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Abstract

In this paper, we investigate condition numbers of eigenvalue problems of
matrix polynomials with nonsingular leading coefficients, generalizing classical
results of matrix perturbation theory. We provide a relation between the con-
dition numbers of eigenvalues and the pseudospectral growth rate. We obtain
that if a simple eigenvalue of a matrix polynomial is ill-conditioned in some re-
spects, then it is close to be multiple, and we construct an upper bound for this
distance (measured in the euclidean norm). We also derive a new expression for
the condition number of a simple eigenvalue, which does not involve eigenvectors.
Moreover, an Elsner-like perturbation bound for matrix polynomials is presented.
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1 Introduction

The notions of condition numbers of eigenproblems and eigenvalues quantify the sen-
sitivity of eigenvalue problems [4, 6, 10, 11, 16, 19, 20, 23, 25, 26, 27]. They are widely
appreciated tools for investigating the behavior under perturbations of matrix-based
dynamical systems and of algorithms in numerical linear algebra. An eigenvalue
problem is called ill-conditioned (resp., well-conditioned) if its condition number is
sufficiently large (resp., sufficiently small).

In 1965, Wilkinson [25] introduced the condition number of a simple eigenvalue λ0

of a matrix A while discussing the sensitivity of λ0 in terms of the associated right and
left eigenspaces. Two years later, Smith [19] obtained explicit expressions for certain
condition numbers related to the reduction of matrix A to its Jordan canonical form.
In early 1970’s, Stewart [20] and Wilkinson [26] used the condition number of the
simple eigenvalue λ0 to construct a lower bound and an upper bound for the distance
from A to the set of matrices that have λ0 as a multiple eigenvalue, respectively.
Recently, the notion of the condition number of simple eigenvalues of matrices has
been extended to multiple eigenvalues of matrices [4, 10, 11] and to eigenvalues of
matrix polynomials [11, 23].

In this article, we are concerned with conditioning for the eigenvalue problem of
a matrix polynomial P (λ) with a nonsingular leading coefficient, generalizing known
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results of matrix perturbation theory [4, 7, 10, 19, 26]. In the next section, we give
the definitions and the necessary background on matrix polynomials. In Section 3, we
investigate the strong connection between the condition numbers of the eigenvalues of
P (λ) and the growth rate of its pseudospectra. This connection allows us to portrait
the abstraction of the condition numbers of eigenvalues. In Section 4, we examine
the relation between the condition number of a simple eigenvalue λ0 of P (λ) and
the distance from P (λ) to the set of matrix polynomials that have λ0 as a multiple
eigenvalue. In particular, we see that if the condition number of λ0 is sufficiently
large, then this eigenvalue is close to be multiple. In Section 5, we provide a new
expression for the condition number of a simple eigenvalue λ0 of P (λ), which involves
the distances from λ0 to the rest of the eigenvalues of P (λ). Finally, in Section 6, we
present an extension of the Elsner Theorem [7, 21, 22] to matrix polynomials. Simple
numerical examples are also given to illustrate our results.

2 Preliminaries on matrix polynomials

Consider an n× n matrix polynomial

P (λ) = Amλ
m +Am−1λ

m−1 + · · · +A1λ+A0, (1)

where λ is a complex variable and Aj ∈ C
n×n (j = 0, 1, . . . ,m) with detAm 6= 0. The

study of matrix polynomials has a long history, especially with regard to their spectral
analysis, which leads to the solutions of higher order linear systems of differential
equations. The suggested references on matrix polynomials are [9, 13, 15].

A scalar λ0 ∈ C is called an eigenvalue of P (λ) if the system P (λ0)x = 0 has
a nonzero solution x0 ∈ C

n, known as a right eigenvector of P (λ) corresponding to
λ0. A nonzero vector y0 ∈ C

n that satisfies y∗0P (λ0) = 0 is called a left eigenvector of
P (λ) corresponding to λ0. The set of all eigenvalues of P (λ) is the spectrum of P (λ),
σ(P ) = {λ ∈ C : detP (λ) = 0} , and since detAm 6= 0, it contains no more than nm
distinct (finite) elements. The algebraic multiplicity of an eigenvalue λ0 ∈ σ(P ) is
the multiplicity of λ0 as a zero of the (scalar) polynomial detP (λ), and it is always
greater than or equal to the geometric multiplicity of λ0, that is, the dimension of the
null space of matrix P (λ0).

2.1 Jordan structure and condition number of the eigenproblem

Let λ1, λ2, . . . , λr ∈ σ(P ) be the eigenvalues of P (λ), where each λi appears exactly
ki times if and only if its geometric multiplicity is ki (i = 1, 2, . . . , r). Suppose also
that for an eigenvalue λi ∈ σ(P ), there exist xi,1, xi,2, . . . , xi,si

∈ C
n with xi,1 6= 0,

such that
ξ

∑

j=1

1

(j − 1)!
P (j−1)(λi)xi,ξ−j+1 = 0 ; ξ = 1, 2, . . . , si,

where the indices denote the derivatives of P (λ) and si cannot exceed the algebraic
multiplicity of λi. Then the vector xi,1 is clearly an eigenvector of λi, and the vectors
xi,2, xi,3, . . . , xi,si

are known as generalized eigenvectors. The set {xi,1, xi,2, . . . , xi,si
}

is called a Jordan chain of length si of P (λ) corresponding to the eigenvalue λi.
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Any eigenvalue of P (λ) of geometric multiplicity k has k maximal Jordan chains
associated to k linearly independent eigenvectors, with total number of eigenvectors
and generalized eigenvectors equal to the algebraic multiplicity of this eigenvalue.

We consider now the n × nm matrix X = [x1,1 · · · x1,s1
x2,1 · · · xr,1 · · · xr,sr

]
formed by maximal Jordan chains of P (λ), and the associated nm×nm Jordan matrix
J = J1 ⊕ J2 ⊕ · · · ⊕ Jr, where each Ji is the Jordan block that corresponds to the

Jordan chain {xi,1, xi,2, . . . , xi,si
} of λi. Then the nm×nm matrix Q =









X
XJ
...

XJm−1









is invertible [9], and we can define Y = Q−1









0
...
0

A−1

m









. The set (X, J, Y ) is called a

Jordan triple of P (λ), and satisfies P (λ)−1 = X(Iλ−J)−1Y for every scalar λ /∈ σ(P )
[9]. Motivated by the latter equality and [5], we define the condition number of the
eigenproblem1 of P (λ) as k(P ) = ‖X‖ ‖Y ‖ , where ‖ · ‖ denotes the spectral matrix
norm, i.e., that norm subordinate to the euclidean vector norm.

2.2 Companion matrix

The (block) companion matrix of P (λ) is the nm× nm matrix

CP =













0 I · · · 0

0 0
. . .

...
...

...
. . . I

−A−1
m A0 −A−1

m A1 · · · −A−1
m Am−1













.

It is straightforward to verify that

E(λ)(λI − CP )F (λ) =

[

P (λ) 0
0 Im(n−1)

]

, (2)

where F (λ) =









I 0 · · · 0
λI I · · · 0
...

...
. . .

...
λmI λm−1I · · · I









and E(λ) =









E1(λ) E2(λ) · · · Em(λ)
−I 0 · · · 0
...

. . .
. . .

...
0 −I 0









with Em(λ) = Am and Er(λ) = Ar + λEr+1(λ) for r = m − 1,m − 2, . . . , 1. It is
also easy to see that detF (λ) = 1 and detE(λ) = ±detAm (6= 0). As a consequence,
σ(P ) coincides with the spectrum of matrix CP , counting algebraic multiplicities.

1Note that the definition of the condition number k(P ) depends on the choice of the triple (X, J, Y ),
but for simplicity, the Jordan triple will not appear explicitly in the notation.
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2.3 Weighted perturbations and pseudospectrum

We are interested in perturbations of P (λ) of the form

Q(λ) = P (λ) + ∆(λ) =
m

∑

j=0

(Aj + ∆j)λ
j , (3)

where the matrices ∆0,∆1, . . . ,∆m ∈ C
n×n are arbitrary. For a given parameter

ε > 0 and a given set of nonnegative weights w = {w0, w1, . . . , wm} with w0 > 0, we
define the class of admissible perturbed matrix polynomials

B(P, ε,w) = {Q(λ) as in (3) : ‖∆j‖ ≤ εwj , j = 0, 1, . . . ,m}

(recall that ‖ ·‖ denotes the spectral matrix norm). The weights w0, w1, . . . , wm allow
freedom in how perturbations are measured, and the set B(P, ε,w) is convex and
compact with respect to the max norm ‖P (λ)‖∞ = max

0≤j≤m
‖Aj‖ [3].

A recently popularized tool for gaining insight into the sensitivity of eigenvalues
to perturbations is pseudospectrum; see [3, 8, 12, 24] and the references therein. The
ε-pseudospectrum of P (λ) (introduced in [17, 24]) is defined by

σε(P ) = {µ ∈ σ(Q) : Q(λ) ∈ B(P, ε,w)} = {µ ∈ C : smin(P (µ)) ≤ εw(|µ|)} ,

where smin(·) denotes the minimum singular value of a matrix and w(λ) = wmλ
m +

wm−1λ
m−1 + · · · + w1λ + w0. The pseudospectrum σε(P ) is bounded if and only if

εwm < smin(Am) [12], and it has no more connected components than the number of
distinct eigenvalues of P (λ) [3].

2.4 Condition number of a simple eigenvalue

Let λ0 ∈ σ(P ) be a simple eigenvalue of P (λ) with corresponding right eigenvector
x0 ∈ C

n and left eigenvector y0 ∈ C
n (where both x0 and y0 are unique up to

scalar multiplications). A normwise condition number of the eigenvalue λ0, originally
introduced and studied in [23] (in a slightly different form), is defined by

k(P, λ0) = lim sup
ε→0

{ |δλ0|
ε

: detQ(λ0 + δλ0) = 0, Q(λ) ∈ B(P, ε,w)

}

(4)

=
w(|λ0|) ‖x0‖ ‖y0‖

|y∗0P ′(λ0)x0|
. (5)

Since λ0 is also a simple eigenvalue of the companion matrix CP , we define the
condition number of λ0 with respect to CP as

k(CP , λ0) =
‖χ0‖ ‖ψ0‖
|ψ∗

0χ0|
(6)

(see [19, 26, 27]), where

χ0 =











x0

λ0x0
...

λm−1
0 x0











and ψ0 =











E1(λ0)
∗y0

E2(λ0)
∗y0

...
Em(λ0)

∗y0











(7)
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are associated right and left eigenvectors of CP for the eigenvalue λ0, respectively.
By straightforward computations, we can see that ψ∗

0χ0 = y∗0P
′(λ0)x0. This relation

and the definitions (5) and (6) yield the following [14],

k(P, λ0) =
w(|λ0|)

‖χ0‖ ‖ψ0‖
k(CP , λ0). (8)

2.5 Condition number of a multiple eigenvalue

Suppose that λ0 ∈ σ(P ) is a multiple eigenvalue of P (λ), and that p0 is the maximum
length of Jordan chains corresponding to λ0. Then we can construct a Jordan triple
of P (λ),

(X, J, Y ) =

















[x1,1 · · · x1,p0
x2,1 · · · ] , J1 ⊕ J2 ⊕ · · · ⊕ Jκ0

⊕ J̃ ,

















y∗1,p0

...
y∗1,1

y∗2,p0

...

































, (9)

where J1, J2, . . . , Jκ0
are the p0×p0 Jordan blocks of λ0, and J̃ contains all the Jordan

blocks of λ0 of order less than p0 and all the Jordan blocks that correspond to the
rest of the eigenvalues of P (λ). Moreover, x1,1, x2,1, . . . , xκ0,1 are right eigenvectors
of P (λ) that correspond to J1, J2, . . . , Jκ0

, and y1,1, y2,1, . . . , yκ0,1 are the associated
left eigenvectors. Following the approach of [4, 10, 11, 16] on multiple eigenvalues, we

consider the matrices X̂ = [x1,1 x2,1 · · · xκ0,1] ∈ C
n×κ0 and Ŷ =









y∗
1,1

y∗
2,1

...
y∗

κ0,1









∈ C
κ0×n,

and define the condition number of the multiple eigenvalue λ0 by

k̂(P, λ0) = w(|λ0|) ‖X̂ Ŷ ‖. (10)

Notice that since the matrices X̂ and Ŷ are of rank κ0 ≤ n, the product X̂ Ŷ is
nonzero and k̂(P, λ0) > 0 (keeping in mind that w0 > 0). Moreover, if the eigenvalue
λ0 is simple, i.e., p0 = κ0 = 1, then the definitions (5) and (10) coincide [11].

3 Condition numbers of eigenvalues and pseudospectral

growth

Consider a matrix polynomial P (λ) as in (1). Since the leading coefficient of P (λ)
is nonsingular, for sufficiently small ε, the pseudospectrum σε(P ) consists of no
more than nm bounded connected components, each one containing a single (possibly
multiple) eigenvalue of P (λ). By the definition (4) and the proof of Theorem 5 of
[23], it follows that any small connected component of σε(P ) that contains exactly
one simple eigenvalue λ0 ∈ σ(P ) is approximately a disc centered at λ0. Recall that
the Hausdorff distance between two sets S, T ⊂ C is

H(S, T ) = max

{

sup
s∈S

inf
t∈T

|s− t|, sup
t∈T

inf
s∈S

|s− t|
}

.
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Proposition 1. If λ0 ∈ σ(P ) is a simple eigenvalue of P (λ), then as ε → 0, the
Hausdorff distance between the connected component of σε(P ) that contains λ0 and
the disc {µ ∈ C : |µ− λ0| ≤ k(P, λ0) ε} is o(ε).

Next we extend this proposition to multiple eigenvalues of the matrix polynomial
P (λ), generalizing a technique of [10] for matrices (see also [4]).

Theorem 2. Suppose that λ0 is a multiple eigenvalue of P (λ) and p0 is the dimen-
sion of the maximum Jordan blocks of λ0. Then as ε → 0, the Hausdorff distance
between the connected component of pseudospectrum σε(P ) that contains λ0 and the

disc
{

µ ∈ C : |µ− λ0| ≤ (k̂(P, λ0) ε)
1/p0

}

is o(ε1/p0).

Proof. Consider the Jordan triple (X, J, Y ) of P (λ) in (9) and the condition number
k̂(P, λ0) in (10). For sufficiently small ε > 0, the pseudospectrum σε(P ) has a
compact connected component Gε such that Gε ∩ σ(P ) = {λ0}. In particular, the
eigenvalue λ0 lies in the (nonempty) interior of Gε; see Corollary 3 and Lemma 8 of
[3]. Let also µ be a boundary point of Gε. Then it holds that

smin(P (µ)) = εw(|µ|) and P (µ)−1 = X(Iµ− J)−1Y.

Denote now by N the p0 × p0 nilpotent matrix having ones on the super diagonal
and zeros elsewhere, and observe that

Np0 = 0 and (Iλ−N)−1 =











λ−1 λ−2 . . . λ−p0

0 λ−1 . . . λ−p0+1

...
...

. . .
...

0 0 . . . λ−1











= λ−1
p0−1
∑

j=0

(λ−1N)j (λ 6= 0).

As in [4, 10], we verify that

|µ− λ0|p0

smin(P (µ))
= |µ− λ0|p0‖P−1(µ)‖ = |µ− λ0|p0‖X(Iµ− J)−1Y ‖

= |µ− λ0|p0

∥

∥

∥
X diag

{

(Iµ− J1)
−1, . . . , (Iµ− Jκ0

)−1, (Iµ− Ĵ)−1
}

Y
∥

∥

∥

=
∥

∥

∥
(µ− λ0)

p0−1X diag







p0−1
∑

j=0

((µ− λ0)
−1N)j , . . .

. . . ,

p0−1
∑

j=0

((µ− λ0)
−1N)j , (µ− λ0)(Iµ− Ĵ)−1







Y
∥

∥

∥
.

For each one of the first κ0 diagonal blocks, we have

(µ− λ0)
p0−1

p0−1
∑

j=0

((µ− λ0)
−1N)j = Np0−1 +O(µ− λ0).
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Thus, it follows

|µ− λ0|p0

smin(P (µ))
=

∥

∥X diag
{

Np0−1 +O(µ− λ0), . . . , N
p0−1 +O(µ− λ0), O((µ− λ0)

p0)
}

Y
∥

∥

=
∥

∥X diag
{

Np0−1, . . . , Np0−1, 0
}

Y
∥

∥ +O(|µ− λ0|)

=
∥

∥

∥
[0 · · · x1,1 0 · · · x2,1 0 · · · ]

















y∗1,p0

...
y∗1,1

y∗2,p0

...

















∥

∥

∥
+O(|µ− λ0|),

where the right eigenvectors x1,1, x2,1, . . . , xκ0,1 and the rows y∗1,1, y
∗
2,1, . . . , y

∗
κ0,1 lie

at positions p0, 2p0, . . . , κ0p0, respectively. As a consequence,

|µ− λ0|p0

smin(P (µ))
= ‖X̂ Ŷ ‖ +O(|µ− λ0|),

or
|µ− λ0|p0

εw(|µ|) ‖X̂ Ŷ ‖
= 1 +O(|µ− λ0|),

or
|µ− λ0|

(k̂(P, λ0) ε)1/p0

= 1 + rε,

where rε ∈ R goes to 0 as ε→ 0. This means that

|µ− λ0| = (k̂(P, λ0) ε)
1/p0 + o(ε1/p0).

Since µ lies on the boundary ∂Gε, it is easy to see that the Hausdorff distance between

Gε and the disc
{

µ ∈ C : |µ− λ0| ≤ (k̂(P, λ0) ε)
1/p0

}

is o(ε1/p0).

The above two results indicate how the condition number of an eigenvalue of
P (λ) quantifies the sensitivity of this eigenvalue. Consider, for example, the matrix
polynomial

P (λ) =





(λ− 1)2 λ− 1 λ− 1
0 (λ− 1)2 0
0 λ2 − 1 λ2 − 1





with det(P (λ)) = (λ − 1)5(λ + 1) and σ(P ) = {1, −1}. The eigenvalue λ = 1 has
algebraic multiplicity 5 and geometric multiplicity 3, and the eigenvalue λ = −1 is
simple. A Jordan triple of P (λ) is given by

X =





1 0 0 0 0 1
0 1 1 0 1 0
0 0 −1 1 0 2



 , J =

















1 1 0 0 0 0
0 1 0 0 0 0
0 0 1 1 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 −1

















, Y =

















0 0 0.25
1 0 −0.5
0 1 −0.5
0 1 0
−1 −1 1
0 0 −0.25

















.
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The matrices of the eigenvectors that correspond to the maximum Jordan blocks of

eigenvalue λ = 1 are X̂ =

[

1 0
0 1
0 −1

]

and Ŷ =

[

1 0 −0.5
0 1 0

]

. Thus, for the weights

w0 = w1 = w2 = 1, we have k̂(P, 1) = w(1) ‖X̂ Ŷ ‖ = 4.2426.
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Figure 1: The boundaries ∂σε(P ) for ε = 10−4, 4 · 10−4, 8 · 10−4, 10−2, 10−1, 3 · 10−1.

The boundaries of the pseudospectra σε(P ), ε = 10−4, 4 · 10−4, 8 · 10−4, 10−2,
10−1, 3 · 10−1, are illustrated in the left part of Figure 1. The eigenvalues of P (λ)
are marked with +’s, and the components of the simple eigenvalue λ = −1 are visible
only for ε = 10−2, 10−1, 3 · 10−1. The components of the multiple eigenvalue λ = 1
are magnified in the right part of the figure, and they are very close to circular discs
centered at λ = 1 of radii (k̂(P, 1) 10−4)1/2 = 0.0206, (k̂(P, 1) 4 · 10−4)1/2 = 0.0412
and (k̂(P, 1) 8 · 10−4)1/2 = 0.0583, confirming Theorem 2.

4 Distance from a given simple eigenvalue to multiplicity

Let P (λ) be a matrix polynomial as in (1), and let λ0 be a simple eigenvalue of P (λ).
In the sequel, we generalize a methodology of Wilkinson [26] in order to obtain a
relation between the condition number k(P, λ0) and the distance from P (λ) to the
matrix polynomials that have λ0 as a multiple eigenvalue, namely,

dist(P, λ0) = inf {ε > 0 : ∃ Q(λ) ∈ B(P, ε,w) with λ0 as a multiple eigenvalue} .

The next proposition is a known result (see [1, Theorem 3.2] and [3, Proposition
16]). Here, we give a new proof, which motivates the proof of the main result of this
section (Theorem 4) and is necessary for the remainder.

Proposition 3. Let P (λ) be a matrix polynomial as in (1), λ0 ∈ σ(P )\σ(P ′) and
y0, x0 ∈ C

n be corresponding left and right unit eigenvectors, respectively. If y∗0P
′(λ0)x0

= 0, then λ0 is a multiple eigenvalue of P (λ).
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Proof. By Schur’s triangularization, and without loss of generality, we may assume
that the matrix P (λ0) has the following form,

P (λ0) =

[

0 b∗

0 B

]

; b ∈ C
n−1, B ∈ C

(n−1)×(n−1).

Moreover, since P (λ0)x0 = 0, we can set x0 = e1 = [ 1 0 · · · 0 ]T . Then we have that
y∗0P

′(λ0)e1 = 0, and hence, y∗0P
′(λ0) = [0 w∗] for some 0 6= w ∈ C

n−1.
Since λ0 /∈ σ(P ′) and y∗0P (λ0) = 0, it follows

y∗0P
′(λ0)

{

[P ′(λ0)]
−1P (λ0)

}

= 0,

or equivalently,

y∗0P
′(λ0)

{

[P ′(λ0)]
−1

[

0 b∗

0 B

]}

= 0,

or equivalently,

[0 w∗]

[

0 a∗

0 A

]

= 0,

where a ∈ C
n−1 and A ∈ C

(n−1)×(n−1). As a consequence, w∗A = 0 and the
matrix A has 0 as an eigenvalue. Thus, 0 is a multiple eigenvalue of the matrix
[P ′(λ0)]

−1P (λ0). We consider two cases:

(i) If the geometric multiplicity of 0 ∈ σ([P ′(λ0)]
−1P (λ0)) is greater than or equal to

2, then rank(P (λ0)) ≤ n− 2, and hence, λ0 is a multiple eigenvalue of P (λ).

(ii) Suppose that the geometric multiplicity of the eigenvalue 0 ∈ σ([P ′(λ0)]
−1P (λ0))

is equal to 1 and its algebraic multiplicity is greater than or equal to 2. Then, keeping
in mind that [P ′(λ0)]

−1P (λ0)e1 = 0, we verify that there exists a vector z1 ∈ C
n such

that [P ′(λ0)]
−1P (λ0)z1 = e1, or equivalently, P (λ0)(−z1) + P ′(λ0)e1 = 0. Thus, λ0

is a multiple eigenvalue of P (λ) with a Jordan chain of length at least 2.

Recall that the condition number of an invertible matrix A is defined by c(A) =
‖A‖ ‖A−1‖ and it is always greater than or equal to 1.

Theorem 4. Let P (λ) be a matrix polynomial as in (1), λ0 ∈ σ(P )\σ(P ′) be a simple
eigenvalue of P (λ), and y0, x0 ∈ C

n be corresponding left and right unit eigenvectors,
respectively. If the vector [P ′(λ0)]

∗y0 is not a scalar multiple of x0, then

dist(P, λ0) ≤ c(P ′(λ0)) ‖P (λ0)‖

k(P, λ0)
(

‖y∗0P ′(λ0)‖2 − |y∗0P ′(λ0)x0|2
)1/2

.

Proof. As in the proof of the previous proposition, without loss of generality, we may
assume that

P (λ0) =

[

0 b∗

0 B

]

; b ∈ C
n−1, B ∈ C

(n−1)×(n−1)

and x0 = e1. If we denote δ = y∗0P
′(λ0)x0 = y∗0P

′(λ0)e1 6= 0, then it is clear that

y∗0P
′(λ0) = [ δ w∗] ,

9



for some w ∈ C
n−1. Furthermore, w 6= 0 because |δ| < ‖y∗0P ′(λ0)‖.

Since λ0 /∈ σ(P ′) and y∗0P (λ0) = 0, it follows

y∗0P
′(λ0)

{

[P ′(λ0)]
−1P (λ0)

}

= 0,

or equivalently,

y∗0P
′(λ0)

{

[P ′(λ0)]
−1

[

0 b∗

0 B

]}

= 0,

or equivalently,

[δ w∗]

[

0 a∗

0 A

]

= 0

for some a ∈ C
n−1 and A ∈ C

(n−1)×(n−1). If a = 0, then w∗A = 0, and the proof of
Proposition 3 implies that λ0 is a multiple eigenvalue of P (λ); this is a contradiction.
As a consequence, a 6= 0. Moreover,

w∗A+ δa∗ = 0,

and hence,

w∗

(

A+
δ

w∗w
wa∗

)

= 0.

This means that if we consider the (perturbation) matrix E =

[

0 0

0 δ
w∗wwa

∗

]

, then

the matrix
[P ′(λ0)]

−1P (λ0) + E = [P ′(λ0)]
−1

[

P (λ0) + P ′(λ0)E
]

has 0 as a multiple eigenvalue.
We define the n× n matrices

∆̂ = P ′(λ0)E and Q̂ = P (λ0) + ∆̂,

and the matrix polynomial ∆(λ) =
∑m

j=0 ∆jλ
j with coefficients

∆j =

(

λ0

|λ0|

)j
wj

w(|λ0|)
∆̂ ; j = 0, 1, . . . ,m,

where (by convention) we assume that λ0/λ0 = 0 whenever λ0 = 0. Then, denoting

φ = w′(|λ0|)
w(|λ0|)

λ0

|λ0|
, one can verify that

∆(λ0) = ∆̂ and ∆′(λ0) = φ∆̂.

We define also the matrix polynomial Q(λ) = P (λ) + ∆(λ), and consider two cases:

(i) Suppose that the geometric multiplicity of 0 ∈ σ([P ′(λ0)]
−1Q̂) is greater than or

equal to 2. Then rank(Q̂) = rank(Q(λ0)) ≤ n − 2, or equivalently, λ0 is a multiple
eigenvalue of the matrix polynomial Q(λ) of geometric multiplicity at least 2.

(ii) Suppose now that the geometric multiplicity of the eigenvalue 0 ∈ σ([P ′(λ0)]
−1Q̂)

is equal to 1, and its algebraic multiplicity is greater than or equal to 2. Then, keeping
in mind that Q̂e1 = 0, there is a vector z1 ∈ C

n such that

[P ′(λ0)]
−1Q̂z1 = e1,

10



or equivalently,
Q̂(−z1) + P ′(λ0)e1 = 0. (11)

We observe that ∆′(λ0)e1 = φ∆̂e1 = φP ′(λ0)Ee1 = 0. As a consequence, (11) is
written in the form

Q(λ0)(−z1) +Q′(λ0)e1 = 0.

Thus, λ0 is a multiple eigenvalue of Q(λ) with a Jordan chain of length at least 2.

In both cases above, we have proved that λ0 is a multiple eigenvalue of Q(λ).
Furthermore, we see that

‖E‖ =

∥

∥

∥

∥

[

0 0

0 δ
w∗wwa

∗

]∥

∥

∥

∥

=

∥

∥

∥

∥

δ

w∗w
wa∗

∥

∥

∥

∥

=
|δ|
‖w‖ ‖a‖

≤ |δ|
‖w‖

∥

∥

∥

∥

[

0 a
0 A

]∥

∥

∥

∥

=
|δ|
‖w‖

∥

∥[P ′(λ0)]
−1P (λ0)

∥

∥

≤ |δ|
‖w‖

∥

∥[P ′(λ0)]
−1

∥

∥ ‖P (λ0)‖ .

Hence, for every j = 0, 1, . . . ,m,

‖∆j‖ =
wj

w(|λ0|)
∥

∥

∥
∆̂

∥

∥

∥
=

wj

w(|λ0|)
∥

∥P ′(λ0)E
∥

∥

≤ wj

w(|λ0|)
∥

∥P ′(λ0)
∥

∥ ‖E‖

≤ wj

w(|λ0|)
|δ|
‖w‖

∥

∥[P ′(λ0)]
−1

∥

∥

∥

∥P ′(λ0)
∥

∥ ‖P (λ0)‖

= wj
c(P ′(λ0)) ‖P (λ0)‖

k(P, λ0)
(

‖y∗0P ′(λ0)‖2 − δ2
)1/2

,

and the proof is complete.

The spectrum of the matrix polynomial

P (λ) = Iλ2 +





1 0 2
0 0 0.25
0 0 −0.5



λ+





0 0 8
0 25 −i
0 0 15.25





is σ(P ) = {0,−1, 0.25± i 3.8971,±i 5}. For the weights w2 = ‖A2‖ = 1, w1 = ‖A1‖ =
2.2919 and w0 = ‖A0‖ = 25.0379, the above theorem implies dist(P,−1) ≤ 0.4991.
If we estimate the same distance using the method proposed in [18], then we see
that dist(P,−1) ≤ 0.5991. On the other hand, for the eigenvalue 0.25 − i 3.8971,
Theorem 4 yields dist(P, 0.25 − i 3.8971) ≤ 0.1485, and the method of [18] implies
dist(P, 0.25 − i 3.8971) ≤ 0.1398. At this point, it is necessary to note that the
methodology of [18] is applicable to every complex number and not only to simple
eigenvalues of P (λ).

Remark 5. The proofs of Proposition 3 and Theorem 4 do not depend on the com-
panion matrix CP , and do not require the invertibility of the leading coefficient Am.
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Furthermore, the definitions (4) and (5) are also valid for the finite eigenvalues of
matrix polynomials with singular leading coefficients [11, 23]. As a consequence,
Proposition 3 and Theorem 4 hold also in the case where Am is singular (for the finite
eigenvalues of P (λ)).

5 An expression of k(P, λ0) without eigenvectors

In this section, we derive a new expression of the condition number k(P, λ0) that
involves the distances from λ0 ∈ σ(P ) to the rest of the eigenvalues of the matrix
polynomial P (λ), instead of the left and right eigenvectors of λ0. The next three lem-
mas are necessary for our discussion. The first lemma is part of the proof of Theorem
2 in [19], the second lemma follows readily from the singular value decomposition,
and the third lemma is part of Theorem 4 in [19].

Lemma 6. For any matrices C,R,W ∈ C
n×n, R adj(WCR)W = det(WR) adj(C).

Lemma 7. Let A be an n× n matrix with 0 as a simple eigenvalue, s1 ≥ s2 ≥ · · · ≥
sn−1 > sn = 0 be the singular values of A, and un, vn ∈ C

n be left and right singular
vectors of sn = 0, respectively. Then un and vn are also left and right eigenvectors of
A corresponding to 0, respectively.

Lemma 8. Let A be an n × n matrix with 0 as a simple eigenvalue. If s1 ≥ s2 ≥
· · · ≥ sn−1 > sn = 0 are the singular values of A, then ‖adj(A)‖ = s1s2 · · · sn−1.

The following theorem is a direct generalization of Theorem 2 of [19].

Theorem 9. Let P (λ) be a matrix polynomial as in (1) with spectrum σ(P ) =
{λ1, λ2, . . . , λnm}, counting algebraic multiplicities. If λi is a simple eigenvalue, then

k(P, λi) =
w(|λi|) ‖adj(P (λi))‖

|detAm| ∏

j 6=i |λj − λi|
.

Proof. For the simple eigenvalue λi ∈ σ(P ), consider a singular value decomposition
of matrix P (λi),

P (λi) = U ΣV ∗ = Udiag{s1, . . . , sn−1, 0}V ∗.

Then we have
[

U∗ 0
0 In(m−1)

] [

P (λi) 0
0 In(m−1)

] [

V 0
0 In(m−1)

]

=

[

Σ 0
0 In(m−1)

]

,

and Lemma 6 implies

[

V 0
0 In(m−1)

]

adj

([

Σ 0
0 In(m−1)

])[

U∗ 0
0 In(m−1)

]

(12)

= det(U∗V ) adj

([

P (λ0) 0
0 In(m−1)

])

,

where |det(U∗V )| = 1.

12



Let un, vn ∈ C
n be the last columns of U and V , respectively, i.e., they are left and

right singular vectors of the zero singular value of P (λi). Then by Lemma 7, yi = un

and xi = vn are left and right unit eigenvectors of λi ∈ σ(P ), respectively. Let also
ψi and χi be the associated left and right eigenvectors of CP for the eigenvalue λi

given by (7). Then by (8), [19, Theorem 2], Lemma 6, (2) and (12) (applied in this
specific order), it follows

k(P, λi) =
w(|λi|)

‖χi‖ ‖ψi‖
k(CP , λi)

=
w(|λi|)

‖χi‖ ‖ψi‖
‖adj(λiI − CP )‖
∏

j 6=i |λj − λi|

=
w(|λi|)

‖χi‖ ‖ψi‖
‖F (λi) adj(E(λi)(λiI − CP )F (λi))E(λi)‖

|det(F (λi)E(λi))|
∏

j 6=i |λj − λi|

=
w(|λi|)

‖χi‖ ‖ψi‖

∥

∥

∥

∥

F (λi) adj

([

P (λi) 0
0 In(m−1)

])

E(λi)

∥

∥

∥

∥

|det(F (λi)E(λi))|
∏

j 6=i |λj − λi|

=
w(|λi|)

‖χi‖ ‖ψi‖

∥

∥

∥

∥

F (λi)

[

V 0
0 In(m−1)

]

adj

([

Σ 0
0 In(m−1)

]) [

U∗ 0
0 In(m−1)

]

E(λi)

∥

∥

∥

∥

|detAm| ∏

j 6=i |λj − λi|
.

Thus,

k(P, λi) =
w(|λi|) ‖G‖

‖χi‖ ‖ψi‖ |detAm| ∏

j 6=i |λj − λi|
, (13)

where

G = F (λi)

[

V 0
0 In(m−1)

]

adj

([

Σ 0
0 In(m−1)

])[

U∗ 0
0 In(m−1)

]

E(λi).

Moreover,

adj

([

Σ 0
0 In(m−1)

])

=

[

S 0
0 0n(m−1)

]

,

where S = s1s2 · · · sn−1diag{0, . . . , 0, 1}. As a consequence, the matrix G is written

G = F (λi)

[

V 0
0 In(m−1)

] [

S 0
0 0n(m−1)

] [

U∗ 0
0 In(m−1)

]

E(λi)

= F (λi)

[

V SU∗ 0
0 0n(m−1)

]

E(λi)

=











V S U∗ 0 · · · 0
λiV S U

∗ 0 · · · 0
...

...
. . .

...

λm−1
i V S U∗ 0 · · · 0











E(λi)

= s1s2 · · · sn−1











vnu
∗
n 0 · · · 0

λivnu
∗
n 0 · · · 0

...
...

. . .
...

λm−1
i vnu

∗
n 0 · · · 0











E(λi)
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= s1s2 · · · sn−1











xiy
∗
i 0 · · · 0

λixiy
∗
i 0 · · · 0

...
...

. . .
...

λm−1
i xiy

∗
i 0 · · · 0











E(λi)

= s1s2 · · · sn−1











xiy
∗
iE1(λi) · · · xiy

∗
iEm(λi)

λixiy
∗
iE1(λi) · · · λixiy

∗
iEm(λi)

...
. . .

...

λm−1
i xiy

∗
iE1(λi) · · · λm−1

i xiy
∗
iEm(λi)











= s1s2 · · · sn−1











xi

λixi
...

λm−1
i xi





















E1(λi)
∗yi

E2(λi)
∗yi

...
Em(λi)

∗yi











∗

= s1s2 · · · sn−1 (χi ψ
∗
i ).

Hence, by (13) and Lemma 8, it follows

k(P, λi) =
w(|λi|) (s1s2 · · · sn−1) ‖χi ψ

∗
i ‖

‖χi‖ ‖ψi‖ |detAm| ∏

j 6=i |λj − λi|
=

w(|λi|) ‖adj(P (λi))‖
|detAm| ∏

j 6=i |λj − λi|
‖χi ψ

∗
i ‖

‖χi‖ ‖ψi‖
.

Since ‖χi ψ
∗
i ‖ = ‖χi‖ ‖ψi‖ , the proof is complete.

The next corollary follows readily.

Corollary 10. Let P (λ) be a matrix polynomial as in (1) with spectrum σ(P ) =
{λ1, λ2, . . . , λnm}, counting algebraic multiplicities. If λi is a simple eigenvalue of
P (λ) with yi, xi ∈ C

n associated left and right unit eigenvectors, respectively, then

min
j 6=i

|λj − λi| ≤
(

w(|λi|) ‖adj(P (λi))‖
k(P, λi) |detAm|

) 1

nm−1

=

( |y∗i P ′(λi)xi| ‖adj(P (λi))‖
|detAm|

) 1

nm−1

.

Moreover, if the vector [P ′(λ0)]
∗y0 is not a scalar multiple of x0, then

dist(P, λi) ≤ c(P ′(λi)) ‖P (λi)‖ |detAm|

w(|λi|) ‖adj(P (λi))‖
(

‖y∗i P ′(λi)‖2 − |y∗i P ′(λi)xi|2
)1/2

∏

j 6=i

|λj − λi|.

It is remarkable that for the simple eigenvalue λi ∈ σ(P ), Theorem 9 and the
definition (5) yield

∣

∣y∗i P
′(λi)xi

∣

∣ =
|detAm| ∏

j 6=i |λj − λi|
‖adj(P (λi))‖

6= 0 (‖xi‖ = ‖yi‖ = 1) .

Thus, Proposition 3 follows as a corollary of Theorem 9, and the size of the an-
gle between the vectors [P ′(λi)]

∗yi and xi is partially expressed in algebraic terms
such as determinants and eigenvalues. Note also that λi is relatively close to some
other eigenvalues of P (λ) if and only if k(P, λi) is sufficiently greater than the quan-
tity w(|λi|) ‖adj(P (λi))‖ |detAm|−1. Furthermore, the condition number k(P, λi) is
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relatively large (and λi is an ill-conditioned eigenvalue) if and only if the product
∏

j 6=i |λj − λi| is sufficiently less than w(|λi|) ‖adj(P (λi))‖ |detAm|−1.
To illustrate numerically the latter remark, consider the matrix polynomial

P (λ) =

[

0.001 0
0 1

]

λ2 +

[

−0.003 0
0 −7

]

λ+

[

0.002 0.001
0 12

]

with (well separated) simple eigenvalues 1, 2, 3 and 4, and set w0 = w1 = w2 = 1.
Then it is straightforward to see that for the eigenvalues λ = 1 and λ = 2,

k(P, 1) ∼= 3000, |2 − 1| |3 − 1| |4 − 1| = 6 and
w(1) ‖adj(P (1))‖

|detAm|
∼= 18000,

and

k(P, 2) ∼= 7000, |1 − 2| |3 − 2| |4 − 2| = 2 and
w(2) ‖adj(P (2))‖

|detAm|
∼= 14000.

On the other hand, for the eigenvalue λ = 4, we have

k(P, 4) ∼= 21.2897, |1 − 4| |2 − 4| |3 − 4| = 6 and
w(4) ‖adj(P (4))‖

|detAm|
∼= 127.738.
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Figure 2: The boundaries ∂σε(P ) for ε = 5 · 10−5, 10−4, 2 · 10−4.

The left part of Figure 2 indicates the boundaries of the pseudospectra σε(P ) for
ε = 5 · 10−5, 10−4, 2 · 10−4. The eigenvalues of P (λ) are marked with +’s. The small
components of σ5·10−5(P ), σ10−4(P ) and σ2·10−4(P ) that correspond to the eigenvalue
λ = 4 are not visible in the left part of the figure, and they are magnified in the right
part. Note that these components almost coincide with circular discs centered at
λ = 4 of radii k(P, 4) ε, ε = 5 · 10−5, 10−4, 2 · 10−4, as expected from Proposition 1.
It is also apparently confirmed that the eigenvalue λ = 2 is more sensitive than the
eigenvalue λ = 1 (more particularly, one may say that the eigenvalue λ = 2 is more
than twice as sensitive as λ = 1), and that both of them are much more sensitive
than the eigenvalue λ = 4.
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6 An Elsner-like bound

In this section, we apply the Elsner technique [7] (see also [21]) to obtain a perturba-
tion result for matrix polynomials. This technique allows large perturbations, yielding
error bounds, and it does not distinguish between ill-conditioned and well-conditioned
eigenvalues.

Theorem 11. Consider a matrix polynomial P (λ) as in (1) and a perturbation
Q(λ) ∈ B(P, ε,w) as in (3). For any µ ∈ σ(Q)\σ(P ), it holds that

min
λ∈σ(P )

|µ− λ| ≤
(

εw(|µ|)
|detAm|

) 1

mn

‖P (µ)‖1− 1

mn .

Proof. Let σ(P ) = {λ1, λ2, . . . , λnm}, counting algebraic multiplicities, and suppose
µ ∈ σ(Q)\σ(P ). Then

min
λ∈σ(P )

|µ− λ|nm ≤
nm
∏

i=1

|µ− λi| =
|detP (µ)|
|detAm| .

Let now U = [u1 u2 · · · un ] be an n × n unitary matrix such that Q(µ)u1 = 0. By
Hadamard’s inequality [21] (see also [22, Theorem 2.4]), it follows

min
λ∈σ(P )

|µ− λ|nm ≤ |detP (µ)|
|detAm| =

|detP (µ)| |detU |
|detAm|

≤ 1

|detAm|

nm
∏

i=1

‖P (µ)ui‖

=
1

|detAm| ‖P (µ)u1‖
nm
∏

i=2

‖P (µ)ui‖

=
1

|detAm| ‖P (µ)u1 −Q(µ)u1‖
nm
∏

i=2

‖P (µ)ui‖

≤ 1

|detAm| ‖∆(µ)u1‖ ‖P (µ)‖nm−1

≤ ε w(|µ|)
|detAm| ‖P (µ)‖nm−1 ,

and the proof is complete.

Recently, the classical Bauer-Fike Theorem [2, 22] has been generalized to the
case of matrix polynomials [5]. Applying the arguments of the proof of Theorem 4.1
in [5], it is easy to verify the “weighted version” of the result.

Theorem 12. Consider a matrix polynomial P (λ) as in (1) and a perturbation
Q(λ) ∈ B(P, ε,w) as in (3), and let (X, J, Y ) be a Jordan triple of P (λ). For any µ ∈
σ(Q)\σ(P ), it holds that min

λ∈σ(P )
|µ− λ| ≤ max

{

ϑ, ϑ1/p
}

, where ϑ = p k(P ) εw(|µ|)
and p is the maximum dimension of the Jordan blocks of J .
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To compare these two bounds, we consider the matrix polynomial

P (λ) = Iλ3 +

[

0
√

2√
2 0

]

λ2 +

[

0 −1
1 0

]

λ

(see [5, Example 1] and [9, Example 1.5]) with detP (λ) = λ2(λ + 1)2(λ − 1)2. A
Jordan triple (X, J, Y ) of P (λ) is given by

X =

[

1 0 −
√

2 + 1
√

2 − 2
√

2 + 1
√

2 + 2
0 1 1 0 1 0

]

, J =

















0 0 0 0 0 0
0 0 0 0 0 0
0 0 1 1 0 0
0 0 0 1 0 0
0 0 0 0 −1 1
0 0 0 0 0 −1

















and Y T =
1

4

[

0 −4
√

2 + 2 −
√

2 − 1 −
√

2 + 2 −
√

2 + 1
4 0 0 1 0 −1

]

.

The associated condition number of the eigenproblem of P (λ) is k(P ) = 6.4183. For
ε = 0.3 and w = {w0, w1, w2, w3} = {0.1, 1, 1, 0}, the matrix polynomial

Q(λ) = Iλ3 +

[

i 0.3
√

2√
2 −i 0.3

]

λ2 +

[

0 −0.7
0.7 0

]

λ+

[

0.01 0
0 0.03

]

lies on the boundary of B (P, 0.3,w) and has µ = 0.5691 + i 0.0043 as an eigenvalue.
Then min

λ∈σ(P )
|µ− λ| = |0.5691 + i 0.0043 − 1| = 0.4309, the upper bound of Theorem

11 is 0.8554, and the upper bound of Theorem 12 is 3.8240.
It is clear that the Elsner-like upper bound is tighter than the upper bound of

Theorem 12 when ‖P (µ)‖ is sufficiently small; this is the case in the above example,
where ‖P (0.5691 + i 0.0043)‖ = 1.0562. In particular, if we define the quantity

Ω(P, ε, µ) =

{ |detAm| (p k(P ))mn (εw(|µ|))mn−1, when p k(P ) εw(|µ|) ≥ 1

|detAm| (p k(P ))
mn
p (εw(|µ|))

mn
p

−1
, when p k(P ) εw(|µ|) < 1

,

then it is straightforward to see that the bound of Theorem 11 is better than the

bound of Theorem 12 if and only if ‖P (µ)‖ < Ω(P, ε, µ)
1

mn−1 .
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