
Computational Finance

Christian Bayer Antonis Papapantoleon

Lecture course @ TU Berlin, SS 2016



Important information

The course takes place every

Monday 10:00–12:00 @ MA 742
Wednesday 10:00–12:00 @ MA 742

The website of the course is:
http://www.math.tu-berlin.de/~papapan/

ComputationalFinance.html

contains: course description, recommended literature, and
other material related to the course

Lecture notes are available on the website

E-mails:

christian.bayer@wias-berlin.de

papapan@math.tu-berlin.de

Office: MA 703 (AP)

Office hours: Wednesday 13-14 (AP)
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Structure of the course

Teaching (per week):

3h Theory
1h Computational practice (Python)

Exam:

4 Computational exercises
Oral examination

Credit points: 10
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Key points of the course

1 Review of stochastic analysis and mathematical finance

2 Monte Carlo simulation

Random number generation
Monte Carlo method
Quasi Monte Carlo method

3 Discretization of SDEs

Generating sample paths
Euler scheme
Advanced methods (Milstein)

4 PDE methods (finite differences, finite elements)

5 Lévy and affine processes

6 Fourier methods

7 Pricing American options with Monte Carlo
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Books

P. Glasserman

Monte Carlo Methods in Financial Engineering

Springer, 2003

R. Seydel

Tools for Computational Finance

Springer, 2009

S. Shreve

Stochastic Calculus for Finance II

Springer, 2004

M. Musiela, M. Rutkowski

Martingale Methods in Financial Modeling

Springer, 2nd ed., 2005

D. Filipović

Term-structure Models: A Graduate Course

Springer, 2009
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Options

European options

“plain vanilla” options

call (ST − K )+

digital 1{ST>B}
exotic options

barrier (ST − K )+1{maxt≤T St>B}
one-touch 1{maxt≤T St>B}
Asian ( 1

n

∑n
i=1 STi − K )+

options on several assets

basket call (
∑d

i=1 S
i
T − K )+

best-of call (S1
T ∧ · · · ∧ Sd

T − K )+

American options

call (Sτ − K )+

τ : stopping time
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Decomposition of options

Payoff function:
map f : Rd → R+

f (x) = (x − K )+

f (x) = 1{x>B}

f (x) = (x1+· · ·+xd−K )+

. . .

Underlying process:
random variable X on the path
space D([0,T ];Rd)

X = ST

X = maxt≤T St

X = (S1
T , . . . ,S

d
T )

. . .

Thus, for suitable f and X , any European option can be
thought of as

f (X )
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Stochastic Analysis

Important topics from stochastic analysis (FiMa II)

Stochastic Integration

Itô processes

Quadratic Variation and Covariation

Itô’s Formula

Stochastic Differential Equations

Stochastic Exponential

Markov processes

Girsanov’s theorem
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Arbitrage and option pricing

Definition

An arbitrage is a self-financing trading strategy satisfying

V (0) = 0 and V (T ) ≥ 0 and P[V (T ) > 0] > 0,

for some T > 0.

Definition

An equivalent (local) martingale measure (E(L)MM) Q ∼ P has the
property that the (discounted) price processes S i are Q-(local)
martingales for all 1 ≤ i ≤ d .

Theorem (FTAP I)

A model is arbitrage-free, in the sense that there exists no admissible
arbitrage strategy, if and only if there exists an ELMM Q.

Reference: [Filipović, 2009, Ch. 4]
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Arbitrage and option pricing II

Moral

The price of an option with payoff f (X ) is provided by the
(discounted) expected payoff under a martingale measure Q

EQ[f (X )]

Aim of this course

How to compute numerically

EQ[f (X )]
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Black–Scholes model

In the Black–Scholes model, the risky asset satisfies the SDE

dSt = rStdt + σStdWt , (1)

under the martingale measure Q. The solution is the stochastic
exponential

St = S0E(X )t , (2)

where X is an Itô process

Xt =

∫ t

0

rds +

∫ t

0

σdWs . (3)

Hence, S follows a geometric Brownian motion

St = S0 exp
(
σWt +

(
r − 1

2σ
2
)
t
)
. (4)
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Black–Scholes model: call option

The price of a call option with payoff (ST − K )+ is

E[(ST − K )+] = E[ST1{ST>K}]− KE[1{ST>K}]. (5)

We can use that

{ST > K} = {log S0 + σWT +
(
r − 1

2σ
2
)
T > logK}

=
{
WT >

log( K
S0

)−
(
r − 1

2σ
2
)
T

σ

}
and the fact that WT ∼ N (0,

√
T ), and 1− Φ(x) = Φ(−x) to deduce

KE[1{ST>K}] = KΦ
( log(S0

K ) +
(
r − 1

2σ
2
)
T

σ
√
T

)
. (6)

Applying also Girsanov’s theorem, we arrive at the Black–Scholes
equation

π = S0Φ
( log(S0

K ) +
(
r + 1

2σ
2
)
T

σ
√
T

)
− Ke−rTΦ

( log(S0

K ) +
(
r − 1

2σ
2
)
T

σ
√
T

)
.

(7)
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Black–Scholes model: barrier option

The price of an up-and-out barrier call option with payoff

(ST − K )+1{max0≤t≤T St≤B}

is provided by

π = S0
[
Φ
(
d+(S0

K )
)
− Φ

(
d+(S0

B )
)]
− Ke−rT

[
Φ
(
d−(S0

K )
)
− Φ

(
d−(S0

B )
)]

− B(S0

B )−
2r
σ2

[
Φ
(
d+( B2

S0K
)
)
− Φ

(
d+( B

S0
)
)]

+ Ke−rT (S0

B )−
2r
σ2 +1

[
Φ
(
d−( B2

S0K
)
)
− Φ

(
d−( B

S0
)
)]
,

where

d±(x) =
log(x) +

(
r − 1

2σ
2
)
T

σ
√
T

.

[Shreve, 2004, Ch. 7]
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Aim of this course

How to compute numerically

E[f (X )]

Why bother? Black–Scholes is easy!

Many options don’t have closed form solutions

The Black–Scholes model does not describe the reality

Many other models are interesting and relevant:

Lévy and affine models
local and stochastic volatility models

Relevant for other applications

It is interesting mathematics!
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Monte Carlo simulation

Assume we can generate (Xi )i∈N independent copies of X . The
strong law of large numbers implies

1

M

M∑
i=1

f (Xi ) −−−−→
M→∞

E[f (X )] (8)

How to generate independent samples?

Error control

Variance reduction techniques

Quasi Monte Carlo

How to generate sample paths? (BM, Lévy)

Euler discretization of SDEs

Advanced methods (stochastic Taylor expansion)
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PDE methods

Assuming that the option price is “Markovian” it satisfies

u(t, x) = E[f (ST )|St = x ]. (9)

Applying Itô’s formula yields

du(t,St) =
∂

∂t
u(t,St)dt +

∂

∂x
u(t,St)σStdWt +

∂

∂x
u(t,St)rStdt

+
1

2

∂2

∂x2
u(t,St)σ

2S2
t dt.

By no-arbitrage arguments, we deduce that u(t, x) satisfies the PDE
∂

∂t
u(t, x) +

∂

∂x
u(t, x)rx +

1

2

∂2

∂x2
u(t, x)σ2x2 = 0,

u(T , x) = f (x).

(10)

When can we relate an expectation with a PDE?

How to solve the PDE numerically?

Finite difference methods (explicit, Crank-Nicolson)
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Fourier methods

We can express the option price as follows:

E[f (ST )] =

∫
f (x)pST

(x)dx . (11)

Let f̂ denote the Fourier transform. Assuming that f is “nice” enough,
then

f (x) =
1

2π

∫
eiux f̂ (u)du. (12)

Using Fubini’s theorem, we arrive at (Plancherel’s theorem)

E[f (ST )] =
1

2π

∫
f̂ (u)

(∫
eiuxpST

(x)dx
)

du

=
1

2π

∫
f̂ (u)p̂ST

(u)du, (13)

where p̂ denotes the characteristic function of the measure pST
.

When can we apply this method?

Which models have a known characteristic function?

How to implement with FFT?
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Other applications

In mathematical finance

Risk measurement and risk management

Portfolio optimization

Algorithmic trading

. . .

In other sciences

Filtering

Statistical mechanics

Particle pyhsics

Computational chemistry

Molecular dynamics

Computational biology

. . .
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Empirical facts from finance I: asset prices ...

... do not evolve continuously, they exhibit jumps or spikes!
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USD/JPY daily exchange rate, October 1997 – October 2004.
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Empirical facts from finance II: asset log-returns ...

... are not normally distributed, they are fat-tailed and skewed!
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Empirical distribution of daily log-returns on the GBP/USD rate and fitted

Normal.
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Empirical facts from finance III: volatilities ...

... are not constant over time!
4 Rama Cont

0.0 500.0 1000.0 1500.0
-10.0

0.0

10.0

BMW stock daily returns

Fig. 1. Large changes cluster together: BMW daily log-returns. ∆ = 1 day.

While GARCH models give rise to exponential decay in autocorrelations
of absolute or squared returns, the empirical autocorrelations are similar to a
power law [13, 25]:

C|r|(τ) = corr(|rt|, |rt+τ |) ! c

τβ

with an exponent β ≤ 0.5 [13, 9], which suggests the presence of “long-range”
dependence in amplitudes of returns, discussed below.

2.2 Long range dependence

Let us recall briefly the commonly used definitions of long range dependence,
based on the autocorrelation function of a process:

Definition 1 (Long range dependence). A stationary process Yt (with
finite variance) is said to have long range dependence if its autocorrelation
function C(τ) = corr(Yt, Yt+τ ) decays as a power of the lag τ :

C(τ) = corr(Yt, Yt+τ ) ∼
τ→∞

L(τ)

τ1−2d
0 < d <

1

2
(3)
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Empirical facts from finance IV: implied volatilities ...

... are constant neither across strike, nor across maturity!
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Implied volatilities of vanilla options on the EUR/USD rate, 5 November 2001.
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