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Important information

The course takes place every Tuesday 12–14 @ MA 744

The website of the course is:
http://page.math.tu-berlin.de/~papapan/

StochasticAnalysisJP.html

and contains a course description, recommended literature,
and other material related to the course (e.g. links, videos)

Lecture notes will be posted on the website during the
semester (weekly basis).

My e-mail is papapan@math.tu-berlin.de

and my office is MA 703

Office hours: Monday 11:00–12:00

There are 5 ECTS-points for the course (oral examination)
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Overview of the course

Part I: Introduction to Lévy processes

Definition and preliminary examples of Lévy processes

infinitely divisible laws

the Lévy–Khintchine formula and the Lévy–Itô decomposition

elementary operations on Lévy processes (time-change, projection)

moments and martingales

Part II: Stochastic calculus for jump processes

Stochastic integration wrt semimartingales

Itô’s formula for general semimartingales

measure transformations and Girsanov’s theorem

stochastic differential equations driven by jump processes

Part III: Applications

mathematical finance: modeling, pricing, hedging, utility
maximization  Seminar “Mathematical Finance”
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Motivation
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Empirical facts from finance I: asset prices ...

... do not evolve continuously, they exhibit jumps or spikes!
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Empirical facts from finance II: asset log-returns ...

... are not normally distributed, they are fat-tailed and skewed!
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Empirical facts from finance III: implied volatilities ...

... are constant neither across strike, nor across maturity!
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Empirical facts from finance IV: “subprime” crisis ...

During the recent crisis:

“The Normal copula model required implied correlations up to
120% to match market prices”.
(Wim Schoutens’ talk @ GOCPS 2008)

“Before the collapse, Carnegie Mellon’s alumni in the industry
were telling me that the level of complexity in the
mortgage-backed securities market had exceeded the
limitations of their models”.
(Steven Shreve “Don’t Blame The Quants” @ forbes.com)

Dependence, and tail dependence, risk where completely
underestimated.
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Lévy processes in finance

Lévy processes provide a convenient framework to model the
empirical phenomena from finance, since

1 the sample paths can have jumps

2 the generating distributions can be fat-tailed and skewed

3 the implied volatilities can have a “smile” shape

4 their dependence structure goes beyond correlation.

Lévy processes serve as

1 models themselves  exponential Lévy models

2 building blocks for models, e.g. time-changed Lévy models
and affine stochastic volatility models.
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Lévy processes in other fields

Lévy processes appear also in:

1 Physics

2 Biology

3 Insurance mathematics

4 Telecommunications

Extensions or applications of Lévy processes:

1 Hilbert and Banach spaces, LCA and Lie groups

2 Quantum Mechanics and Free Probability

3 Lévy-type processes and pseudo-differential operators

4 Branching processes and fragmentation theory
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Definition and toy example
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Definition

Let (Ω,F , (Ft)t≥0,P) be a complete stochastic basis.

Definition

A càdlàg, adapted, real valued stochastic process X = (Xt)t≥0,
with X0 = 0 a.s., is called a Lévy process if:

(L1): X has independent increments, i.e.
Xt − Xs is independent of Fs for any 0 ≤ s < t ≤ T .

(L2): X has stationary increments, i.e.
for any s, t ≥ 0 the distribution of Xt+s − Xt does
not depend on t.

(L3): X is stochastically continuous, i.e.
for every t ≥ 0 and ε > 0:
lims→t P(|Xt − Xs | > ε) = 0.
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An equivalent definition

Let (Ω,F ,P) be a probability space.

Definition

A real valued stochastic process X = (Xt)t≥0, with X0 = 0 a.s., is
called a Lévy process if:

(L1): X has independent increments, i.e.
the random variables Xt0 ,Xt1 − Xt0 , . . . ,Xtn − Xtn−1

are independent, for any n ≥ 1.

(L2): X has stationary increments, i.e.
for any 0 ≤ s ≤ t, Xt − Xs is equal in distribution to
Xt−s .

(L3): X is stochastically continuous, i.e.
for every t ≥ 0 and ε > 0:
lims→t P(|Xt − Xs | > ε) = 0.
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Example 1: linear drift

Xt = bt, ϕXt (u) = exp
(
iubt

)
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Example 2: Brownian motion

Xt = σWt , ϕXt (u) = exp
(
− u2σ2
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Example 3: Poisson process

Xt =
∑Nt

k=1
Jk , Jk ≡ 1 ϕXt (u) = exp

(
tλ(e iu − 1)

)
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Example 4: compensated Poisson process (martingale!)

Xt =
∑Nt

k=1
Jk−tλ = Nt−λt, ϕXt (u) = exp

(
tλ(e iu−1−iu)

)
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Example 5: compound Poisson process

Xt =
∑Nt

k=1
Jk , ϕXt (u) = exp

(
tλ(E [e iuJ − 1])

)
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Example 6: Lévy jump-diffusion

Xt = bt + σWt +
∑Nt

k=1
Jk − λtE [J]
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Characteristic function of the Lévy jump-diffusion

E
[
e iuXt

]
= exp

[
iubt

]
E
[
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(
iuσWt

)]
E
[

exp
(
iu

Nt∑
k=1

Jk − iutλE [J]
)]

= exp
[
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]
exp

[
− 1

2
u2σ2t

]
exp

[
λt
(
E [e iuJ − 1]− iuE [J]

)]
= exp

[
iubt

]
exp

[
− 1

2
u2σ2t

]
exp

[
λt

∫
R

(
e iux − 1− iux

)
F (dx)

]
= exp

[
t
(
iub − u2σ2

2
+

∫
R

(e iux − 1− iux)λF (dx)
)]
.

Observations:

1 Time and space factorize

2 Drift, diffusion and jumps separate

3 Jumps have the decomposition λ× F
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A basic question

Observations:

1 Time and space factorize

2 Drift, diffusion and jumps separate

3 Jumps have the decomposition λ× F (λ = E [# of jumps])

Question

Are these observations always true?

Answers:

1 Yes  stationary increments

2 Yes  independent increments

3 No  infinitely many jumps can occur (in [0, t])
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Aim: the connection between ...

1 Lévy processes

2 infinitely divisible laws

3 Lévy triplets
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Commutative diagram of the relationship between a Lévy process

(Xt)t≥0, the law of the infinitely divisible random variable L(Xt) and the

Lévy triplet (b, c , ν), demonstrating the role of the Lévy–Khintchine

formula and the Lévy–Itô decomposition.
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