’, and ∇
denotes the gradient ∇ [gP (zk−1)− ε qw(|zk−1|)]. Note that in the right part of the
figure, the line segment [ẑk, zk] is parallel to ∇.

9
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Algorithm

Input: The coefficients A0, A1, . . . , Am of the matrix polynomial P (λ),
the parameter ε > 0 and the weights w0, w1, . . . , wm ≥ 0,
the number N of points to be determined on ∂σε,w(P ),
an approximation µ0 of an eigenvalue of P (λ),
the search direction d0 for the initial point,
the relative accuracy tol for the initial point,
the step-length r.

Step 1: (For computing the first boundary point)

Set znew = µ0 + ε d0.

While |smin(P (znew))− ε qw(|znew|)| > ε qw(|znew|) tol, repeat:

(a) Set zold = znew.
(b) Compute the minimum singular value smin of P (zold) and associated

left and right singular vectors u0 and v0.
(c) Compute the gradient

∇ [gP (zold)− ε qw(|zold|)] = (Rε,w(zold, x),Rε,w(zold, y)) .

(d) Compute the next Newton iterate

znew = zold − smin(P (zold))− ε qw(|zold|)
(Re d0)Rε,w(zold, x) + (Im d0)Rε,w(zold, y)

d0.

End while

Set z1 = znew.

Step 2: (For computing the remaining N − 1 boundary points)

10



For k = 2, 3, . . . , N, repeat:

(a) Compute the minimum singular value smin of P (zk−1) and associated
left and right singular vectors u0 and v0.

(b) Compute the gradient

∇ [gP (zk−1)− ε qw(|zk−1|)] = (Rε,w(zk−1, x),Rε,w(zk−1, y))

and the direction

dk = i
Rε,w(zk−1, x) + iRε,w(zk−1, y)
|Rε,w(zk−1, x) + iRε,w(zk−1, y)| .

(c) Compute the predicted point

ẑk = zk−1 + dkr.

(d) Compute the corrected point

zk = ẑk − smin(P (zk−1))− ε qw(|zk−1|)
Rε,w(zk−1, x)− iRε,w(zk−1, y)

.

End for

Output: The points z1, z2, . . . , zN .

Of course, this algorithm tracks the boundary of that connected component of
the pseudospectrum σε,w(P ) containing µ0. Consequently, for a complete picture of
σε,w(P ), it may be necessary to repeat the procedure several times with different
(appropriate) values of µ0.

Since the size of the step-lengths τk (k = 2, 3, . . . , N) used in the prediction step
affects the accuracy and the computational cost of the algorithm, it is important to
obtain criteria for their selection. This is an open problem, which is partially solved
by Bekas and Gallopoulos [1]: an efficient choice of τk will undoubtedly depend mainly
on the local shape of the curve ∂σε,w(P ). The present experiments are confined to
a constant step-length, r (see (c) of Step 2). In particular, it is apparent that a
procedure in which step-size is related to an estimate of the local curvature might
be advantageous. This and related questions must, however, be deferred to future
research.

As might be expected, difficulties appear near points of ∂σε,w(P ) where the func-
tion gP is not differentiable and the minimum singular value is multiple, and also
near points where the distance between distinct connected components of ∂σε,w(P )
becomes relatively small (see Example 5.2 below). In these cases, the curve-tracing
algorithm may lose its path or retrace its own steps. Some of these difficulties can be
resolved by choosing a smaller r (increasing the cost) or/and more suitable values for
µ0 and d0.

In spite of these apparent weaknesses, the authors’ experiments suggest that the
algorithm is remarkably robust.

11



An important feature of this technique is that it does not require a priori knowl-
edge of the size or shape of σε,w(P ), since it determines the connected components of
the pseudospectrum one after the other by using starting points close to eigenvalues.
Moreover, the cost does not depend strongly on the degree of the matrix polynomial
P (λ). This parameter, m, appears only in the calculation of P (z), q(|z|) and their
partial derivatives. The main cost of the algorithm comes from the computation of
the singular values smin(P (zk−1)), k = 2, 3, . . . , N , and associated singular vectors.
For this task, the suggested reference is [22], where five techniques (the Golub-Reinsch
SVD algorithm, the transfer function approach and the computation of solvents by
using the generalized Schur decomposition or the Newton method or the Bernoulli
iteration) are compared in terms of flops and execution time (see also [15, 24]). In
the examples of the next section, the SVD technique has been used.

5. Numerical examples. We give some examples to illustrate our results and
the use of the proposed algorithm.

Example 5.1. (A wing problem) Consider the quadratic matrix polynomial
Q(λ) = A2λ

2 + A1λ + A0 with

A2 =




17.6 1.28 2.89
1.28 0.824 0.413
2.89 0.413 0.725


 , A1 =




7.66 2.45 2.1
0.23 1.04 0.223
0.6 0.756 0.658




and A0 =




121 18.9 15.9
0 2.7 0.145

11.9 3.64 15.5


 .

The eigenproblem of Q(λ) arose from a study of the oscillations of a wing in an
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Fig. 5.1. The boundaries ∂σε,w(Q) for ε = 0.01, 0.1, 0.15 and for ε = 0.18.

airstream and originates in [6] (Section 10.11). It has also been examined in Section
12
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Fig. 5.2. The less sensitive eigenvalues.

5.3 of [13], and comparison with the recent treatment of the same example in [22] is
interesting. The left part of Figure 5.1 indicates the boundaries of the ε-pseudospectra
of Q(λ) for w0 = w1 = w2 = 1 (i.e., for perturbations measured in the absolute sense)
and ε = 0.01, 0.1, 0.15, using the present path-tracing algorithm. For step-length
r = 0.1, approximately 2000 boundary points are required.

Symmetry of the pseudospectra with respect to the real axis is apparent, confirm-
ing Proposition 2.1. The eigenvalues of Q(λ) are −0.88± i 8.44, 0.09± i 2.52, −0.92±
i 1.76, and they are plotted as ‘+’. As observed in [22], the eigenvalues −0.88± i 8.44
are seen to be much more sensitive to these perturbations than the remaining eigen-
values of Q(λ), and for ε < smin(A2) ∼= 0.17, σε,w(Q) is bounded and consists of six
connected components, confirming Corollary 2.4. On the other hand, in the right part
of Figure 5.1, we see that the two connected components corresponding to the pair
−0.88± i 8.44 become an unbounded connected component with a “hole”, where the
rest of σε,w(Q) lies, when ε = 0.18 > smin(A2) (i.e., the exterior of the outermost
0.18-curve is in σ0.18,w(Q)). The four components of σε,w(Q) that correspond to the
eigenvalues 0.09± i 2.52, −0.92± i 1.76 are magnified (using step-length r = 0.03) in
the left part and the right part of Figure 5.2 for ε = 0.01, 0.1, 0.15 and for ε = 0.18,
respectively.

The cost of the algorithm depends mainly on Step 2 since Step 1 usually de-
mands a small number of Newton iterations. In the above example, for initial point
µ0
∼= −0.88 + i 8.44, search direction d0 = 1 and relative accuracy tol = 10−3, the

estimation of the first boundary point of σε,w(Q) (for ε = 0.1, 0.15, 0.18) requires
only four Newton iterations.

Notice also that in all the examples herein, the matrix polynomials are real and
thus we can exploit the symmetry of their pseudospectra with respect to the real axis
and need only compute the parts of the boundaries in the closed upper half-plane.
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Fig. 5.3. A damped vibrating system.

Example 5.2. (A vibrating system) The 3× 3 selfadjoint matrix polynomial

P (λ) =




1 0 0
0 2 0
0 0 5


 λ2 +




0 0 0
0 3 −1
0 −1 6


 λ +




2 −1 0
−1 3 0
0 0 10




corresponds to a mass-spring model described in [5, Example 6]. The predicted
boundaries of the ε-pseudospectra of P (λ) for w0 = ‖A0‖ = 10, w1 = ‖A1‖ =
6.3 and w2 = ‖A2‖ = 5 (i.e., for perturbations measured in a relative sense)
and for ε = 0.02, 0.05, 0.1, are drawn in Figure 5.3. The eigenvalues of P (λ),
−0.08± i 1.45, −0.75± i 0.86, −0.51± i 1.25, are plotted as ‘+’.

Once again, the predicted symmetry with respect to the real axis is confirmed.
Note also that all the pseudospectra are bounded and smin(A2) = 1 > ε w2, verifying
Theorem 2.2.

Figure 5.4 shows how the close proximity of two connected components of the
pseudospectrum may affect the curve-tracing algorithm. In particular, σ0.06,w(P )
consists of two connected components, one in the open upper half-plane and one in
the open lower half-plane of C. Using a starting point µ0 close to the eigenvalue
−0.51− i 1.25, direction d0 = −1 and step-length r = 0.03, the algorithm sketches a
part of the boundary of the lower connected component (in particular, 164 points),
and on arriving at the top of the component, it “loses its way” and starts tracing the
boundary of the upper connected component, where it remains for ever (see the left
part of the figure). If the step-length is decreased to r = 0.003, then the algorithm
remains on the correct path and plots exactly the boundary of the lower component
(right part of the figure). Since r = 0.003, approximately 2200 points are needed to
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Fig. 5.4. Step-lengths r = 0.03 and r = 0.003.

complete the picture.
In our last example, we consider a quadratic matrix polynomial of larger size.
Example 5.3. (A gyroscopic system) Let B denote the 10×10 nilpotent matrix

having ones on the subdiagonal and zeros elsewhere, and define the matrices M̂ =
(4I10 + B + BT )/6, Ĝ = B − BT and K̂ = B + BT − 2I10. Then, using the tensor
product, we set

M = I10 ⊗ M̂ + 1.30M̂ ⊗ I10,

G = 1.35I10 ⊗ Ĝ + 1.10Ĝ⊗ I10,

K = I10 ⊗ K̂ + 1.20K̂ ⊗ I10,

and observe that M = MT , G = −GT and K = KT . Moreover, the matrix M is
positive definite with smin(M) ∼= 0.8 and K is negative definite. The 100 × 100
matrix polynomial Mλ2 + Gλ + K corresponds to an undamped gyroscopic system
and its eigenproblem has been examined in [19] (Example 6.1). Adding the tridiagonal
damping matrix D = tridiag{−0.1, 0.3,−0.1} to the linear term yields the matrix
polynomial

R(λ) = Mλ2 + (G + D)λ + K.

The pseudospectra σε,w(R) for w = {1, 1, 1} and for ε = 0.004, 0.02, 0.1, consist of
four, two and one bounded connected components, respectively, and their boundaries
are drawn in Figure 5.5. The eigenvalues of R(λ) are plotted as ‘+’. As in the two
previous examples, the results of Section 2 are apparently confirmed.

Obviously, the classical grid method of [22] handles several ε’s at once, while
we have to repeat the path-tracing algorithm for each component and each ε. On
the other hand, the new procedure is based on a one-dimensional grid (instead of a
predefined two-dimensional grid), and in terms of the number of points at which it
is necessary to compute smin, the curve-tracing method competes well with the grid
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Fig. 5.5. A damped gyroscopic system.

method and it is computationally less demanding when seeking a small number of
boundary curves. In the above example, for step-length r = 0.06, the determination
of the boundaries of σ0.004,w(R), σ0.02,w(R) and σ0.1,w(R) in Figure 5.5 requires 292,
304 and 310 points, respectively. For the same step-length, the grid method demands
a priori knowledge of the size of pseudospectra and a 117× 84 grid of the rectangle
Ω = [−4, 3]× [−i 2.5, i 2.5], that is, 9828 grid points.
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