
Computational Finance

Christian Bayer, Antonis Papapantoleon, Raul Tempone

Version of June 25, 2018

Contents

1 Introduction 1

2 Monte Carlo simulation 4
2.1 Random number generation . 4
2.2 Monte Carlo simulation . 14

i

Chapter 1

Introduction

One of the goals in mathematical finance is the pricing of derivatives such as options. While there are
certainly also many other mathematically and computationally challenging areas of mathematical
finance (such as portfolio optimization or risk measures), we will concentrate on the problems arising
from option pricing. The techniques presented in this course are also often used in computational
finance in general, as well as in many other areas of applied mathematics, science and engineering.

The most fundamental model of a financial market consists of a probability space pΩ,F , P q, on
which a random variable S is defined. In the simplest case, S is R (or r0,8r) valued and simply
means the value of a stock at some time T . However, S might also represent the collection of all stock
prices St for t P r0, T s. Then S is a random variable taking values in the (infinite-dimensional) path
space, i.e., either the space of continuous functions Cpr0, T s;Rdq or the space of càdlàg functions
Dpr0, T s;Rdq taking values in Rd. Then the payoff function of almost any European option can be
represented as fpSq for some functional f .

Example 1.1. The European call option (on the asset S1) is given by

fpSq “
`

S1
T ´K

˘`
.

Example 1.2. An example of a look-back option, consider the contract with payoff function

fpSq “

ˆ

S1
T ´ min

tPr0,T s
S1
t

˙`

.

Example 1.3. A simple barrier option (down-and-out) could look like this (for the barrier B ą 0):

fpSq “
`

S1
T ´K

˘`
1mintPr0,T s S

1
tąB

.

In all these cases, the problem of pricing the option can therefore be reduced to the problem of
computing

(1.1) E rfpSqs .

Indeed, here we have assumed that we already started with the (or a) risk neutral measure P .
Moreover, if the interest rate is deterministic, then discounting is trivial. For stochastic interest
rates, we may assume that the stochastic interest rate is a part of S (depending on the interest rate
model, this might imply that the state space of the stochastic process St is infinite-dimensional, if
we use the Heath-Jarrow-Morton model, see [5]). Therefore, the option pricing problem can still be
written in the form (1.1) in the case of stochastic interest rates by incorporating the discount factor
in the “payoff function” f .

Of course, we have to assume that X :“ fpSq P L1pΩ,F , P q. Then the most general form of the
option pricing problem is to compute ErXs for an integrable random variable X. Corresponding to

1

this extremely general modeling situation is an extremely general numerical method called Monte-
Carlo simulation. Assume that we can generate a sequence pXiqiPN of independent copies of X.1

Then, the strong law of large numbers implies that

(1.2)
1

M

M
ÿ

i“1

Xi ÝÝÝÝÑ
MÑ8

ErXs

almost surely. Since the assumptions of the Monte-Carlo simulations are extremely weak, we should
not be surprised that the rate of convergence is rather slow: Indeed, we shall see in Section 2.2 that
the error of the Monte-Carlo simulation decreases only like 1?

M
for M Ñ8 in a certain sense – note

that the error will be random. Nevertheless, Monte-Carlo simulation as a very powerful numerical
method, and we are going to discuss it together with several modifications in Chapter 2.

While the assumption that we can generate samples from the distribution of S might seem
innocent, it poses problems in many typical modeling situations, namely when S is defined as the
solution of a stochastic differential equation (SDE). Let

`

Ω,F , pFtqtPr0,T s, P
˘

be a filtered probability
space satisfying the usual conditions. In many models, the stock price St is given as solution of an
SDE of the form

(1.3) dSt “ V pStqdt`
d
ÿ

i“1

VipStqdB
i
t,

where V, V1, . . . , Vd : Rn Ñ Rn are vector fields and B denotes a d-dimensional Brownian motion.
(If we replace the Brownian motion by a Lévy process, we can also obtain jump-processes in this
way.) In general, it is not possible to solve the equation (1.3) explicitly, thus we do not know the
distribution of the random variable X “ fpSq and cannot sample from it. In Chapter ?? we are
going to discuss how to solve SDEs in a numerical way, in analogy to numerical solvers for ODEs
(ordinary differential equations). Then, the option price (1.1) can be computed by a combination of
the numerical SDE-solver (producing samples from an approximation of fpSq) and the Monte-Carlo
method (1.2) (applied to those approximate samples).

If the option under consideration is “Markovian” in the sense that the payoff function only
depends on the value of the underlying at time T , i.e., the payoff is given by fpST q, then the option
price satisfies a partial differential equation (PDE).2 Indeed, let

ups, tq “ E rfpST q|St “ ss ,

and define the partial differential operator L by

Lgpsq “ V0gpsq `
1

2

d
ÿ

i“1

V 2
i gpsq,

s P Rn, where the vector field V is applied to a function g : Rn Ñ R giving another function
V gpsq :“ ∇gpsq ¨ V psq from Rn to R and V 2

i gpsq is defined by applying the vector field Vi to the
function Vig. Moreover, we have

V0pxq :“ V pxq ´
1

2

d
ÿ

i“1

DVipxq ¨ Vipxq,

with DV denoting the Jacobian matrix of the vector field V . Then we have (under some rather mild
regularity conditions)

(1.4)

$

&

%

B

Bt
upt, sq ` Lupt, sq “ 0,

upT, sq “ fpsq.

1By this statement we mean that we have a random number generator producing (potentially infinitely many)
random numbers according to the distribution of X, which are independent of each other.

2In fact, we can find such PDEs in much more general situations!

2

Therefore, another approach to solve our option pricing problem in a numerical way is to use the
well-known techniques from numerics of PDEs, such as the finite difference or finite element methods.
We will present the finite difference method in Section ??. We note that a similar partial differential
equation also holds when the SDE is driven by a Lévy process. Then the partial differential operator
L is non-local, i.e., there is an integral term. Note that there are also finite difference and finite
element schemes for the resulting partial integro-differential equations, see [3] and [10], respectively.

There is a very fast, specialized method for pricing European call options (and certain similar
options) on stocks ST , such that the characteristic function of logpST q is known (we take ST to be
one-dimensional). This condition is actually satisfied in quite a large class of important financial
models. Let φT denote the characteristic function of logpST q and let CT “ CT pKq denote the price
of the European call option with strike price K. Moreover, we denote its Fourier transform by ĈT .
Then

ĈT pµq “
φT pµ´ iq

iµ´ µ2
,

i.e., we have an explicit formula for the Fourier transform of the option price.3 Now we only need to
compute the inverse Fourier transform, which is numerically feasible because of the FFT-algorithm.

Unfortunately, most options encountered in practise are American options, and the above treated
methods do not directly apply for American options. Indeed, the pricing problem for an American
option is to find

(1.5) sup
τďT

E rfpSτ qs ,

where τ ranges through all stopping times in the filtered probability space. So, it is not obvious how
to apply any of the methods presented above. We will discuss one numerical method for American
options in detail and hint at some modifications of the standard methods suitable for computing
prices of American options, see Section ??

The book of Glasserman [5] is a wonderful text book on Monte Carlos based methods in com-
putational finance, i.e., it covers Chapter 2 and Chapter ?? in great detail. On the other hand,
Seydel [16] does also treat Monte Carlo methods, but concentrates more on finite difference and
element methods. Wilmott [19] is a very popular, easily accessible book on quantitative finance. It
covers many of the topics of the course, but the level of mathematics is rather low. For the pre-
requisites in stochastic analysis, the reader is referred to Øksendal [13] for an introduction of SDEs
driven by Brownian motion. Cont and Tankov [2] is the text book of choice for Lévy processes, and
Protter [14] treats stochastic integration and SDEs in full generality.

3For integrability reasons, the above formula is not true. Indeed, we have to dampen the option price, introducing
a damping parameter. For the precise formulation, see Section ??.

3

Chapter 2

Monte Carlo simulation

2.1 Random number generation

The key ingredient of the Monte Carlo simulation is sampling of independent realizations of a given
distribution. This poses the question of how we can obtain such samples on a computer. We will
break the problem into two parts: First we try to find a method to get independent samples from
a uniform distribution (on the interval s0, 1r), then we discuss how to get samples from general
distributions provided we know how to sample the uniform distribution.

Uniform pseudorandom numbers

Computers do not know about randomness, so it is rather obvious that we cannot get truly random
numbers if we trust a computer to provide them for us. Therefore, the numbers produced by a
random number generator (RNG) on a computer are often referred to as pseudorandom numbers. If
the “random” numbers, say, u1, u2, . . . produced by a random number generator, are not random but
deterministic, they cannot really be realizations of a sequence U1, U2, . . . of independent, uniformly
distributed random variables. So what do we actually mean by a random number generator? More
precisely, what do we mean by a good random number generator?

Remark 2.1. Even though the questions raised here are somehow vague, they are really important
for the success of the simulation. Bad random number generators can lead to huge errors in your
simulation, and therefore must be avoided. Unfortunately, there are still many bad random number
generators around. So you should rely on “standard” random number generators which have been
extensively tested. In particular, you should not use a random number generator of your own.
Therefore, the goal of this section is not to enable you to construct and implement a random
number generator, but rather to make you aware of a few issues around random number generation.

Before coming back to these questions, let us first note that a computer usually works with
finite arithmetic. Therefore, there is only a finite number of floating point numbers which can
be taken by the stream random numbers u1, u2, Therefore, we can equivalently consider a
random string of integers i1, i2, . . . taking values in a set t0, . . . ,mu with ul “ il{m.1 Then the
uniform random number generator producing u1, u2, . . . is good, if and only if the random number
generator producing i1, i2, . . . is a good random number generator for the uniform distribution on
t0, 1, . . . ,m´1u. Of course, this trick has not solved our problems. For the remainder of the section,
we study the problem of generating random numbers i1, i2, . . . on a finite set t0, 1, . . . ,m´ 1u.

Formally, a random number generator can be defined as follows, see L’Ecuyer [7]:

Definition 2.2. A random number generator is a structure pX,x0, T,G, t0, 1, . . . ,m ´ 1uq where
X is a finite set (the state space), x0 P X is the initial state (the seed), T : X Ñ X is a transition

1Integer is here used in its mathematical meaning not in the sense of a data type.

4

function, and G : X Ñ t0, . . . ,m ´ 1u is the output function. Given a random number generator,
the pseudorandom numbers are computed via the recursion

xl “ T pxl´1q and il :“ Gpxlq for l “ 1, 2,

Remark 2.3. There is an immediate unfortunate consequence of this definition: since X is finite,
the sequence of random numbers pilq must be periodic. Indeed, there must exist an index ` such
that x` “ xl for some l ă `. This implies that x``1 “ xl`1 and so forth. Note that this index ` can
occur much later than the first occurrence of ik “ ik1 for some k1 ă k! Nonetheless, Definition 2.2
arguably contains all possible candidates for good random number generators.

The following criteria for goodness have evolved in the literature on random number generators,
see L’Ecuyer [7], L’Ecuyer et al. [8], and Glasserman [5]:

Statistical uniformity: The sequence of random numbers i1, i2, . . . produced by the generator
for a given seed should be hard to distinguish from truly random samples from the uniform
distribution on t0, . . . ,m´ 1u. This basically means that no computationally feasible statisti-
cal test for uniformity should be able to distinguish pilqlPN from a truly random sample. The
restraint to computationally feasible tests is important: since we know that the sequence is
actually deterministic (even periodic), it is easy to construct tests which can make the dis-
tinction. (The trivial test would be to wait for the period; then we see that the pseudorandom
sequence repeats itself.) The requirement of statistical uniformity basically means that we
cannot guess the next number il`1 given only the previously realized numbers i1, . . . , il, at
least not better than by choosing at random among t0, . . . ,m´1u, if we assume that we do not
know the algorithm.2 Note that by statistical uniformity we require more than just uniformity
of the one-dimensional marginals. Indeed, for any dimension d we require that sequences of
d-dimensional outputs are difficult to distinguish from truly random sequences according to
the uniform distribution on t0, . . . ,m´ 1u

d
. Of course, this property would be a consequence

of independence of the numbers i1, i2,

Theoretical support: Many properties of random number generators, like the period length and
the lattice structure (or hyperplane property), can be studied at a theoretical level; see e.g the
remarks below about linear congruential generators). RNGs with strong theoretical support
should be used and the others should be avoided. In principle, the optimal approach in choosing
random number generators is to first screen their theoretical properties and then submit to
empirical tests those with convincing theoretical support.

Speed: In modern applications, a lot of random numbers are needed. In molecular dynamics sim-
ulations for example, up to 1018 random numbers might be used (during several months of
computer time). In finance, most applications do not require more than, say, 106 random num-
bers. However, the generation of random numbers is often the bottleneck during a simulation.
Therefore, it is very important that the RNG is fast.

Period length: If we need 1018 random numbers, then the period length of the RNG must be at
least as high. In fact, usually the quality of randomness deteriorates well below the actual
period length. As a rule of thumb it has been suggested that the period length should be one
order of magnitude larger than the square of the number of values used; cf. Ripley [15].

Reproducibility: In order to debug code, for instance, it is very convenient to have a way of
exactly reproducing a sequence of random numbers generated before. (By setting the seed
this is, of course, possible for any RNG satisfying Definition 2.2.)

Portability: The RNG should be portable to different computers. Reliable implementations should
be available for different operating systems and various programming languages.

2There is a stronger notion of cryptographic security which requires that we cannot guess il`1 even if we are
intelligent in the sense that we do know and use the RNG. In essence, cryptographic security thus means that we
cannot compute the state xl from i1, . . . , il. While this property is essential in cryptography, it is not important for
Monte Carlo simulations.

5

Jumping ahead: By “jumping ahead” we mean the possibility to quickly get to the state xl`n
given the state xl for large n (i.e., without having to generate all the states inbetween). This
is important for parallelization.

How do RNGs implemented on the computer actually look like? The prototypical class of RNGs
are linear congruential generators (LCG). In the class of LCGs, the state space is X “ t0, . . . ,m´1u,
the output function is the identity function xl “ il and the transition map is provided by

(2.1) xl`1 “ paxl ` cq mod m.

Remark 2.4. Linear congruential generators are very well analyzed from a theoretical point of
view, see Knuth [6]. For instance, we know that the RNG (2.1) has full period (i.e., the period
length is m) if c ‰ 0 and the following conditions are satisfied:

• c and a are relatively prime,

• every prime number dividing m also divides a´ 1,

• if m is divisible by 4 then so is a´ 1.

Nonetheless, it should be stressed that a high period is only one of the many requirements identified
above. In particular, the requirement of statistical uniformity is very hard to analyse by theoretical
tools alone. The choice of parameters a, c, m of an LCG is a largely empirical task, where suites of
statistical tests are run on large sequences of pseudo-random numbers.

Source m a c
Numerical Recipes 232 1664525 1013904223
glibc (GCC) 232 1103515245 12345
Microsoft C/C++ 232 214013 2531011
Apple Carbonlib 231 ´ 1 16807 0
Java 248 25214903917 11

Table 2.1: List of linear congruential RNGs as reported in [18].

Table 2.1 presents a list of linear congruential RNGs used in prominent libraries. Note that
m “ 232 is popular, since computing the remainder of a power of 2 in base-2 only means truncating
the representation.

We conclude this discussion by pointing out a common weakness of all linear congruential RNGs.
Fix d ě 1 and consider the sequence of vectors pil, il`1, . . . , il`d´1q indexed by l P N. Note that for
every l the truly random vector pIl, . . . , Il`d´1q is uniformly distributed on the set t0, . . . ,m´ 1ud.
On the other hand, the pseudorandom vectors generated by linear congruential RNGs fail in that
regard: they tend to lie on a (possibly) small number of hyperplanes in the hypercube t0, . . . ,m´1ud;
see Figure 2.1 for an example in d “ 2. It has been proved that they can lie at most on pd!mq1{d

hyperplanes, but often the actual figure is much smaller.
One of the most popular modern random number generators as of today is the Mersenne Twister

algorithm3. This RNG produces 32-bit integers, the state space is F19968
2 (in its most popular

version), where F2 denotes the finite field of size two, and the period is 219937 ´ 1. It is not a linear
congruential generator, but the basis of the transformation map T is a linear map in X – with
additional transformations, though. Note that in this case, the size of the state space (219968) is
much larger than the m “ 232.

Let us finally comment on the parallel generation of random numbers. As we shall see later in
Chapter 2, it is often desirable or even necessary to have the possibility to generate random numbers
on many cores in parallel. Indeed, as a general trend in computing one can observe that computers
are generally no longer accelerated by making processors ever faster, but instead by adding multiple

3Available at http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt.html.

6

http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt.html

Figure 2.1: Hyperplane property for the linear congruential generator with a “ 16807, c “ 0,
m “ 231 ´ 1. On the left, we have plotted 2 000 000 points pui, ui`1q, on the right 3000 pairs (i.e.,
6000 random numbers plotted as pairs).

cores. This is especially true in graphics processors, where typical GPUs (graphical processing units)
installed on average computers have dozens or even hundreds of cores, which are increasingly used
also for general numerical purposes. In fact, vendors of GPUs are actively promoting these new
applications; see e.g. NVIDIA [12]. 4 To cite L’Ecuyer et al. [8]:

In highly parallel systems, one may need thousands or even millions of virtual RNGs
which [. . .] run in parallel without exchanging data between one another, and behave
from the user’s viewpoint just like independent RNGs.

Before continuing, let us have a very cursory look at parallelization in general. Let us consider
a simple program, which runs as a single process on the computer. Such a process can now start
different threads which behave like processes of their own in as much as they can be executed on
different cores in parallel, but have the big distinction that all the threads within a process share
the same memory. This allows them to work with the same data and even use the output of other
threads. As a simple example, think of a for-loop adding all the numbers stored in a very large array
a (of size n): a natural parallelization would be to start l threads each summing up n{l (distinct)
numbers (say, thread 1 computes ar0s` ¨ ¨ ¨`arn{l´1s, thread 2 computes arn{ls` ¨ ¨ ¨`ar2n{l´1s,
. . .), which are finally added to form the total sum. Hence, shared memory is necessary for successful
parallelization, but it comes with a danger as different threads my end up using the same chunk of
memory in incompatible ways. In general, problems come in the form of a race-condition, when the
output of a process depends on the timing of threads within it, which produces a bug when this
timing is different from the one anticipated by the programmer.

Example 2.5. As an example we consider the following highly simplified (and artificial) example
in the context of RNGs. Let us assume we have one thread (thread 1), which runs an RNG and
puts a random number into a double variable x. Whenever another thread accesses x, thread 1 will
produce a new random number, which is again stored in x. We further have two threads (thread 2
and 3) which use random numbers produced by thread 1 for simulation. Now the intended sequence
of events is that, say, thread 2 picks up the random number stored in x, then thread 1 updates x,
and then thread 3 picks up the updated number in x. But in the absence of safety mechanisms, it
could be that thread 3 is too fast, i.e., it accesses x already when thread 1 has not yet updated x,
resulting in threads 2 and 3 using the same random number instead of independent ones.

4One limitation of GPUs as compared to classical CPUs is the rather small amount of rapidly accessible memory,
which puts real restraints on the size of the seed or the dimensionality of the state space in an RNG context.

7

These problems mainly occur because developers for many decades were not concerned with
parallel execution of code, which only became mainstream in the ’90s. Thread-safety is the absence
of any kind of race conditions, guaranteeing the safe execution of parallelized code. It is always
important to check whether libraries or other pieces of code used in a parallel program are thread-
safe!

Now, how can we generate parallel streams of random numbers? Let us describe several possible
ways, along with their advantages and drawbacks:

• Use a central source of randomness for all threads, i.e., one thread produces all the random
numbers for all other threads. As random number generation is often a bottleneck for appli-
cations (especially in a Monte Carlo framework) and data exchange between different threads
is often the bottleneck in parallelization, this simple method is typically not acceptable.

• Use different RNGs for different threads, i.e., either truly different RNGs or the same class
of RNGs but with different parameters. This requires one to have many good parameters /
good RNGs available, and, besides, even if parameters / RNGs are individually good, their
combination may fail the independence requirement. Hence, any such combination needs to
be tested statistically, which makes it cumbersome to use this method for an arbitrary (high)
number of streams.

• Use a single RNG split into equally-spaced blocks. Say we know that we have n threads which
all may require (at most) ν random numbers. We use our favorite RNG with seed x0 for thread
1. We jump ahead to step ν and use the RNG with seed xν for thread 2. In the same way, each
thread uses the same RNG with seeds obtained by jumping ahead ν steps from the seed used
by the previous thread. From a theoretical point of view, this method is most satisfactory,
since good statistical properties of the RNG used imply good statistical properties of the
sequence of streams constructed in that way. However, good RNGs can only be used for this
method when they allow for rapid jumping-ahead. As in most varieties of RNGs the transition
function T has the form of a matrix multiplication (say with a matrix A), this means that
there must be a rapid way of computing Aν , which is often not possible, especially if the state
space X is extremely high-dimensional, such as in the case of the Mersenne Twister. Hence, it
may be simpler to use an RNG constructed by the combination of two simpler RNGs defined
on relatively low-dimensional state spaces. We refer to L’Ecuyer et al. [8] for references on
good RNGs and suitable implementations for this purpose.

• Use one RNG with random seeds. If we have a good RNG with very high period, but bad
jumping-ahead capability like the Mersenne Twister, then we may want to use n copies of
the RNG with n seeds drawn from the state space X with the help of another RNG. While
overlaps between the different streams are possible, they are extremely unlikely. Indeed, if the
period of the RNG is ρ, then the probability of an overlap is approximately p1 ´ nν{ρqn´1.
For instance, L’Ecuyer et al. [8] report that this probability is close to 2´964 when l “ ν “ 220

and ρ “ 21024. An added benefit of this method is that it is applicable when the number of
random streams is not known beforehand, for instance because new random streams need to
be generated depending on random events.

Finally, let us note that reproducibility may become an issue with parallelization, as the orga-
nization of threads and the assignment of tasks to a thread may be determined at execution time
and may differ between two different executions. Hence, it may be advisable to assign streams at an
abstract level, i.e., to distinct computational tasks instead of individual threads, the number and
speed of execution of which may be hard to predict for the programmer.

Non-uniform random numbers

In many applications, we do not need uniform random numbers, but random numbers from another
distribution. In the Black-Scholes model for instance, the stock price has the following dynamics:

ST “ S0 exp

ˆ

σBT `

ˆ

µ´
1

2
σ2

˙

T

˙

.

8

Therefore, the stock price ST has a log-normal distribution, while BT has a normal distribution.
Thus, there are two ways to sample the stock price: we can either sample from the log-normal or
from the normal distribution.

For the rest of this section, and indeed, the whole text, we assume that we are given a perfect (i.e.,
truly random) RNG producing a sequence U1, U2, . . . of independent Ups0, 1rq-distributed random
numbers. We will present some general techniques to produce samples from other distributions, and
then some specialized methods for generating normal (Gaussian) random numbers. An exhaustive
treatment of random number generation can be found in the classical book of Devroye [4].

We start with a well-known result from probability theory, which readily implies the first general
method for random number generation.

Proposition 2.6. Let F be a cumulative distribution function and define

F´1puq :“ inf t x | F pxq ě u u .

Given a uniform random variable U , the random variable X :“ F´1pUq has the distribution function
F .

Proof. By definition of F´1 we have F´1puq ď x ðñ F pxq ě u, therefore

P pX ď xq “ P pF´1pUq ď xq “ P pU ď F pxqq “ F pxq.

Proposition 2.6 is the basis of Algorithm 2.7.

Algorithm 2.7 (Inversion method). Given F´1 and U „ Ups0, 1rq, return X “ F´1pUq.

Example 2.8. The exponential distribution with parameter λ ą 0 has the distribution function
F pxq “ 1 ´ e´λx, which is explicitly invertible with F´1puq “ ´ 1

λ logp1 ´ uq. Thus, using the fact
that 1´U is uniformly distributed if U is, we can generate samples from the exponential distribution
by

X “ ´
1

λ
logpUq.

Remark 2.9. If an explicit formula for the distribution function F is available, but not for its
inverse F´1, we can try to use numerical inversion. Of course, this results in random numbers,
which are samples from an approximation of the distribution F only. Nevertheless, if the error
is small and/or the inversion can be done efficiently, this method might be competitive even if
more direct, “exact” methods are available.5 For instance, approximations of the inverse of the
distribution function Φ of the standard normal distribution have been suggested for the simulation
of normal random variables, see Glasserman [5].

Remark 2.10. The transparent relation between the uniform random numbers U1, . . . , Ul and the
transformed random numbers X1, . . . , Xl (with distribution F) underlying the inversion method
allows to translate many structural properties on the level of the uniform random numbers to cor-
responding properties for the transformed random numbers. For instance, if we want the random
numbers X1, . . . , Xl to be correlated, we can choose the uniforms to be correlated. Another exam-
ple is the generation of the maximum X˚ :“ maxpX1, . . . , Xlq. Apart from the obvious solution
(generating X1, . . . , Xl and finding their maximum), there are also two other possible methods for
generating X˚ based on the inversion method:

• Since X˚ has the distribution function F l, we can compute a sample from X˚ by pF lq´1pU1q.
Efficiency of this method depends on the tractability of F l.

• Let U˚ “ maxpU1, . . . , Ulq. Then, using the monotonicity of F´1, X˚ “ F´1pU˚q. Since we
only have to do one inversion instead of l, this method is usually much more efficient than the
obvious method.

5We should note that many elementary functions like exp and log cannot be evaluated exactly on a computer.
Therefore, one might argue that even the simple inversion situation of Example 2.8 suffers from this defect.

9

• Combining both approaches, we see that the c.d.f. of U˚ is given by xl, 0 ď x ď 1, with inverse

function x1{l. So we obtain one sample from the distribution of U˚ simply by U
1{l
1 , and X˚

has the same distribution as F´1pU
1{l
1 q.

Next we present another general purpose method, which is based on the densities of the distri-
butions involved instead of their distribution functions. More precisely, let g : Rd Ñ r0,8r be the
density of a d-dimensional distribution, from which we can sample efficiently (by whatever method).
We want to sample from another d-dimensional distribution with density f . The acceptance-rejection
method works if we can find a bound c ě 1 such that

(2.2) fpxq ď cgpxq, x P Rd.

Algorithm 2.11 (Acceptence-rejection method). Given an RNG producing independent samples X
from the distribution with density g and an RNG producing independent samples U of the uniform
distribution, independent of the samples X.

1. Generate one instance of X and one instance of U .

2. If U ď fpXq{pcgpXqq return X;6else go back to 1.

Proposition 2.12. Let Y be the outcome of Algorithm 2.11. Then Y has the distribution given by
the density f . Moreover, the loop in the algorithm has to be traversed c times on average.

Proof. By construction, Y has the distribution of X conditioned on U ď
fpXq
cgpXq . Thus, for any

measurable set A Ă Rd, we have

P pY P Aq “ P

ˆ

X P A

ˇ

ˇ

ˇ

ˇ

U ď
fpXq

cgpXq

˙

“
P
´

X P A, U ď fpXq
cgpXq

¯

P
´

U ď fpXq
cgpXq

¯ .

We compute the numerator by conditioning on X, i.e.,

P

ˆ

X P A, U ď
fpXq

cgpXq

˙

“

ż

Rd
P

ˆ

X P A, U ď
fpXq

cgpXq

ˇ

ˇ

ˇ

ˇ

X “ x

˙

gpxqdx

“

ż

A

P

ˆ

U ď
fpxq

cgpxq

˙

gpxqdx “

ż

A

fpxq

cgpxq
gpxqdx

“
1

c

ż

A

fpxqdx.

On the other hand, a similar computation shows that P
´

U ď fpXq
cgpXq

¯

“ 1
c , and together we get

P pY P Aq “

ż

A

fpxqdx.

Moreover, we have seen that the probability that the sample X is accepted is given by 1{c. Since the
different runs of the loop in the algorithm are independent, this implies that the expected “waiting
time” is c, the expectation of a geometric distribution with parameter 1{c.

Naturally, we want c to be as small as possible. That is, in fact, the tricky part of the endeavour.
Exercise 2.2 asks for a method to sample normal random variables starting from the exponential
distribution, which we can sample by Example 2.8.

6Note that P pgpXq “ 0q “ 0.

10

Example 2.13. The double exponential distribution (with parameter λ “ 1) has the density gpxq “
1
2 expp´ |x|q for x P R. Let f “ ϕ denote the density of the standard normal distribution. Then

ϕpxq

gpxq
“

c

2

π
e´

x2

2 `|x| ď

c

2e

π
« 1.315 “: c.

Although the acceptance-rejection algorithm is a very general and exact transformation algo-
rithm, i.e., if fed with truly random numbers it will produce random numbers which are exactly
distributed according to the desired density, it can be quite inefficient if the parameter c is large.
Marsaglia and Tsang [9] have constructed a fast and efficient variant of the importance sampling
algorithm, which is still applicable in the majority of cases. For reasons to become clear later, they
call their algorithm Ziggurat algorithm.

Like in the acceptance-rejection algorithm, the fundamental idea of the Ziggurat algorithm is
based on the principle that sampling from the distribution given by a (say, univariate) density f is
equivalent to sampling a point from the (say, bi-variate) uniform distribution in the area between
0 and the graph of f . The situation would be especially simple if this area was “pyramid” or
“Ziggurat” shaped, i.e., had the form of rectangles (parallel to the abscissa) put on top of each
other. In this case, we could first choose the rectangle at random (according to their respective
volumes) and then we would only have to sample a uniform random number on the lower side of
the rectangle – note that the second coordinate of the chosen random number in R2 does not really
matter for the acceptance-rejection method, as long as it is guaranteed that the two-dimensional
random variate is below the graph of the density. Now the idea of the Ziggurat algorithm is simply
to approximate the area under the graph by such a Ziggurat-shaped polygon using tabulated values
for the respective density, and accompany this by a classical acceptance-rejection method for the
“remainder” of the area.

More precisely, assume we are given a density f : r0,8rÑ r0,8r which is monotonically de-
creasing like the density of the exponential distribution. Moreover, fix some n P N and assume we
aregiven a sequence 0 “ x0 ă x1 ă ¨ ¨ ¨ ă xn such that the following condition holds with yi :“ fpxiq,
i “ 0, . . . , n:

(2.3) xipyi´1 ´ yiq “ xnyn `

ż 8

xn

fpxqdx “: v, i “ 1, . . . , n´ 1.

Obviously, the values x0, . . . , xn depend on the distribution under consideration and on the numer-
ical parameter n. Hence, these values are best treated as pre-computed, tabulated parameters; we
will comment further below.

Equation (2.3) means that the areas of the n´1 rectangles with corners p0, yiq, pxi, yiq, pxi, yi´1q

and p0, yi´1q (denoted by Ri), i “ 1, . . . , n´1, are all equal to v, just as the area of the last rectangle
with corners p0, 0q, pxn, 0q, pxn, ynq and p0, ynq together with the area below the graph f on rxn,8r.
This surface will be denoted by Rn. Moreover, the area below the graph of f is contained in the
surface

Ťn
i“1Ri composed of all the surfaces described above. Furthermore, we assume that we have

a specialized algorithm for sampling from the tail distribution X „ f conditioned on X ą xn. See
also Figure 2.2.

Algorithm 2.14 (Ziggurat algorithm). Goal: Sample a random variable X „ f .

1. Generate i uniform in t1, . . . , nu.

2. If i “ n, go to (6).

3. Generate U1 „ Up0, 1q and set x :“ U1xi.

4. If x ă xi´1 return x.

5. Otherwise, generate U2 „ Up0, 1q and set y :“ yi ` U2pyi´1 ´ yiq. If y ď fpxq return x; else
go back to (1).

6. Generate U1 „ Up0, 1q and set x :“ vU1{yn.

11

x0 = 0 x1 xn−1 xn = r

0
y n

y n
−1

y 1
y 0

Figure 2.2: Ziggurat algorithm

7. If x ă xn, return x. Otherwise, return a sample from the tail distribution X|X ą xn.

Remark 2.15. Most of the time the algorithm stops in step (4), in which case we save one uniform
random number generation and do not even need to evaluate f once. Moreover, it is obvious how
to extend the algorithm to a symmetric or uni-modal distribution.

We round up this discussion with two examples, namely the Ziggurat algorithm for the ex-
ponential and the standard normal distributions. In both cases, the Ziggurat algorithm is highly
competitive in speed.

Example 2.16. For the exponential distribution Expp1q, we can use as tail sample xn ´ logU for
U „ Up0, 1q. For n “ 255 (a typical value), a possible choice of xn is 7.697 . . . implying v “ 0.0039 . . .,
which results in an efficiency of 98.9%, i.e., the probability of needing only one iteration of the
algorithm to produce one sample of the target distribution is 98.9%.

Example 2.17. For the standard normal distribution N p0, 1q, for n “ 255, a possible choice of xn

12

is 3.65 . . . implying v “ 0.0049 . . ., which results in an efficiency of 99.33%. [9] suggest the following
algorithm for sampling from the tail distribution:

1. Generate U1, U2 „ Up0, 1q.

2. Set x :“ ´ logpU1q{xn, y :“ ´ logU2.

3. If 2y ą x2, return x` xn, else go back to (1).

We conclude this section by presenting two methods designed specifically for generating standard
normal random numbers. The Box–Muller method and the polar method are probably two of the
simplest such methods, although not the most efficient ones. A comprehensive list of random number
generators specifically available for Gaussian random numbers is available in the survey article by
Thomas et al. [17].

Algorithm 2.18 (Box–Muller method). 1. Generate two independent uniform randoms num-
bers U1, U2;

2. Set θ “ 2πU2, ρ “
a

´2 logpU1q;

3. Return two independent standard normals X1 “ ρ cospθq, X2 “ ρ sinpθq.

Algorithm 2.19 (Polar method). 1. Generate two independent uniform random numbers U1, U2

from the interval s ´ 1, 1r;

2. Set S “ U2
1 ` U

2
2 ;

3. If S ă 1, return the independent standard normals

Y1 “ U1

c

´2 lnpSq

S
and Y2 “ U2

c

´2 lnpSq

S
;

else, return to 1.

The polar method is more efficient than the Box–Muller algorithm, because it avoids the evaluation
of the computationally expensive trigonometric functions.

Remark 2.20. In order to generate samples from the general, d-dimensional normal distribution
N pµ,Σq, we first generate a d-dimensional vector of independent standard normal variates X “

pX1, . . . , Xdq using, for instance, the Box-Muller method. Then we obtain the sample from the
general normal distribution by

µ`AX,

where A satisfies Σ “ AAT . Note that A can be obtained from Σ by Cholesky factorization.

Exercise 2.1. Explain why c in (2.2) can only be greater than or equal to 1. What does c “ 1
imply?

Exercise 2.2. Provide a method for generating double exponential random variables using only
one uniform random number per output. Moreover, justify the bound c in Example 2.13.

Exercise 2.3. Show that pX1, X2q generated by the Box–Muller method have the two-dimensional
standard normal distribution.
Hint: Show that the density of the two-dimensional uniform variate pU1, U2q is transformed to the
density of the two-dimensional standard normal distribution.

Exercise 2.4. Show that pY1, Y2q generated by the polar method have the two-dimensional standard
normal distribution.

Exercise 2.5. Implement the different methods for generating Gaussian random numbers and
compare their efficiency.

13

2.2 Monte Carlo simulation

The Monte Carlo simulation method is one of the most important numerical methods available.
It was developed by giants of mathematics and physics like J. von Neumann, E. Teller, S. Ulam
and N. Metropolis during the development of the H-bomb. A short account of the origins of Monte
Carlo simulation can be found in Metropolis [11]. Today, it is widely used in fields like statistical
mechanics, particle physics, computational chemistry, molecular dynamics, computational biology
and, of course, computational finance! An overview of the mathematics behind the Monte Carlo
method is available, for instance, in the survey paper of Caflisch [1] or, as usual, in Glasserman [5].

The Monte Carlo method

As we have already discussed in the introduction, we want to compute the quantity

(2.4) Irf ;Xs :“ E rfpXqs ,

assuming only that fpXq is integrable, i.e., Ir|f | ;Xs ă 8, and that we can actually sample from
the distribution of X. Taking a sequence X1, X2, . . . of independent realizations of X, the law of
large numbers implies that

(2.5) Irf ;Xs “ lim
MÑ8

1

M

M
ÿ

i“1

fpXiq, P´ a.s.

However, in numerics we are usually not quite satisfied with a mere convergence statement like
in (2.5). Indeed, we would like to be able to control the error, i.e. we would like to have an error
estimate or bound, and we would also like to know how fast the error goes to zero if we increase M .
Before continuing the discussion, let us formally introduce the Monte Carlo integration error εM by

(2.6) εM “ εM pf ;Xq :“ Irf ;Xs ´ IM rf ;Xs, where IM rf ;Xs :“
1

M

M
ÿ

i“1

fpXiq

is the estimate based on the first M samples. Note that IM rf ;Xs is an unbiased estimate for Irf ;Xs
in the statistical sense, i.e. E rIM rf ;Xss “ Irf ;Xs, implying E rεM s “ 0. Let us also introduce the
mean square error and its square root, the error in L2, via

(2.7) MSErIM s “ E
“

εM pf ;Xq2
‰

and RMSErIM s “ E
“

εM pf ;Xq2
‰1{2

.

The central limit theorem immediately implies both an error bound and a convergence rate provided
that fpXq is square integrable.

Proposition 2.21. Let σ “ σpf ;Xq ă 8 denote the standard deviation of the random variable
fpXq. Then the root mean square error satisfies

E
“

εM pf ;Xq2
‰1{2

“
σ
?
M
.

Moreover,
?
MεM pf ;Xq is asymptotically normally distributed with standard deviation σpf ;Xq.

That is, for any constants a ă b P R we have

lim
MÑ8

P
ˆ

σa
?
M
ă εM ă

σb
?
M

˙

“ Φpbq ´ Φpaq,

where Φ denotes the cumulative distribution function of the standard normal random variable.

Proof. Using the independence of the Xi’s and the fact that IM rf ;Xs is an unbiased estimator of
Irf ;Xs, we get

E
“

ε2M
‰

“ var

˜

1

M

M
ÿ

i“1

fpXiq

¸

“
1

M2

M
ÿ

i“1

varpfpXiqq “
M varpfpX1qq

M2
“
σ2

M
.

14

In addition, from the central limit theorem we know that

řM
i“1 fpXiq ´M ¨ Irf ;Xs

σ
?
M

ÝÝÝÝÑ
MÑ8

N p0, 1q

which yields the asymptotic normality of the error.

Remark 2.22. Proposition 2.21 has two important implications:

1. The error is probabilistic: there is no deterministic error bound. In other words, for a particular
simulation and a given sample size M , the error of the simulation can be arbitrarily large.
However, large errors only occur with probabilities decreasing in M .

2. The “typical” error, e.g. the root mean square error
a

E rε2M s, decreases to zero like 1{
?
M . In

other words, if we want to increase the accuracy of the result tenfold, i.e. if we want to obtain
one more significant digit, then we have to increase the sample size M by a factor 102 “ 100.
We thus say that the Monte Carlo method converges with rate 1{2.

Let us now discuss the merits of Monte Carlo simulation. We assume, for simplicity, that X is
a d-dimensional uniform random variable, i.e.,

Irf s :“ Irf ;U s “

ż

r0,1sd
fpxqdx.

Observe that the dimension of the space did not enter into our discussion of the convergence rate
and of the error bounds at all. This is remarkable if we compare the Monte Carlo method to
traditional methods for numerical integration. Those methods are usually based on a grid 0 ď
x1 ă x2 ă ¨ ¨ ¨ ă xN ď 1 of arbitrary length N . The corresponding d-dimensional grid is simply
given by tx1, . . . , xNu

d
, a set of size n :“ Nd. The function f is evaluated on the grid points and an

approximation of the integral is computed based on interpolation of the function between grid points
by suitable functions (e.g. piecewise polynomials), whose integral can be explicitly computed. Given

a numerical integration method of order k, the error is then proportional to p1{Nq
k
. However, we

have to evaluate the function on n points, implying that the total computational work is proportional
to n rather then N . Therefore, the accuracy in terms of the complexity n, i.e. the ratio of the error
relative to the computational work, behaves like n´k{d. Thus, the rate of convergence in terms of
the computational cost is only k{d, which rapidly decreases in the dimension d. This phenomenon
is known as the curse of dimensionality : methods which are very well suited in low dimensions,
deteriorate very fast in higher dimensions.

The curse of dimensionality is the main reason for the popularity of the Monte Carlo method. As
we will see later, in financial applications the dimension of the state space can easily be in the order
of 100 (or much higher), which already makes traditional numerical integration methods completely
unfeasible. In other applications, like molecular dynamics, the dimension of the state space might
be in the magnitude of 1012!

Error control and confidence intervals

Next, we discuss how to control the error of the Monte Carlo method taking its random nature into
account. The question here is, how do we have to choose M , the only parameter available, such that
the probability of an error larger than a given tolerance level ε ą 0 is smaller than a given δ ą 0,
symbolically

P
`

|εM pf ;Xq| ą ε
˘

ă δ.

Fortunately, this question is already almost answered in Proposition 2.21. Indeed, it implies that

P p|εM | ą εq “ 1´ P
ˆ

´
σε̃
?
M
ă εM ă

σε̃
?
M

˙

„ 1´ Φpε̃q ` Φp´ε̃q “ 2´ 2Φpε̃q,

15

where ε̃ “
?
Mε{σ. Of course, the normalized Monte Carlo error is only asymptotically normal,

which means the equality between the left and the right hand side of the above equation only holds
for M Ñ8, which is signified by the “„”-symbol. Equating the right hand side with δ and solving
for M yields

(2.8) M “

ˆ

Φ´1

ˆ

2´ δ

2

˙˙2
σ2

ε2
.

Thus, as we have already observed before, the number of samples depends on the tolerance like
1{ε2.

Remark 2.23. This analysis tacitly assumed that we know σ “ σpf ;Xq. Since we started the
whole endeavor in order to compute the mean of fpXq, Irf ;Xs, it is, however, very unlikely that
we already know the variance of fpXq. Therefore, in practice we will have to replace σpf ;Xq by
a sample estimate. See Exercise 2.6 for a sample estimator of σ. (This is not unproblematic: what
about the Monte Carlo error for the approximation of σpf ;Xq?)

In addition, since the Monte Carlo estimator is a random variable, when computing expectations
via this method it is not very helpful to report just the value IM rf ;Xs. This estimator is a function
of the sample size M and we do not know how accurate the estimation is unless we also have
information about the sample size. Therefore, it is more meaningful to report the estimator and
some confidence interval.

Definition 2.24. Let Z be a random variable and consider some level α P p0, 1q. The 1 ´ α-level
confidence interval is defined by

r´z1´α2 , z1´
α
2
s

such that the critical number z1´α2 satisfies:

P
´

|Z| ď z1´α2

¯

“ 1´ α.(2.9)

The critical number z1´α2 for a given level 1´ α can be computed from the inverse cumulative
distribution function. Consider, for example, the normal distribution; then we get that

z1´α2 “ Φ´1
´

1´
α

2

¯

.

In particular, using the inverse cdf of the normal distribution, we get that for α “ 5% the critical
number equals 1.96, while for α “ 1% it equals 2.58.

Now, we can use the asymptotic normality of the Monte Carlo error εM to derive confidence
intervals for IM rf ;Xs. Indeed, using Proposition 2.21 and denoting εM “ I ´ IM , we have

1´ α « P
ˆ

´
σz1´α2?
M

ď εM ď
σz1´α2?
M

˙

“ P
ˆ

IM ´
σz1´α2?
M

ď I ď IM `
σz1´α2?
M

˙

.

Thus, the 1´ α-level confidence interval for I “ Irf ;Xs is

CIαrIM s :“

„

IM ´
σz1´α2?
M

, IM `
σz1´α2?
M



.(2.10)

Example 2.25. We consider the Black–Scholes–Samuelson model, where the dynamics of the un-
derlying asset have the form

dSt “ rStdt` σStdWt, S0 “ s P R`,(2.11)

16

where W is a standard Brownian motion, while we assume we are already under the martingale
measure. We want to compute the price of a European call option with payoff function

fpST q “ pST ´Kq
`,(2.12)

together with the 95% and 99% confidence intervals. Algorithm 1 contains pseudo-code for the
Black–Scholes formula for a European call, while Algorithm 2 contains pseudo-code for the compu-
tation of the Monte Carlo price and the RMSE. An outcome of this example is shown in Figure 2.3,
where the Monte Carlo price for different sample sizes together with the corresponding confidence
intervals are plotted together with the Black–Scholes price. One should notice how the Monte Carlo
price converges to the Black–Scholes price and how the confidence intervals shrink as the sample
size M increases.

Algorithm 1 Pseudo-code for the Black–Scholes formula

1: input: S0,K, T, r, σ
2: d1 Ð plog pS0{Kq ` pr ` σ

2{2q ¨ T q{pσ ¨
?
T q

3: d2 Ð plog pS0{Kq ` pr ´ σ
2{2q ¨ T q{pσ ¨

?
T q

4: price Ð S0 ¨ Φpd1q ´K ¨ e´r¨T ¨ Φpd2q
5: output: price

Algorithm 2 Pseudo-code for MC simulation in the Black–Scholes model

1: input: S0,K, T, r, σ,M
2: W ÐM independent samples from the standard normal distribution
3: S Ð S0 ¨ exppσ ¨

?
T ¨W ` pr ´ σ2{2q ¨ T q

4: C Ð expp´r ¨ T q ¨maxtS ´K, 0u
5: price Ð sum{C}/M
6: varest Ð sumtpprice´ Cq2u{pM ´ 1q
7: rmse Ð

a

varest{M
8: output: price, rmse

Figure 2.3: Convergence of the Monte Carlo price of a European call option to the Black–Scholes
price as a function of the sample size M , together with the 95% and 99% confidence intervals.

17

Variance reduction

Figure 2.4: Improved
convergence rate vs.
improved constant.

Although there are no obvious handles on how to increase the convergence
rate in Proposition 2.21, we might be able to improve the constant factor in
the RMSE by reducing the variance σpf ;Xq2 “ varpfpXqq. The idea is to
obtain, in a systematic way, random variables Y and functions g such that
ErgpY qs “ ErfpXqs, but with smaller variance varpgpY qq ă varpfpXqq.
Inserting σpg;Y q “

a

varpgpY qq into (2.8) shows that such an approach
will decrease the computational work—proportional to the number of
trajectories—provided that the generation of samples from gpY q is not
prohibitively more expensive than the generation of samples from fpXq.
This leads then to a faster numerical scheme, since the same error can be
achieved with fewer samples.

A pictorial representation of the potential improvement is available in
Figure 2.4, where the log-error (y-axis) is plotted against the log-number
of samples (x-axis). The convergence rate of the Monte Carlo method is
depicted with the solid line with slope 1

2 . An improved convergence rate would lead to a line with
different slope, e.g. the dashed line with slope 1 in the figure above. On the other hand, an improved
constant leads to a parallel shift of the line with slope 1

2 , see the dotted line in the figure above.

Antithetic variates

Let us start with the following simple observation: If U has the uniform distribution, then the
same is true for 1´U . Similarly, if B has the d-dimensional normal distribution, then so does ´B.
Therefore, these transformations do not change the expected value ErfpXqs, if X “ U or X “ B.7

In general, assume there exists a (simple) transformation rX having the same law as X, such that a

realization of rX can be computed from a realization of X by a deterministic transformation. Define
the antithetic variates Monte Carlo estimate by

(2.13) IAM rf ;Xs “
1

M

M
ÿ

i“1

fpXiq ` fp rXiq

2
.

Since ErpfpXiq ` fp rXiqq{2s “ ErfpXqs, (2.13) is another unbiased estimator for Irf ;Xs. If we

assume that the actual simulation of pfpXiq ` fp rXiqq{2 takes at most two times the computing
time as the simulation of fpXiq, then the computing time necessary for the computation of the
estimate IAM rf ;Xs does not exceed the computing time for the computation of I2M rf ;Xs.8 Then,
the application of antithetic variates makes sense if the mean square error of IAM rf ;Xs is smaller
than the MSE of I2M rf ;Xs, i.e. if

var

ˆ

fpXiq`fpĂXiq
2

˙

M
ă

varpfpXiqq

2M
.

This is equivalent to varpfpXiq` fp rXiqq ă 2 varpfpXiqq. Since varpfpXiq` fp rXiqq “ 2 varpfpXiqq`

2 covpfpXiq, fp rXiqq, antithetic variates can speed up a Monte Carlo simulation if and only if

(2.14) cov
`

fpXq, fp rXq
˘

ă 0.

In other words, the antithetic variates Monte Carlo method should be used when the negative
dependence between the input variables X and rX (think of U and 1 ´ U or B and ´B) produces

7Since many random number generators for non-uniform distributions are based on uniform ones, we can often
view our integration problem as being of this type.

8Since we only need to sample one random number Xi and obtain rXi by a simple deterministic transformation,
in many situations it is much faster to compute pfpXiq ` fp rXiqq{2 than to compute two realizations of fpXiq.

18

also negative dependence between the output variables fpXq and fp rXq. A simple, sufficient condition
for the latter is the monotonicity of the function f that maps inputs to outputs.

The calculations above yield also the following decomposition for the MSE of the antithetic
variates Monte Carlo method:

MSE
“

IAM
‰

“ MSE
“

I2M
‰

`
cov

`

fpXq, fp rXq
˘

2M
.(2.15)

In other words, the improvement over the standard Monte Carlo method, if any, comes in the form
of an additive factor (which obviously tends to zero as M Ñ8). The larger the negative dependence

between fpXq and fp rXq, the larger this factor as well, for fixed M .

Remark 2.26. Exercise 2.9 asks the reader to justify the application of the antithetic variates
Monte Carlo method for pricing a European call option in the Black–Scholes model, theoretically
and by computing the sample covariance. Once the sample estimator for the covariance is coded,
one could notice that the speed-up factor depends on the strike K (all other parameters equal), and
is larger for deep-in-the-money options, i.e. for K Ñ 0.

Control variates

Assume there exists a random variable Y and a functional g such that we know the exact value of
Irg;Y s “ ErgpY qs. (Note that we allow for Y “ X.) Then obviously

Irf ;Xs “ E rfpXq ´ λpgpY q ´ Irg;Y sqs ,

for any deterministic parameter λ. Thus, a Monte Carlo estimate for Irf ;Xs is given by

(2.16) IC,λM rf ;Xs :“
1

M

M
ÿ

i“1

´

fpXiq ´ λgpYiq
¯

` λIrg;Y s,

where pXi, Yiq are independent realizations of pX,Y q. Similar to the situation with antithetic vari-

ates, we may assume that the simulation of IC,λM rf s takes at most c times the computing time of the
simulation of IM rf s, where c ą 1 often is quite small, especially if X “ Y . We are going to choose
the parameter λ such that varpfpXq ´ λgpY qq is minimized. A simple calculation yields that

varpfpXq ´ λgpY qq “ varpfpXqq ´ 2λ covpfpXq, gpY qq ` λ2 varpgpY qq,

which is minimized by choosing λ to be equal to

(2.17) λ‹ “
covpfpXq, gpY qq

varpgpY qq
.

Applying Proposition 2.21, we get that the mean square error for the standard and the control
variates Monte Carlo simulations compare as follows:

MSE
“

IC,λ
‹

M

‰

“
varpfpXqq

M
p1´ ρ2q ď

varpfpXqq

M
“ MSE

“

IM
‰

,(2.18)

where ρ denotes the correlation coefficient between fpXq and gpY q. In other words, the improvement
of the control variates Monte Carlo simulation over the standard Monte Carlo method comes in the
form of a multiplicative factor. Assuming that the computational work per realization is c times
higher using control variates, (2.8) implies that the control variates technique is 1{pcp1´ ρ2qq-times
faster than standard Monte Carlo. In particular, the improvement in speed from the use of control
variates is larger as the correlation between fpXq and gpY q becomes higher. If, for example, ρ “ 0.8
and c “ 2 the speed-up factor equals 1.38, while if ρ “ 0.95 the speed-up factor equals 5.

Remark 2.27. We can determine the optimal factor λ‹ only if we know covpfpXq, gpY qq and
varpgpY qq. If we are not in this highly unusual situation, we can use sample estimates instead—see
Exercise 2.6—obtained by (standard) Monte Carlo simulations with a smaller sample size.

19

A natural question now is how to find, or construct, good control variates. There does not exist
a general answer since these are typically specified by the problem at hand. However, in option
pricing the underlying asset provides a virtually universal source of control variates, because

e´rTErSts “ S0(2.19)

for every t ě 0, assuming that E denotes the expectation with respect to a martingale measure.
Moreover, simple options that admit a closed-form solution can be used as control variates for
the pricing of more complex derivatives, see e.g. Exercise . . . with geometric and arithmetic Asian
options. In additions, simple models can be used as control variates for option pricing in more
advanced models; for example, the Black–Scholes model can serve as control variate for stochastic
volatility models.

Example 2.28. Assume we want to compute the price of an option with payoff fpST q and we are
given a sample S1

T , . . . , S
M
T from the law of ST . The control variates Monte Carlo estimator takes

the form

IC,λ
‹

M rf ;ST s “
1

M

M
ÿ

i“1

!

fpSiT q ´ λ
‹SiT

)

` λ‹S0,(2.20)

where λ‹ can be also replaced by the sample estimator λ‹M . The interest rate is set to zero, for
simplicity. If fpST q “ pST ´Kq

`, i.e. we are pricing a call option, then

λ‹ “
cov

`

pST ´Kq
`, ST

˘

varpST q
,(2.21)

and the efficiency of the control variate depends, essentially, on the strike K (all other parameters
equal). In particular, for K “ 0 we obviously have perfect correlation and the method is very
effective. On the other hand, for deep out-of-the-money options (i.e. for large K) the correlation
becomes quite low and the effectiveness of the method deteriorates.

Stratified sampling

The main principle of stratified sampling is to partition the sample space into disjoint subsets,
called strata, and to constrain the number of samples selected from each stratum. Let A1, . . . , AL
be disjoint subsets of Rd such that PpX P YlAlq “ 1. Then, using the law of total probability, we
can estimate fpXq as follows

ErfpXqs “
L
ÿ

l“1

ErfpXq|X P AlsPpX P Alq “
L
ÿ

l“1

plErfpXq|X P Als,(2.22)

where pl “ PpX P Alq. In the standard Monte Carlo method, we generate X1, . . . , XM which
are independent and distributed identically to X, and the fraction of samples that belong to each
stratum Al is in general not equal to pl, although it converges to pl as M Ñ 8. In contrast, in
stratified sampling we preselect what fraction of samples should belong to each stratum, and every
sample drawn from Al has the distribution of X conditional on X P Al.

Let M denote the total size of the sample. For every l “ 1, . . . , L, let ql “
Ml

M denote the
fraction of observations from the stratum Al, and Xlk, k “ 1, . . . ,Ml, be i.i.d. realizations from the
distribution of X conditional on X P Al. An unbiased estimator for the expectation in the RHS of
(2.22) is provided by the sample average, i.e. by 1

Ml

řMl

k“1 fpXlkq. Therefore, the stratified sampling
estimator takes the form

ISTM rf ;Xs “
L
ÿ

l“1

pl
1

Ml

Ml
ÿ

k“1

fpXlkq “
1

M

L
ÿ

l“1

pl
ql

Ml
ÿ

k“1

fpXlkq.(2.23)

20

Remark 2.29. The strata can also depend on another variable Z, called the stratifying variable,
which is possibly dependent on X. In that case, the estimator has the same form, i.e.

ISTM rf ;Xs “
1

M

L
ÿ

l“1

pl
ql

Ml
ÿ

k“1

fpXlkq,(2.24)

where now pl “ PpZ P Alq and pXlkqk are i.i.d. realizations from the distribution of X conditional
on Z P Al. We will use this more general formulation from now on.

Therefore, in order to effectively implement a stratified sampling estimator we should select
and optimize the following variables: the stratification variable Z, the strata A1, . . . , AL and the
allocations M1, . . . ,ML. Moreover, we should also know how to efficiently sample from the law of
pX,Zq conditional Z P Al.

Let us now compare the variance of the stratified sampling estimator with the variance of the
standard Monte Carlo estimator. We will use the following notation:

µl “ ErfpXlkqs “ ErfpXq|Z P Als and σ2
l “ varrfpXlkqs “ varrfpXq|Z P Als,(2.25)

and then the variance of the stratified sampling estimator, using the proportional allocation ql “ pl,
is provided by

var
`

ISTM
˘

“
1

M

L
ÿ

l“1

plσ
2
l .(2.26)

On the other hand, the variance of the standard Monte Carlo estimator equals varpIM q “ varpfpXqq{M ,
where

varpfpXqq “ ErfpXq2s ´ ErfpXqs2

“

L
ÿ

l“1

plErfpXq2|Z P Als ´

˜

L
ÿ

l“1

plErfpXq|Z P Als

¸2

“

L
ÿ

l“1

plpσ
2
l ` µ

2
l q ´

˜

L
ÿ

l“1

plµl

¸2

.(2.27)

Therefore, the MSE of the stratified sampling Monte Carlo estimator admits the following decom-
position:

MSE
“

ISTM
‰

“ MSE
“

IM
‰

`
1

M

L
ÿ

l“1

plµ
2
l ´

1

M

˜

L
ÿ

l“1

plµl

¸2

,(2.28)

therefore any potential improvement over the standard Monte Carlo method comes in the form of
an additive factor again. Now, Jensen’s inequality yields that

L
ÿ

l“1

plµ
2
l ě

˜

L
ÿ

l“1

plµl

¸2

,

therefore stratified sampling Monte Carlo with proportional allocation leads to a reduction of the
variance of the estimator.

One can achieve a further reduction of the variance by optimizing the allocations, i.e. by selecting
the fractions ql such that the variance of the estimator is minimized. The variance of the stratified
sampling estimator in general has the form

var
`

ISTM
˘

“
1

M

L
ÿ

l“1

p2l
ql
σ2
l ,

21

and minimizing this quantity subject to the constraints ql P p0, 1q and
ř

l ql “ 1 leads to the optimal
allocation provided by

q‹l “
plσl

ř

k pkσk
.

The variance of the estimator with the optimal allocation equals then

var
`

IST,‹M

˘

“
1

M

˜

L
ÿ

l“1

plσl

¸2

.

Using Jensen’s inequality once again and comparing with (2.26) we observe that optimizing the
allocations leads to a further reduction of the variance.

Remark 2.30. Similar to other methods, the variances σl are typically not known explicitly. One
could then use sample estimators with a smaller sample size to compute q‹l and then use the
estimated optimal allocations in a second simulation run.

Importance sampling

Importance sampling is related to the acceptance-rejection method and also to Girsanov’s theorem
(or changes of measures). The idea is to sample more often in regions where the variance is higher,
thus increasing the sampling efficiency. Assume that the underlying random variable X has a density
p (on Rd). Moreover, let q be another probability density. Then we can obviously write

Irf ;Xs “

ż

Rd
fpxqppxqdx “

ż

Rd
fpxq

ppxq

qpxq
qpxqdx “ E

„

fpY q
ppY q

qpY q



“ I

„

f
p

q
;Y



,

where Y is a d-dimensional random variable with density q. The quantity p{q is called the likelihood
ratio or the Radon–Nikodym derivative. Thus, a Monte Carlo estimate for Irf s is given by

(2.29) IISM rf ;Xs “
1

M

M
ÿ

i“1

fpYiq
ppYiq

qpYiq
“ IM

„

f
p

q
;Y



.

As usual, a possible speed up is governed by the variance of fpY qppY qqpY q , which is determined by

(2.30) var

ˆ

fpY q
ppY q

qpY q

˙

` Irf ;Xs2 “ E

«

ˆ

fpY q
ppY q

qpY q

˙2
ff

“ E

„

fpXq2
ppXq

qpXq



.

So how do we have to choose q? Assume for a moment that f ě 0 itself. Take q proportional to
f ¨ p. Then, the new estimator is based on the random variable

fpY q
ppY q

qpY q
” 1,

thus, the variance is zero! Of course, there is a catch: q needs to be normalized to one, therefore in
order to actually construct q, we need to know the integral of f ¨ p, i.e., we would need to know
our quantity of interest Irf s. However, we can gain some intuition on how to construct a good
importance sample estimate: we should choose q in such a way that f ¨ p{q is almost flat.

There are several applications of importance sampling in financial and insurance mathematics,
and the choice of the density q depends on the problem at hand. We will describe next an application
of importance sampling to option pricing that highlights also the relation to Girsanov’s theorem.

Example 2.31. Consider the setting of Example 2.25, that is, we are interested in pricing a Eu-
ropean call option with payoff fpxq “ px ´ Kq`, where the underlying asset price follows the
Black–Scholes model under a risk-neutral measure P , i.e.

dSt “ rStdt` σStdWt,

22

where S0 “ s P R`. Let θ P R, consider the exponential martingale M with

Mt “ exp

ˆ

θWt ´
1

2
θ2t

˙

and define a measure Pθ, equivalent to P , via the Radon–Nikodym density

dPθ
dP

“MT .(2.31)

Using Girsanov’s theorem we know that W θ “W ´ θ¨ is a Pθ-Brownian motion and the dynamics
of S under Pθ are provided by

dSt “ pr ´ σθqStdt` σStdW
θ
t .

Now, the price of the option equals

Irf ;ST s “ EθrfpST qLT s(2.32)

where L is the Pθ-martingale

Lt “ exp

ˆ

´θWt `
1

2
θ2t

˙

.

Therefore, the importance sampling estimator is provided by

IISM rf ;ST s “
1

M

M
ÿ

i“1

fpSiT qL
i
T ,(2.33)

where pSiT , L
i
T q are independent realizations of pST , LT q under the measure Pθ. The variance of the

importance sampling estimator, using (2.30), equals

var
`

IIS
˘

“ EθrfpST q
2L2

T s ` Irf ;ST s
2.(2.34)

Thus, if we want to minimize the variance of the importance sampling estimator we should select
the density, i.e. the parameter θ, such that

EθrfpST q
2L2

T s(2.35)

is minimized over θ. Now, define the functions

gpxq “ pS0eσx`pr´σθ´
1
2σ

2
qT ´Kq` and Gpxq “ log gpxq,

and using that W θ “W ´ θ¨, we get that

EθrfpST q
2L2

T s “ Eθ
“

exp
`

2GpW θ
T q ´ 2θWT ` θ

2T
˘‰

“ Eθ
“

exp
`

2GpWT ` θT q ´ 2θWT ` θ
2T

˘‰

.(2.36)

Let us turn to some heuristic arguments in order to find a candidate optimizer for the above
expression. Ignore the dependence on time and consider a Taylor expansion of GpW ` θq around θ,
which yields for the exponent

GpW ` θq ´ θW `
1

2
θ2 « Gpθq `G1pθqpW ´ θq ´ θW `

1

2
θ2 `(2.37)

If we choose θ such that G1pθq “ θ then the exponent will not depend on W (at least up to a first
order approximation) and the variance of the importance sampling estimator is minimized.

23

Conclusions

Comparing the three methods of variance reduction presented here, we see that antithetic variates
are the easiest to implement, but can only give a limited speed-up. On the other hand, both control
variates and importance sampling can allow us to use very specific properties of the problem at
hand. Therefore, the potential gain can be large (in theory, the variance can be reduced almost
to zero). However, this also means that there is no general way to implement control variates or
importance sampling.

Exercise 2.6. Show that an unbiased estimator of σ2pf ;Xq is

σ2
M pf ;Xq “

1

M ´ 1

M
ÿ

i“1

´

fpXiq ´ IM rf ;Xs
¯2

(2.38)

and an unbiased estimator of covpfpXq, gpY qq is

covM pfpXq, gpY qq “
1

M ´ 1

M
ÿ

i“1

´

fpXiq ´ IM rf ;Xs
¯´

gpYiq ´ IM rg;Y s
¯

.(2.39)

Exercise 2.7. Compute the price of a European call option in the Black–Scholes model using
Monte Carlo simulation, as well as the 95% and 99% confidence intervals. Study the convergence
and the asymptotic normality of the error. Then, use (2.8) for a more systematic approach.

Exercise 2.8. Compute the expected value of 1{
?
U for a uniform random variable U using Monte

Carlo simulation. Study the speed of convergence and whether the errors are still asymptotically
normal.

Hint: This exercise shows that if we want to compute the expected value of an integrable random
variable, which is not square integrable, the above analysis does not apply.

Exercise 2.9. Compute the price of a European call option in the Black–Scholes model using the
antithetic variates Monte Carlo method. Justify why the method works

(i) numerically, by computing the sample covariance;

(ii) theoretically, by showing that the map from inputs to outputs is monotone.

Exercise 2.10. Compute the price of a European call option in the Black–Scholes model using
the control variates Monte Carlo method where the underlying price is the control. Study how
the efficiency of the method depends on the strike price and compare the convergence rates with
Exercises 2.7 and 2.9.

24

Bibliography

[1] R. E. Caflisch. Monte Carlo and quasi-Monte Carlo methods. In Acta numerica, 1998, volume 7
of Acta Numer., pages 1–49. Cambridge Univ. Press, Cambridge, 1998.

[2] R. Cont and P. Tankov. Financial Modelling with Jump Processes. Chapman & Hall/CRC,
2004.

[3] R. Cont and E. Voltchkova. A finite difference scheme for option pricing in jump diffusion and
exponential Lévy models. SIAM J. Numer. Anal., 43:1596–1626, 2005.

[4] L. Devroye. Nonuniform Random Variate Generation. Springer, 1986. Available online from
http://cg.scs.carleton.ca/~luc/rnbookindex.html.

[5] P. Glasserman. Monte Carlo Methods in Financial Engineering. Springer, 2004.

[6] D. E. Knuth. The Art of Computer Programming. Vol. 2. Addison-Wesley, second edition,
1981.

[7] P. L’Ecuyer. Uniform random number generation. Ann. Oper. Res., 53:77–120, 1994.

[8] P. L’Ecuyer, B. Oreshkin, and R. Simard. Random numbers for prallel computers: Requirements
and methods. Preprint, 2014.

[9] G. Marsaglia and W. W. Tsang. The Ziggurat method for generating random variables. Journal
of Statistical Software, 5(8), 2000.

[10] A.-M. Matache, P.-A. Nitsche, and C. Schwab. Wavelet Galerkin pricing of American options
on Lévy driven assets. Quant. Finance, 5:403–424, 2005.

[11] N. Metropolis. The beginning of the Monte Carlo method. Los Alamos Sci., 15, Special Issue:
125–130, 1987.

[12] NVIDIA. CUDA. http://www.nvidia.com/object/cuda_home_new.html. Accessed on Au-
gust 24, 2014.

[13] B. Øksendal. Stochastic Differential Equations. Springer, 6th edition, 2003.

[14] P. E. Protter. Stochastic Integration and Differential Equations. Springer, 2nd edition, 2005.

[15] B. D. Ripley. Stochastic Simulation. John Wiley & Sons, 1987.

[16] R. Seydel. Tools for Computational Finance. Springer, 4th edition, 2009.

[17] D. B. Thomas, W. Luk, P. H. W. Leong, and J. D. Villasenor. Gaussian random number
generators. ACM Comput. Surv., 39(4), 2007.

[18] Wikipedia. Linear congruential generator — wikipedia, the free encyclopedia, 2010. [Online;
accessed 22-March-2010].

[19] P. Wilmott. Paul Wilmott on Quantitative Finance. 3 Vols. John Wiley & Sons, 2nd edition,
2006.

25

http://cg.scs.carleton.ca/~luc/rnbookindex.html
http://www.nvidia.com/object/cuda_home_new.html

	Introduction
	Monte Carlo simulation
	Random number generation
	Monte Carlo simulation

