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Abstract. Standard models fail to reproduce observed prices of vanilla
options because implied volatilities exhibit a term structure of smiles.
We consider time-inhomogeneous Lévy processes to overcome these lim-
itations. Then the scope of this paper is two-fold. On the one hand,
we apply measure changes in the spirit of Geman et al., to simplify the
valuation problem for various options. On the other hand, we discuss
a method for the valuation of European options and survey valuation
methods for exotic options in Lévy models.

1. Introduction

The efforts to calibrate standard Gaussian models to the empirically ob-
served volatility surfaces very often do not produce satisfactory results. This
phenomenon is not restricted to data from equity markets, but it is observed
in interest rate and foreign exchange markets as well. There are two basic
aspects to which the classical models cannot respond appropriately: the
underlying distribution is not flexible enough to capture the implied volatil-
ities either across different strikes or across different maturities. The first
phenomenon is the so-called volatility smile and the second one the term
structure of smiles; together they lead to the volatility surface, a typical
example of which can be seen in Figure 1.1. One way to improve the cali-
bration results is to use stochastic volatility models; let us just mention Hes-
ton (1993) for a very popular model, among the various stochastic volatility
approaches.

A fundamentally different approach is to replace the driving process. Lévy
processes offer a large variety of distributions that are capable of fitting
the return distributions in the real world and the volatility smiles in the
risk-neutral world. Nevertheless, they cannot capture the term structure of
smiles adequately. In order to take care of the change of the smile across
maturities, one has to go a step further and consider time-inhomogeneous
Lévy processes —also called additive processes— as the driving processes.
For term structure models this approach was introduced in Eberlein et al.
(2005) and further investigated in Eberlein and Kluge (2004), where cap and
swaption volatilities were calibrated quite successfully.
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Figure 1.1. Implied volatilities of vanilla options on the
Euro/Dollar rate; date: 5 November 2001. Data available at
http://www.mathfinance.de/FF/sampleinputdata.txt

As far as plain vanilla options are concerned, a number of explicit pricing
formulas is available for Lévy driven models, one of which is discussed in
this article as well. The situation is much more difficult in the case of
exotic options. The aim of this paper is to derive symmetries and to survey
valuation methods for exotic options in Lévy models. By symmetries, we
mean a relationship between pricing formulas for options of different type.
Such a relation is of particular interest if it succeeds to derive the value of a
complex payoff from that of a simpler one. A typical example is Theorem 5.1,
where a floating strike Asian or lookback option can be priced via the formula
for a fixed strike Asian or lookback option. Moreover, some symmetries are
derived in situations where a put-call parity is not available.

The discussion here is rather general as far as the class of time-inhomoge-
neous Lévy processes is concerned. For implementation of these models a
very convenient class are the processes generated by the Generalized Hyper-
bolic distributions (cf. Eberlein and Prause 2002).

The paper is organized as follows: in the next section we present time-
inhomogeneous Lévy processes, the asset price model and some useful re-
sults. In section 3 we describe a method for exploring symmetries in option
pricing. The next section contains symmetries and valuation methods for
vanilla options while exotic options are tackled in the preceding section.
Finally, in section 6 we present symmetries for options depending on two
assets.

2. Model and Assumptions

Let (Ω,F ,F, IP) be a complete stochastic basis in the sense of Jacod and
Shiryaev (2003, I.1.3). Let T̄ ∈ R+ be a fixed time horizon and assume that
F = FT̄ . We shall consider T ∈ [0, T̄ ]. The class of uniformly integrable
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martingales is denoted by M; for further notation, we refer the reader to
Jacod and Shiryaev (2003). Let D = {x ∈ Rd : |x| > 1}.

Following Eberlein, Jacod, and Raible (2005) we use as driving process L
a time-inhomogeneous Lévy process, more precisely, L = (L1, . . . , Ld) is a
process with independent increments and absolutely continuous character-
istics, in the sequel abbreviated PIIAC. The law of Lt is described by the
characteristic function

IE
[
ei〈u,Lt〉

]
= exp

t∫
0

[
i〈u, bs〉 −

1
2
〈u, csu〉

+
∫
Rd

(ei〈u,x〉 − 1− i〈u, x〉)λs(dx)
]
ds, (2.1)

where bt ∈ Rd, ct is a symmetric non-negative definite d×dmatrix and λt is a
Lévy measure on Rd, i.e. it satisfies λt({0}) = 0 and

∫
Rd(1∧|x|2)λt(dx) <∞

for all t ∈ [0, T̄ ]. The Euclidean scalar product on Rd is denoted by 〈·, ·〉,
the corresponding norm by | · | and ‖ · ‖ denotes a norm on the set of d× d
matrices. The transpose of a matrix or vector v is denoted by v> and 1
denotes the unit vector, i.e. 1 = (1, . . . , 1)>. The process L has càdlàg
paths and F = (Ft)t∈[0,T̄ ] is the filtration generated by L; moreover, L
satisfies Assumptions (AC) and (EM) given below.

Assumption (AC). Assume that the triplets (bt, ct, λt) satisfy
T̄∫

0

[
|bt|+ ‖ct‖+

∫
Rd

(1 ∧ |x|2)λt(dx)
]
dt <∞.

Assumption (EM). Assume there exists a constant M > 1, such that the
Lévy measures λt satisfy

T̄∫
0

∫
D

exp〈u, x〉λt(dx)dt <∞, ∀u ∈ [−M,M ]d.

Under these assumptions, L is a special semimartingale and its triplet of
semimartingale characteristics (cf. Jacod and Shiryaev 2003, II.2.6) is given
by

Bt =

t∫
0

bsds, Ct =

t∫
0

csds, ν([0, t]×A) =

t∫
0

∫
A

λs(dx)ds, (2.2)

where A ∈ B(Rd). The triplet of semimartingale characteristics (B,C, ν)
completely characterizes the distribution of L. Additionally, L is exponen-
tially special (cf. Kallsen and Shiryaev 2002, 2.12, 2.13).

We model the asset price process as an exponential PIIAC

St = S0 expLt (2.3)

with (S1, . . . , Sd) = (S1
0eL1

, . . . , Sd
0eLd

), where the superscript i refers to the
i -th coordinate, i ≤ d. We assume that IP is a risk neutral measure, i.e. the
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asset prices have mean rate of return µi , r− δi and the auxiliary processes
Ŝ i

t = eδi tS i
t, once discounted at the rate r, are IP-martingales. Here, r is

the risk-free rate and δi is the dividend yield of the i -th asset. Notice that
finiteness of IE[ŜT̄ ] is ensured by Assumption (EM).

The driving process L has the canonical decomposition (cf. Jacod and
Shiryaev 2003, II.2.38 and Eberlein et al. 2005)

Lt =

t∫
0

bsds+

t∫
0

c1/2
s dWs +

t∫
0

∫
Rd

x(µL − ν)(ds,dx) (2.4)

where, c1/2
t is a measurable version of the square root of ct, W a IP-standard

Brownian motion on Rd, µL the random measure of jumps of the process L
and ν(dt,dx) = λt(dx)dt is the IP-compensator of the jump measure µL.

Because S is modeled under a risk neutral measure, the drift characteristic
B is completely determined by the other two characteristics (C, ν) and the
rate of return of the asset. Therefore, the i -th component of Bt has the form

Bi
t =

t∫
0

(r − δi )ds− 1
2

t∫
0

(cs1)ids−
t∫

0

∫
Rd

(exi − 1− xi )ν(ds,dx). (2.5)

In a foreign exchange context, δi can be viewed as the foreign interest rate.
In general, markets modeled by exponential time-inhomogeneous Lévy

processes are incomplete and there exists a large class of risk neutral (equiv-
alent martingale) measures. An exception occurs in interest rate models
driven by Lévy processes, where —in certain cases— there is a unique mar-
tingale measure; we refer to Theorem 6.4 in Eberlein et al. (2005). Eber-
lein and Jacod (1997) provide a characterization of the class of equivalent
martingale measures for exponential Lévy models in the time-homogeneous
case; this was later extended to general semimartingales in Gushchin and
Mordecki (2002).

In this article, we do not dive into the theory of choosing a martingale
measure, we rather assume that the choice has already taken place. We refer
to Eberlein and Keller (1995), Kallsen and Shiryaev (2002) for the Esscher
transform, Frittelli (2000), Fujiwara and Miyahara (2003) for the minimal
entropy martingale measure and Bellini and Frittelli (2002) for minimax
martingale measures, to mention just a small part of the literature on this
subject. A unifying exposition —in terms of f -divergences— of the different
methods for selecting an equivalent martingale measure can be found in Goll
and Rüschendorf (2001).

Alternatively, one can consider the choice of the martingale measure as
the result of a calibration to the smile of the vanilla options market. Hakala
and Wystup (2002) describe the calibration procedure in detail; we refer
to Cont and Tankov (2004) for a numerically stable calibration method for
Lévy driven models.

Remark 2.1. In the above setting, we can easily incorporate dynamic inter-
est rates and dividend yields (or foreign and domestic rates). Let Dt denote
the domestic and Ft the foreign savings account respectively, then they can
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have the form

Dt = exp

t∫
0

rsds and Ft = exp

t∫
0

δsds

and (2.5) has a similar form, taking rs and δs into account.

Remark 2.2. The PIIAC L is an additive process, i.e. a process with inde-
pendent increments, which is stochastically continuous and satisfies L0 = 0
a.s. (Sato 1999, Definition 1.6).

Remark 2.3. If the triplet (bt, ct, λt) is not time-dependent, then the PIIAC
L becomes a (homogeneous) Lévy process, i.e. a process with independent
and stationary increments (PIIS). In that case, the distribution of L is
described by the Lévy triplet (b, c, λ), where λ is the Lévy measure and the
compensator of µL becomes a product measure of the form ν = λ ⊗ λ\1,
where λ\1 denotes the Lebesgue measure. In that case, equation (2.1) takes
the form IE[exp(i〈u, Lt〉)] = exp[t · ψ(u)] where

ψ(u) = i〈u, b〉 − 1
2
〈u, cu〉+

∫
Rd

(ei〈u,x〉 − 1− i〈u, x〉)λ(dx) (2.6)

which is called the characteristic exponent of L.

Lemma 2.4. For fixed t ∈ [0, T̄ ] the distribution of Lt is infinitely divisible
with Lévy triplet (b′, c′, λ′), given by

b′ :=

t∫
0

bsds, c′ :=

t∫
0

csds, λ′(dx) :=

t∫
0

λs(dx)ds. (2.7)

(The integrals should be understood componentwise.)

Proof. We refer to the proof of Lemma 1 in Eberlein and Kluge (2004). �

Remark 2.5. The PIIACs L1, . . . , Ld are independent if and only if the
matrices Ct are diagonal and the Lévy measures λt are supported by the
union of the coordinate axes; this follows directly from Exercise 12.10 in
Sato (1999) or I.5.2 in Bertoin (1996) and Lemma 2.4. Describing the de-
pendence is a more difficult task; we refer to Müller and Stoyan (2002) for
a comprehensive exposition of various dependence concepts and their appli-
cations. We also refer to Kallsen and Tankov (2004), where a Lévy copula
is used to describe the dependence of the components of multidimensional
Lévy processes.

Remark 2.6. Assumption (EM) is sufficient for all our considerations, but
in general too strong. In the sequel we will replace (EM), on occasion, by
the minimal necessary assumptions. From a practical point of view though,
it is not too restrictive to assume (EM), since all examples of Lévy models
we are interested in, e.g. the Generalized Hyperbolic model (cf. Eberlein
and Prause 2002), the CGMY model (cf. Carr et al. 2002) or the Meixner
model (cf. Schoutens 2002), possess moments of all order.
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We can relate the finiteness of the g-moment of Lt for a PIIAC L and a
submultiplicative function g, with an integrability property of its compen-
sator measure ν. For the notions of the g-moment and submultiplicative
function, we refer to Definitions 25.1 and 25.2 in Sato (1999).

Lemma 2.7 (g-Moment). Let g be a submultiplicative, locally bounded, mea-
surable function on Rd. Then the following statements are equivalent

(1)
∫ T̄
0

∫
D g(x)ν(dt,dx) <∞

(2) IE [g(LT̄ )] <∞.

Proof. The result follows from Theorem 25.3 in Sato (1999) combined with
Lemma 6 in Eberlein and Kluge (2004). �

Now, since g(x) = exp〈u, x〉 is a submultiplicative function, we immedi-
ately get the following equivalence concerning Assumption (EM).

Corollary 2.8. Let M > 1 be a constant. Then the following statements
are equivalent

(1)
∫ T̄
0

∫
D exp〈u, x〉ν(dt,dx) <∞, ∀u ∈ [−M,M ]d

(2) IE [exp〈u, LT̄ 〉] <∞, ∀u ∈ [−M,M ]d.

We can describe the characteristic triplet of the dual of a 1-dimensional
PIIAC in terms of the characteristic triplet of the original process. First we
introduce some necessary notation and the next lemma provides the result.

Notation. We denote by −λt the Lévy measure defined by

−λt([a, b]) := λt([−b,−a])

for a, b ∈ R, a < b, t ∈ R+. Thus, −λt is a non-negative measure and
the mirror image of the original measure with respect to the vertical axis.
For a compensator of the form ν(dt,dx) = λt(dx)dt, we denote by −ν the
(non-negative) measure defined as

−ν(dt,dx) := −λt(dx)dt.

Whenever we use the symbol “−” in front of a Lévy measure or a compen-
sator, we will refer to measures defined as above.

Lemma 2.9 (dual characteristics). Let L be a PIIAC, as described above,
with characteristic triplet (B,C, ν). Then L? := −L is again a PIIAC with
characteristic triplet (B?, C?, ν?), where B? = −B, C? = C and ν? = −ν.

Proof. From the Lévy-Khintchine representation we have that

ϕLt(u) = IE
[
eiuLt

]
= exp

t∫
0

[
ibsu−

cs
2
u2 +

∫
R

(eiux − 1− iux)λs(dx)
]
ds.
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We get immediately

ϕ−Lt(u) = ϕLt(−u)

= exp

t∫
0

[
ibs(−u)−

cs
2
u2 +

∫
R

(ei(−u)x − 1− i(−u)x)λs(dx)
]
ds

= exp

t∫
0

[
i(−bs)u−

cs
2
u2 +

∫
R

(eiu(−x) − 1− iu(−x))λs(dx)
]
ds.

Then b?t = −bt, c?t = ct, and λ?
t = −λt clearly satisfy Assumption (AC).

Hence, we can conclude that L? is also a PIIAC and has characteristics
B?

t =
∫ t
0 b

?
sds = −Bt, C?

t =
∫ t
0 c

?
sds = Ct and ν?(dt,dx) = λ?

t (dx)dt =
−ν(dt,dx). �

3. General description of the method

In this section, we give a brief and general description of the method we
shall use to explore symmetries in option pricing. The method is based on
the choice of a suitable numéraire and a subsequent change of the underlying
probability measure; we refer to Geman et al. (1995) who pioneered this
method.

The discounted asset price process, corrected for dividends, serves as the
numéraire for a number of cases, in case the option payoff is homogeneous
of degree one. Using the numéraire, evaluated at the time of maturity, as
the Radon-Nikodym derivative, we form a new measure. Under the new
measure, the numéraire asset is riskless while all other assets, including the
savings account are now risky. In case the payoff is homogeneous of higher
degree, say α ≥ 1, we have to modify the asset price process so that it serves
as the numéraire. As a result, the asset dynamics under the new measure
will depend on α as well.

We consider three cases for the driving process L and the asset price
process(es):

(P1): L = L1 is a (1-d) PIIAC, L2 = k is constant and S1 = S1
0 expL1,

S2 = expL2 = K;
(P2): L = L1 is a (1-d) PIIAC, S1 = S1

0 expL1 and S2 = h(S1) is a
functional of S1;

(P3): L = (L1, L2) is a 2-dimensional PIIAC and S i = S i
0 expLi ,

i = 1, 2.
Consider a payoff function

f : R+ × R+ → R+ (3.1)

which is homogeneous of degree α ≥ 1, that is for κ, x, y ∈ R∗
+

f(κx, κy) = καf(x, y);

for simplicity we assume that α = 1 and later —in the case of power
options— we will treat the case of a more general α.

According to the general arbitrage pricing theory (Delbaen and Schacher-
mayer 1994, 1998), the value V of an option on assets S1, S2 with payoff
f is equal to its discounted expected payoff under an equivalent martingale
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measure. Throughout the paper, we will assume that options start at time
0 and mature at T , therefore we have

V = e−rT IE
[
f

(
S1

T , S
2
T

)]
. (3.2)

We choose asset S1 as the numéraire and express the value of the option
in terms of this numéraire, which yields

Ṽ =
V

S1
0

= e−rT IE

[
f

(
S1

T , S
2
T

)
S1

0

]

= e−δ1T IE
[

e−rTS1
T

e−δ1TS1
0

f

(
1,
S2

T

S1
T

)]
. (3.3)

Define a new measure ĨP via the Radon-Nikodym derivative

dĨP
dIP

=
e−rTS1

T

e−δ1TS1
0

= ηT . (3.4)

After the change of measure, the valuation problem, under the measure ĨP,
becomes

Ṽ = e−δ1T ĨE
[
f

(
1, S1,2

T

)]
(3.5)

where we define the process S1,2 := S2

S1 .
The measures IP and ĨP are related via the density process ηt = IE[ηT |Ft],

therefore ĨP loc∼ IP and we can apply Girsanov’s theorem for semimartingales
(cf. Jacod and Shiryaev 2003, III.3.24); this will allow us to determine the
dynamics of S1,2 under ĨP.

After some calculations, which depend on the particular choice of L2 or
S2, we can transform the original valuation problem into a simpler one.

4. Vanilla options

These results are motivated by Carr (1994), where a symmetry relation-
ship between European call and put options in the Black and Scholes (1973),
Merton (1973) model was derived. This result was later extended by Carr
and Chesney (1996) to American options for the Black-Scholes case and
for general diffusion models; see also McDonald and Schroder (1998) and
Detemple (2001).

This relationship has an intuitive interpretation in foreign exchange mar-
kets (cf. Wystup 2002). Consider the Euro/Dollar market; then a call op-
tion on the Euro/Dollar exchange rate St with payoff (ST −K)+ has time-t
value Vc(St,K; rd, re) in dollars and Vc(St,K; rd, re)/St in euros. This euro-
call option can also be viewed as a dollar-put option on the Dollar/Euro rate
with payoff K(K−1−S−1

T )+ and time-t value KVp(K−1, S−1
T ; re, rd) in euros.

Since the processes S and S−1 have the same (Black-Scholes) volatility, by
the absence of arbitrage opportunities, their prices must be equal.
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4.1. Symmetry. For Vanilla options, the setting is that of (P1): L1 = L
is the driving R-valued PIIAC with triplet (B,C, ν), S1 = expL1 = S and
L2 = k, such that S2 = ek = K, the strike price of the option.

In accordance with the standard notation, we will use σ2
s instead of cs,

which corresponds to the volatility in the Black-Scholes model. Therefore,
the characteristic C in (2.2) has the form Ct =

∫ t
0 σ

2
sds.

We will prove a more general version of Carr’s symmetry, namely a sym-
metry relating power options; the payoff of the power call and put option
respectively is [

(ST −K)+
]α and

[
(K − ST )+

]α

where α ≥ 1, α ∈ N (more generally α ∈ R). We introduce the following
notation for the value of a power call option with strike K and power index
α

Vc(S0,K, α; r, δ, C, ν) = e−rT IE
[
(ST −K)+

]α

where the asset is modeled as an exponential PIIAC according to (2.3)–(2.5)
and x+ = max{x, 0}. Similarly, for a power put option we set

Vp(S0,K, α; r, δ, C, ν) = e−rT IE
[
(K − ST )+

]α
.

Of course, for α = 1 we recover the European plain vanilla option and the
power index α will be omitted from the notation.

Assumption (EM) can be replaced by the following weaker assumption,
which is the minimal condition necessary for the symmetry results to hold.
Let D+ = D ∩ R+ and D− = D ∩ R−.

Assumption (M). The Lévy measures λt of the distribution of Lt satisfy
T̄∫

0

∫
D−

|x|λt(dx)dt <∞ and

T̄∫
0

∫
D+

xeαxλt(dx)dt <∞.

Theorem 4.1. Assume that (M) is in force and the asset price evolves as
an exponential PIIAC according to equations (2.3)–(2.5). We can relate the
power call and put option via the following symmetry:

Vc(S0,K, α; r, δ, C, ν) = KαSα
0 CT eαC∗T Vp(S−1

0 ,K, α; δ, r, C,−fν) (4.1)

where the constants C and C∗ are given by (4.3) and (4.10) respectively,
K = K−1e−C∗T and f(x) = eαx.

Proof. Firstly, we note that [e(δ−r)tSt]α = Sα
0 exp(α(δ − r)t + αLt) is not a

IP-martingale; we denote by Lα the martingale part of the exponent, hence

Lα
t =

t∫
0

ασsdWs +

t∫
0

∫
R

αx(µL − ν)(ds,dx).

Since Lα is exponentially special, with Theorem 2.18 in Kallsen and Shiryaev
(2002) we have that its exponential compensator, denoted CLα, has the form

CLα
t =

1
2

t∫
0

α2σ2
sds+

t∫
0

∫
R

(eαx − 1− αx)ν(ds,dx)
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and exp(Lα − CLα) ∈M.
The price of the power call option expressed in units of the numéraire

yields

Ṽc :=
Vc

Sα
0

=
e−rT

Sα
0

IE
[
(ST −K)+

]α

= e−δT IE
[
e−rTSα

TK
α

e−δTSα
0

[
(K−1 − S−1

T )+
]α

]

= e−δTKαIE
[

exp
(
(δ − r)T + α

T∫
0

bsds+ CLα
T

)
× exp

(
Lα

T − CLα
T

) [
(K−1 − S−1

T )+
]α

]
= e−δTKαCT IE

[
exp

(
Lα

T − CLα
T

) [
(K−1 − S−1

T )+
]α

]
(4.2)

where, using (2.5) and (2.2), we have that

log CT = (δ − r)T + αBT + CLα
T

= (α− 1)(r − δ)T +
α(α− 1)

2

T∫
0

σ2
sds

+

T∫
0

∫
R

(eαx − αex + α− 1)ν(ds,dx). (4.3)

Define a new measure ĨP via its Radon-Nikodym derivative

dĨP
dIP

= exp
(
Lα

T − CLα
T

)
= ηT (4.4)

and the valuation problem (4.2) becomes

Ṽc = e−δTKαCT ĨE
[
(K̃ − S̃T )+

]α
(4.5)

where K̃ = K−1 and S̃t := S−1
t .

Since the measures IP and ĨP are related via the density process (ηt), which
is a positive martingale with η0 = 1, we immediately deduce that ĨP loc∼ IP
and we can apply Girsanov’s theorem for semimartingales (cf. Jacod and
Shiryaev 2003, III.3.24). The density process can be represented in the usual
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form

ηt = IE
[
dĨP
dIP

∣∣∣∣Ft

]
= exp

(
Lα

t − CLα
t

)
= exp

[ t∫
0

ασsdWs +

t∫
0

∫
R

αx(µL − ν)(ds,dx)

− 1
2

t∫
0

α2σ2
sds−

t∫
0

∫
R

(eαx − 1− αx)ν(ds,dx)
]
. (4.6)

Consequently, we can identify the tuple (β, Y ) of predictable processes

β(t) = α and Y (t, x) = exp(αx)

that characterizes the change of measure.
From Girsanov’s theorem combined with Theorem II.4.15 in Jacod and

Shiryaev (2003), we deduce that a PIIAC remains a PIIAC under the mea-
sure ĨP, because the processes β and Y are deterministic and the resulting
characteristics under ĨP satisfy Assumption (AC).

As a consequence of Girsanov’s theorem for semimartingales, we infer
that W̃t = Wt −

∫ t
0 ασsds is a ĨP-Brownian motion and ν̃ = Y ν is the ĨP

compensator of the jumps of L. Furthermore, as a corollary of Girsanov’s
theorem, we can calculate the canonical decomposition of L under ĨP;

Lt =

t∫
0

b̃sds+

t∫
0

σsdW̃s +

t∫
0

∫
R

x(µL − ν̃)(ds,dx) (4.7)

where

B̃t =

t∫
0

b̃sds = (r − δ)t+
(
α− 1

2

) t∫
0

σ2
sds

+

t∫
0

∫
R

(e−αx − e(1−α)x + x)ν̃(ds,dx) (4.8)

hence, its triplet of characteristics is (B̃, C, ν̃). Define its dual process, L? :=
−L and by Lemma 2.9, we get that its triplet is (B?, C?, ν?) = (−B̃, C,−ν̃).
The canonical decomposition of L? is

L?
t = −

t∫
0

b̃sds+

t∫
0

σsdW ?
s +

t∫
0

∫
R

x(µL? − ν?)(ds,dx) (4.9)

and we can easily deduce that e(r−δ)tS?
t is not a ĨP-martingale for α 6= 1.

Adding the appropriate terms, we can re-write L? as L? := C∗ +L, where

C∗ = (1− α)

·∫
0

σ2
sds−

·∫
0

∫
R

(e−αx − e(1−α)x + 1− e−x)ν̃(ds,dx) (4.10)
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and L is such that e(r−δ)tSt is a ĨP-martingale. The characteristic triplet of
L is (B? − C∗, C, ν?) and St = S−1

0 expLt.
Therefore, we can conclude the proof

Ṽc = e−δTKαCT ĨE
[
(K̃ − S̃T )+

]α

= e−δTKαCT ĨE
[
(K̃ − eC∗TST )+

]α

= e−δTKαCT eαC∗T ĨE
[
(K− ST )+

]α

where K = K̃e−C∗T = K−1e−C∗T . �

Setting α = 1 in the previous Theorem, we immediately get a symmetry
between European plain vanilla call and put options.

Corollary 4.2. Assuming that (M) is in force and the asset price evolves
as an exponential PIIAC, we can relate the European call and put option via
the following symmetry:

Vc (S0,K; r, δ, C, ν) = KS0Vp

(
S−1

0 ,K−1; δ, r, C,−fν
)

(4.11)

where f(x) = ex.

This symmetry relating European and also American plain vanilla call
and put options, in exponential Lévy models, was proved independently in
Fajardo and Mordecki (2003). Schroder (1999) proved similar results in
a general semimartingale model; however, using a Lévy or PIIAC as the
driving motion allows for the explicit calculation of the distribution under
the new measure.

A different symmetry, again relating European and American call and
put options, in the Black-Scholes model was derived by Peskir and Shiryaev
(2002), where they use the mathematical concept of negative volatility; their
main result states that

Vc(ST ,K;σ) = Vp(−ST ,−K;−σ). (4.12)

See also the discussion —and the corresponding cartoon— in Haug (2002).
In this framework, one can derive symmetry relationships between self-

quanto and European plain vanilla options. This result is, of course, a special
case of Theorem 6.4; nevertheless, we give a short proof since it simplifies
considerably because the driving process is 1-dimensional.

The payoff of the self-quanto call and put option is

ST (ST −K)+ and ST (K − ST )+

respectively. Introduce the following notation for the value of the self-quanto
call option

Vqc(S0,K; r, δ, C, ν) = e−rT IE
[
ST (ST −K)+

]
and similarly, for the self-quanto put option we set

Vqp(S0,K; r, δ, C, ν) = e−rT IE
[
ST (K − ST )+

]
.

Assumption (EM) can be replaced by the following weaker assumption,
which is the minimal condition necessary for the symmetry results to hold.
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Assumption (M′). The Lévy measures λt of the distribution of Lt satisfy

T̄∫
0

∫
D−

|x|λt(dx)dt <∞ and

T̄∫
0

∫
D+

e2xλt(dx)dt <∞.

Theorem 4.3. Assume that the asset price evolves as an exponential PIIAC
and (M′) is in force. We can relate the self-quanto and European plain
vanilla call and put options via the following symmetry:

Vqc(S0,K; r, δ, C, ν) = S0eC
∗
T Vc(S0,K

∗; δ, r, C, fν) (4.13)

Vqp(S0,K; r, δ, C, ν) = S0eC
∗
T Vp(S0,K

∗; δ, r, C, fν) (4.14)

where C∗ is given by (4.16), K∗ = Ke−C
∗
T and f(x) = ex.

Proof. Expressing the value of the self-quanto call option in units of the
numéraire as described in Section 3, we define a new measure ĨP via its
Radon-Nikodym derivative given by (3.4) and the original valuation problem
becomes

Ṽqc = e−δT ĨE
[
(ST −K)+

]
. (4.15)

Now it suffices to calculate the characteristic triplet of L under ĨP. Arguing
as in the proof of Theorem 4.1, the density process η has the form (4.6) for
α = 1 hence, the tuple (β, Y ) of predictable processes that describes the
change of measure is

β(t) = 1 and Y (t, x) = exp(x).

Therefore, L has the canonical decomposition under ĨP

Lt =

t∫
0

b̃sds+

t∫
0

σsdW̃s +

t∫
0

∫
R

x(µL − ν̃)(ds,dx)

where

b̃t = r − δ +
σ2

t

2
+

∫
R

(e−x − 1 + x)exλt(dx).

Notice that e(r−δ)teLt is not a ĨP-martingale, but if we define L∗ as

L∗t := (δ − r)t+

t∫
0

σsdW̃s +

t∫
0

∫
R

x(µL − ν̃)(ds,dx)

−
t∫

0

σ2
t

2
ds−

t∫
0

∫
R

(ex − 1− x)exν(ds,dx)

then e(r−δ)teL∗t ∈M. Next, we re-express L as L = L∗ + C∗, where

C∗T = exp
[
2(r − δ)T +

T∫
0

σ2
sds+

T∫
0

∫
R

(ex + e−x − 2)exν(ds,dx)
]
. (4.16)

By re-arranging the terms in (4.15), the result follows. �
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4.2. Valuation of European options. We outline a method for the val-
uation of vanilla options, based on bilateral Laplace transforms, that was
developed in the PhD thesis of Sebastian Raible; see Chapter 3 in Raible
(2000). The method is extremely fast and allows for the valuation not only
of plain vanilla European derivatives, but also of more complex payoffs, such
as digital, self-quanto and power options; in principle, every European pay-
off can be priced using this method. Moreover, a large variety of driving
processes can be handled, including Lévy and additive processes.

The main idea of Raible’s method is to represent the option price as a
convolution of two functions and consider its bilateral Laplace transform;
then, using the property that, the Laplace transform of a convolution equals
the product of the Laplace transforms of the factors, we arrive at two Laplace
transforms that are easier to calculate analytically than the original one.
Inverting this Laplace transform yields the option price.

A similar method, in Fourier space, can be found in Lewis (2001). See
also Carr and Madan (1999) for some preliminary results that motivated
this research. Lee (2004) unifies and generalizes the existing Fourier-space
methods and develops error bounds for the discretized inverse transforms.

We first state the necessary Assumptions regarding the distribution of the
asset price process and the option payoff respectively.

(L1): Assume that ϕLT
(z), the extended characteristic function of LT ,

exists for all z ∈ C with =z ∈ I1 ⊃ [0, 1].
(L2): Assume that IPLT

, the distribution of LT , is absolutely contin-
uous w.r.t. the Lebesgue measure λ\1 with density ρ.

(L3): Consider a European-style payoff function f(ST ) that is inte-
grable.

(L4): Assume that x 7→ e−Rx|f(e−x)| is bounded and integrable for all
R ∈ I2 ⊂ R.

In order to price a European option with payoff function f(ST ), we pro-
ceed as follows.

V = e−rT IE[f(ST )] = e−rT

∫
Ω

f(ST )dIP

= e−rT

∫
R

f(S0ex)dIPLT
(x)

= e−rT

∫
R

f(S0ex)ρ(x)dx (4.17)

because of absolute continuity. Define ζ = − logS0 and g(x) = f(e−x), then

V = e−rT

∫
R

g(ζ − x)ρ(x)dx = e−rT (g ∗ ρ)(ζ) (4.18)
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which is a convolution at point ζ. Applying bilateral Laplace transforms on
both sides of (4.18) and using Theorem B.2 in Raible (2000), we get

LV (z) = e−rT

∫
R

e−zx(g ∗ ρ)(x)dx

= e−rT

∫
R

e−zxg(x)dx
∫
R

e−zxρ(x)dx

= e−rT Lg(z)Lρ(z) (4.19)

where Lh(z) denotes the bilateral Laplace transform of a function h at z ∈ C,
i.e. Lh(z) :=

∫
R e−zxh(x)dx. The Laplace transform of g is very easy to

compute analytically and the Laplace transform of ρ can be expressed as
the extended characteristic function ϕLT

of LT . By numerically inverting
this Laplace transform, we recover the option price.

The next Theorem gives us an explicit expression for the price of an option
with payoff function f and driving PIIAC L.

Theorem 4.4. Assume that (L1)–(L4) are in force and let g(x) := f(e−x)
denote the modified payoff function of an option with payoff f(x) at time T .
Assume that I1 ∩ I2 6= ∅ and choose an R ∈ I1 ∩ I2. Letting V (ζ) denote the
price of this option, as a function of ζ := − logS0, we have

V (ζ) =
eζR−rT

2π

∫
R

eiuζLg(R+ iu)ϕLT
(iR− u)du, (4.20)

whenever the integral on the r.h.s. exists.

Proof. The claim can be proved using the arguments of the proof of Theorem
3.2 in Raible (2000); there, no explicit statement is made about the driving
process L, hence it directly transfers to the case of a time-inhomogeneous
Lévy process. �

Remark 4.5. In order to apply this method, validity of the necessary as-
sumptions has to be verified. (L1), (L3) and (L4) are easy to certify, while
(L2) is the most demanding one. Let us mention that the distributions
underlying the most popular Lévy processes, such as the Generalized Hy-
perbolic Lévy motion (cf. Eberlein and Prause 2002), possess a known
Lebesgue density.

Remark 4.6. The method of Raible for the valuation of European op-
tions can be applied to general driving processes that satisfy Assumptions
(L1)–(L4). Therefore it can also be applied to stochastic volatility models
based on Lévy processes that have attracted much interest lately; we refer
to Barndorff-Nielsen and Shephard (2001), Eberlein et al. (2003) and Carr
et al. (2003) for an account of different models.

4.3. Valuation of American options. The method of Raible presented
in the previous section, can be used for pricing several types of European
derivatives, but not path-dependent ones. The valuation of American op-
tions in Lévy driven models is quite a hard task and no analytical solution
exists for the finite horizon case.
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For perpetual American options, i.e. options with infinite time horizon,
Mordecki (2002) derived formulas in the general case in terms of the law of
the extrema of the Lévy process, using a random walk approximation to the
process. He also provides explicit solutions for the case of a jump-diffusion
with exponential jumps. Alili and Kyprianou (2005) recapture the results
of Mordecki making use of excursion theory. Boyarchenko and Levendorskǐı
(2002c) obtained formulas for the price of the American put option in terms
of the Wiener-Hopf factors and derive some more explicit formulas for these
factors. Asmussen et al. (2004) find explicit expressions for the price of
American put options for Lévy processes with two-sided phase-type jumps;
the solution uses the Wiener-Hopf factorization and can also be applied to
regime-switching Lévy processes with phase-type jumps.

For the valuation of finite time horizon American options one has to resort
to numerical methods. Denote by x = lnS the log price, τ = T − t the time
to maturity and v(τ, x) = f(ex, T − τ) the time-t value of an option with
payoff function g(ex) = φ(x). One approach is to use numerical schemes for
solving the corresponding partial integro-differential inequality (PIDI),

∂v

∂τ
−Av + rv ≥ 0 in (0, T )× R (4.21)

subject to the conditions
v(τ, x) ≥ φ(x), a.e. in [0, T ]× R
(v(τ, x)− φ(x))

(
∂v
∂τ −Av + rv

)
= 0, in (0, T )× R

v(0, x) = φ(x)
(4.22)

where

Av(x) =
(
r − δ − σ2

2

)dv
dx

+
σ2

2
d2v

dx2

+
∫
R

(
v(x+ y)− v(x)− (ey − 1)

dv
dx

(x)
)
λ(dy) (4.23)

is the infinitesimal generator of the transition semigroup of L; see Matache
et al. (2005, 2005) for all the details and numerical solution of the prob-
lem using wavelets. Almendral (2005) solves the problem numerically using
implicit-explicit methods in case the CGMY is the driving process. Equa-
tion (4.21) is a backward PIDE in spot and time to maturity; Carr and Hirsa
(2003) develop a forward PIDE in strike and time of maturity and solve it
using finite-difference methods.

Another alternative is to employ Monte Carlo methods adapted for op-
timal stopping problems such as the American option; we refer to Rogers
(2002) or Glasserman (2003). Këllezi and Webber (2004) constructed a lat-
tice for Lévy driven assets and applied it to the valuation of Bermudan
options. Levendorskǐı (2004) develops a non-Gaussian analog of the method
of lines and uses Carr’s randomization method in order to formulate an ap-
proximate algorithm for the valuation of American options. Chesney and
Jeanblanc (2004) revisit the perpetual American problem and obtain formu-
las for the optimal boundary when jumps are either only positive or only
negative. Using these results, they approximate the finite horizon problem
in a fashion similar to Barone-Adesi and Whaley (1987). Empirical tests
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Option type Asian Payoff Lookback payoff
Fixed Strike call (ΣT −K)+ (MT −K)+

Fixed Strike put (K − ΣT )+ (K −NT )+

Floating Strike call (ST − ΣT )+ (ST −NT )+

Floating Strike put (ΣT − ST )+ (MT − ST )+

Table 5.1. Types of payoffs for Asian and Lookback options

show that this approximation provides good results only when the process
is continuous at the exercise boundary.

5. Exotic options

The work on this topic follows along the lines of Henderson and Wo-
jakowski (2002); they proved an equivalence between the price of floating
and fixed strike Asian options in the Black-Scholes model. We also refer to
Vanmaele et al. (2006) for a generalization of these results to forward-start
options and discrete averaging in the Black-Scholes model.

5.1. Symmetry. For Exotic options, the setting is that of (P2): L1 = L
is the driving R-valued PIIAC with triplet (B,C, ν), S1 = S1

0 expL1 = S
and S2 = h(S) is a functional of S. The most prominent candidates for
functionals are the maximum, the minimum and the (arithmetic) average;
let 0 = t1 < t2 < · · · < tn = T be equidistant time points, then the resulting
processes, in case of discrete monitoring, are

MT = max
0≤ti≤T

Sti , NT = min
0≤ti≤T

Sti and ΣT =
1
n

n∑
i=1

Sti .

Therefore, we can exploit symmetries between floating and fixed strike Asian
and lookback options in this framework; the different types of payoffs of the
Asian and lookback option are summarized in Table 5.1.

We introduce the following notation for the value of the floating strike
call option, be it Asian or lookback

Vc(ST , h(S); r, δ, C, ν) = e−rT IE
[
(ST − h(S)T )+

]
and similarly, for the fixed strike put option we set

Vp(K,h(S); r, δ, C, ν) = e−rT IE
[
(K − h(S)T )+

]
;

similar notation will be used for the other two cases.
Now we can state a result that relates the value of floating and fixed

strike options. Notice that because stationarity of the increments plays an
important role in the proof, the result is valid only for Lévy processes.

Theorem 5.1. Assuming that the asset price evolves as an exponential Lévy
process, we can relate the floating and fixed strike Asian or lookback option
via the following symmetry:

Vc

(
ST , h(S); r, δ, σ2, λ

)
= Vp

(
S0, h(S); δ, r, σ2,−fλ

)
(5.1)

Vp

(
h(S), ST ; r, δ, σ2, λ

)
= Vc

(
h(S), S0; δ, r, σ2,−fλ

)
(5.2)

where f(x) = ex.
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Proof. We refer to the proof of Theorems 3.1 and 4.1 in Eberlein and Pa-
papantoleon (2005). The minimal assumptions necessary for the results to
hold are also stated there. �

Remark 5.2. These results also hold for forward-start Asian and look-
back options, for continuously monitored options, for partial options and
for Asian options on the geometric and harmonic average; see Eberlein and
Papapantoleon (2005) for all the details. Note that the equivalence result is
not valid for in-progress Asian options.

5.2. Valuation of Barrier and Lookback options. The valuation of
barrier and lookback options for assets driven by general Lévy processes
is another hard mathematical problem. The difficulty stems from the fact
that (a) the distribution of the supremum or infimum of a Lévy process is
not known explicitly and (b) the overshoot distribution associated with the
passage of a Lévy process across a barrier is also not known explicitly.

Various authors have treated the problem in case the driving process is
a spectrally positive/negative Lévy process, see for example Rogers (2000),
Schürger (2002) and Avram et al. (2004). Kou and Wang (2003, 2004)
have derived explicit formulas for the values of barrier and lookback op-
tions in a jump diffusion model where the jumps are double-exponentially
distributed; they make use of a special property of the exponential dis-
tribution, namely the memoryless property, that allows them to explicitly
calculate the overshoot distribution. Lipton (2002) derives similar formulas
for the same model, making use of fluctuation theory.

Fluctuation theory and the Wiener-Hopf factorization of Lévy processes
play a crucial role in every attempt to derive closed form solutions for the
value of barrier and lookback options in Lévy driven models. Introduce the
notation

Mt = sup
0≤s≤t

Ls and Nt = inf
0≤s≤t

Ls

and let θ denote a random variable exponentially distributed with parameter
q, independent of L. Then, the celebrated Wiener-Hopf factorization of the
Lévy process L states that

IE[exp(izLθ)] = IE[exp(izMθ)] · IE[exp(izNθ)] (5.3)

or equivalently

q(q − ψ(z))−1 = ϕ+
q (z) · ϕ−q (z), z ∈ R, (5.4)

where ψ denotes the characteristic exponent of L. The functions ϕ+
q and

ϕ−q have the following representations

ϕ+
q (z) = exp

[ ∞∫
0

t−1e−qtdt

∞∫
0

(eizx − 1)µt(dx)
]

(5.5)

ϕ−q (z) = exp
[ ∞∫

0

t−1e−qtdt

0∫
−∞

(eizx − 1)µt(dx)
]

(5.6)
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where µt(dx) = IPLt(dx) is the probability measure of Lt. These results
where first proved for Lévy processes in Bingham (1975) —where an approx-
imation of Lévy processes by random walks is employed— and subsequently
by Greenwood and Pitman (1980) —where excursion theory is applied. See
also the recent books by Sato (1999, Chapter 9) and Bertoin (1996, Chapter
VI) respectively, for an account of these two methods.

Building upon these results, various authors have derived formulas for the
valuation of barrier and lookback options; Boyarchenko and Levendorskǐı
(2002a) apply methods from potential theory and pseudodifferential opera-
tors to derive formulas for barrier and touch options, while Nguyen-Ngoc and
Yor (2005) use a probabilistic approach based on excursion theory. Recently,
Nguyen-Ngoc (2003) takes a similar probabilistic approach, motivated from
Carr and Madan (1999) and derives quite simple formulas for the value of
barrier and lookback options, that can be numerically evaluated with the
use of Fourier inversion algorithms in 2 and 3 dimensions.

More specifically, let us denote by Vc(MT ,K;T ) the price of a fixed strike
lookback option with payoff (MT − K)+, where MT = max0≤t≤T St and
S is an exponential Lévy process. Choose γ > 1 and α > 0 such that
IE[e2L1 ] < er+α and set V α,γ

c (MT ,K;T ) = e−αT−γkVc(MT ,K;T ) where k =
log(K/S0). Then, we have the following result.

Proposition 5.3. If k > 0, then for all q, u > 0 we have:
∞∫
0

e−qT dT

∞∫
0

e−ukV α,γ
c (MT , S0ek;T )dk =

= S0
1

q + r + α

1
z(z − 1)

[ϕ+
q+r+α(i(z − 1)) + (z − 1)ϕ+

q+r+α(−i)− z] (5.7)

where z = u+ γ.

Proof. We refer to the proof of Proposition 3.9 in Nguyen-Ngoc (2003). �

The formula for the value of the floating strike lookback option is —as
one could easily foresee— a lot more complicated than (5.7). Using the
symmetry result of Theorem 5.1, this case can be dealt with via a change of
the Lévy triplet and strike in the previous Proposition.

The Wiener-Hopf factors are not known explicitly in the general case and
numerical computation could be extremely time-consuming. Boyarchenko
and Levendorskǐı (2002b) provide some more efficient formulas for the Wiener-
Hopf factors of —what they call— regular Lévy processes of exponential type
(RLPE); for the definition refer to chapter 3 in the above mentioned refer-
ence. Given that L is an RLPE, ϕ+

q (z) has an analytic continuation on the
half plane =z > ω and

ϕ+
q (z) = exp

[ z

2πi

+∞+iω∫
−∞+iω

ln(q + ψ(u))
u(z − u)

du
]
. (5.8)

The family of RLPEs contains many popular —in mathematical finance—
Lévy motions such as the Generalized Hyperbolic and Variance Gamma
models, see Boyarchenko and Levendorskǐı (2002b).
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Discretely monitored options have received much less attention in the
literature than their continuous time counterparts. Borovkov and Novikov
(2002) use Fourier methods and Spitzer’s identity to derive formulas for fixed
strike lookback options.

Various numerical methods have been applied for the valuation of barrier
and lookback options in Lévy driven models. Cont and Voltchkova (2005a,
2005b) study finite-difference methods for the solution of the corresponding
PIDE, see also Matache et al. (2004). Ribeiro and Webber (2003, 2004) have
developed fast Monte Carlo methods for the valuation of exotic options in
models driven by the Variance Gamma (VG) and Normal Inverse Gaussian
(NIG) Lévy motions; their method is based on the construction of Gamma
and Inverse Gaussian bridges respectively, to speed up the Monte Carlo
simulation. The recent book of Schoutens (2003) contains a detailed account
of Monte Carlo methods for Lévy processes, also allowing for stochastic
volatility.

5.3. Valuation of Asian and Basket options. An explicit solution for
the value of the arithmetic Asian or Basket option is not known in the Black-
Scholes model and, of course, the situation is similar for Lévy models. The
difficulty is that the distribution of the arithmetic sum of log-normal random
variables —more generally random variables drawn from some log-infinitely
divisible distribution— is not know in closed-form.

Večeř and Xu (2004) formulated a PIDE for all types of Asian options
—including in-progress options— in a model driven by a process with inde-
pendent increments (PII) or, more generally, a special semimartingale. Their
derivation is based on the construction of a suitable self-financing trading
strategy to replicate the average and then a change of numéraire —which
is essentially the one we use— in order to reduce the number of variables
in the equation. Their PIDE is relatively simple and can be solved using
numerical techniques such as finite-differences.

Albrecher and Predota (2002, 2004) use moment-matching methods to
derive approximate formulas for the value of Asian options in some popular
Lévy models such as the NIG and VG models; they also derive bounds for
the option price in these models. See also the survey paper Albrecher (2004)
for a detailed account of the above mentioned results. Hartinger and Pre-
dota (2002) apply Quasi Monte-Carlo methods for the valuation of Asian
options in the Hyperbolic model. Their method can be extended to the
class of Generalized Hyperbolic Lévy motions, which contains the VG mo-
tion as a special case; see Eberlein and v. Hammerstein (2004). Benhamou
(2002), building upon the work of Carverhill and Clewlow (1992), uses the
Fast Fourier transform and a transformation of dependent variables into in-
dependent ones, in order to value discretely monitored fixed strike Asian
options. As he points out, this method can be applied when the return
distribution is fat-tailed, with Lévy processes being prominent candidates.

Henderson et al. (2004) derive an upper bound for in-progress floating
strike Asian options in the Black-Scholes model, using the symmetry result
of Henderson and Wojakowski (2002) and valuation methods for fixed strike
ones. Their pricing bound relies on a model-dependent symmetry result
and a model-independent decomposition of the floating-strike Asian option
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into a fixed-strike one and a vanilla option. Therefore, given the symmetry
result of Theorem 5.1, their general methodology can also be applied to Lévy
models.

Albrecher et al. (2005) derive static super-hedging strategies for fixed
strike Asian options in Lévy models; these results where extended to Lévy
models with stochastic volatility in Albrecher and Schoutens (2005). The
method is based on super-replicating the Asian payoff with a portfolio of
plain vanilla calls, using the following upper bound( n∑

j=1

Stj − nK
)+

≤
n∑

j=1

(Stj − nKj)+ (5.9)

and then optimizing the hedge, i.e. the choice of Kjs, using results from
co-monotonicity theory.

Similar ideas appear in Hobson et al. (2005) for the static super-hedging
of Basket options. The payoff of the basket option is super-replicated by
a portfolio of plain vanilla calls on each individual asset, using the upper
bound ( n∑

i=1

wiS
i
T −K

)+
≤

n∑
i=1

(
wiS

i
T − liK

)+ (5.10)

where li ≥ 0 and
∑n

i=1 li = 1; subsequently, the portfolio is optimized us-
ing co-monotonicity theory. Moreover, no distribution is assumed about the
asset dynamics, since all the information needed are the marginal distribu-
tions which can be deduced from the volatility smile; we refer to Breeden
and Litzenberger (1978). This is also observed by Albrecher and Schoutens
(2005).

6. Margrabe-type options

In this section we derive symmetry results between options involving two
assets —such as Margrabe or Quanto options— and European plain vanilla
options; therefore, we generalize results by Margrabe (1978) and Fajardo
and Mordecki (2003) to the case of time-inhomogeneous Lévy processes.
Schroder (1999) provides similar results for semimartingale models; the ad-
vantage of using a Lévy process or a PIIAC instead of a semimartingale as
the driving motion, is that the distribution of the asset returns under the
new measure can be deduced from the distribution of the returns of each
individual asset under the risk-neutral measure.

For Margrabe-type options, the setting is that of (P3): L = (L1, L2) is
the driving R2-valued PIIAC with triplet (B,C, ν) and S = (S1, S2) is the
asset price process. For convenience, we set

S i
t = S i

0 exp
[
(r − δi )t+ Li

t

]
, i = 1, 2, (6.1)

modifying the characteristic triplet (B,C, ν) accordingly.
With Theorem 25.17 in Sato (1999) and Lemma 2.4, Assumption (EM)

guarantees the existence of the moment generating function MLt of Lt for
u ∈ Cd such that <u ∈ [−M,M ]d. Furthermore, for u ∈ Cd with <u ∈



22 ERNST EBERLEIN AND ANTONIS PAPAPANTOLEON

[−M,M ]d, we have that

MLt(u) = ϕLt(−iu) = IE
[
e〈u,Lt〉

]
= exp

t∫
0

[
〈u, bs〉+

1
2
〈u, csu〉

+
∫
Rd

(e〈u,x〉 − 1− 〈u, x〉)λs(dx)
]
ds. (6.2)

The next result will allow us to calculate the characteristic triplet of a
1-dimensional process, defined as a scalar product of a vector with the d-
dimensional process L, from the characteristics of L under an equivalent
change of probability measure.

Proposition 6.1. Let L be a d-dimensional PIIAC with triplet (B,C, ν)
under IP, let u, v be vectors in Rd and v ∈ [−M,M ]d. Moreover let ĨP loc∼ IP,
with density

dĨP
dIP

=
e〈v,LT̄ 〉

IE[e〈v,LT̄ 〉]
.

Then, the 1-dimensional process L̂ := 〈u, L〉 is a ĨP-PIIAC and its charac-
teristic triplet is (B̂, Ĉ, ν̂) with

b̂s = 〈u, bs〉+
1
2
(
〈u, csv〉+ 〈v, csu〉

)
+

∫
Rd

〈u, x〉
(
e〈v,x〉 − 1

)
λs(dx)

ĉs = 〈u, csu〉

λ̂s = T (κs)

where T is a mapping T : Rd → R such that x 7→ T (x) = 〈u, x〉 and κs is a
measure defined by

κs(A) =
∫
A

e〈v,x〉λs(dx).

Proof. Because the density process (ηt) is given by ηt = e〈v,Lt〉IE[e〈v,Lt〉]−1,
using (6.2) we get

ĨE
[
ez〈u,Lt〉

]
= IE

[
ez〈u,Lt〉ηt

]
= IE

[
ez〈u,Lt〉e〈v,Lt〉IE

[
e〈v,Lt〉]−1

]
= IE

[
e〈zu+v,Lt〉

]
IE

[
e〈v,Lt〉

]−1
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= exp

t∫
0

[
〈zu+ v, bs〉+

1
2
〈zu+ v, cs(zu+ v)〉

+
∫
Rd

(e〈zu+v,x〉 − 1− 〈zu+ v, x〉)λs(dx)
]
ds

× exp

t∫
0

−
[
〈v, bs〉+

1
2
〈v, csv〉

+
∫
Rd

(e〈v,x〉 − 1− 〈v, x〉)λs(dx)
]
ds

= exp

t∫
0

[
z
{
〈u, bs〉+

1
2
(
〈u, csv〉+ 〈v, csu〉

)
+

∫
Rd

〈u, x〉
(
e〈v,x〉 − 1

)
λsds

}
+

1
2
z2〈u, csu〉

+
∫
Rd

(
ez〈u,x〉 − 1− z〈u, x〉

)
e〈v,x〉λs(dx)

]
ds. (6.3)

If we write κs for the measure on Rd given by

κs(A) =
∫
A

e〈v,x〉λs(dx) (6.4)

A ∈ B(Rd) and T for the linear mapping T : Rd → R given by T (x) = 〈u, x〉,
then we get for the last term in the exponent of (6.3)∫

Rd

(
ez〈u,x〉 − 1− z〈u, x〉

)
e〈v,x〉λs(dx) =

∫
R

(
ezy − 1− zy

)
T (κs)(dy)

by the change-of-variable formula. The resulting characteristics satisfy As-
sumption (AC), thus the result follows. �

The valuation of options depending on two assets modeled by a 2-dimen-
sional PIIAC can now be simplified —using the technique described in sec-
tion 3 and Proposition 6.1— to the valuation of an option on a 1-dimensional
asset. Subsequently, this option can be priced using bilateral Laplace trans-
forms, as described in section 4.2.

The payoff of a Margrabe option, or option to exchange one asset for
another, is (

S1
T − S2

T

)+

and we denote its value by

Vm(S1
0 , S

2
0 ; r, δ, C, ν) = e−rT IE

[(
S1

T − S2
T

)+
]

where δ = (δ1, δ2). The payoff of the Quanto call and put option is

S1
T

(
S2

T −K
)+ and S1

T

(
K − S2

T

)+
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respectively and we will use the following notation for the value of the
Quanto call option

Vqc(S1
0 , S

2
0 ,K; r, δ, C, ν) = e−rT IE

[
S1

T

(
S2

T −K
)+

]
and similarly for the Quanto put option

Vqp(S1
0 , S

2
0 ,K; r, δ, C, ν) = e−rT IE

[
S1

T

(
K − S2

T

)+
]
.

The different variants of the Quanto option traded in Foreign Exchange
markets are explained in Musiela and Rutkowski (1997). The payoff of a
cash-or-nothing and a 2-dimensional asset-or-nothing option is

1l{ST >K} and S1
T 1l{S2

T >K}.

The holder of a 2-dimensional asset-or-nothing option receives one unit of
asset S1 at expiration, if asset S2 ends up in the money; of course, this is
a generalization of the (standard) asset-or-nothing option, where the holder
receives one unit of the asset if it ends up in the money. We denote the
value of the cash-or-nothing option by

Vcn(S0,K; r, δ, C, ν) = e−rT IE
[
1l{ST >K}

]
and the value of the 2-dimensional asset-or-nothing option by

Van(S1
0 , S

2
0 ,K; r, δ, C, ν) = e−rT IE

[
S1

T 1l{S2
T >K}

]
.

Notice that in the the first case r, δ, C and ν correspond to a 1-dimensional
driving process, while in the second case to a 2-dimensional one.

Theorem 6.2. Let Assumption (EM) be in force and assume that the asset
price evolves as an exponential PIIAC according to equations (2.3)–(2.5).
We can relate the value of a Margrabe and a European plain vanilla option
via the following symmetry:

Vm(S1
0 , S

2
0 ; r, δ, C, ν) = IE[S1

T ]e
bCT Vp

(
S2

0/S
1
0 ,K; δ1, r, Ĉ, ν̂

)
(6.5)

where K = e−bCT , Ĉ is given by (6.9) and the characteristics (Ĉ, ν̂) are given
by Proposition 6.1 for v = (1, 0) and u = (−1, 1).

Proof. Expressing the value of the Margrabe option in units of the numéraire,
we get

Ṽ :=
Vm

S1
0

=
e−rT

S1
0

IE
[(
S1

T − S2
T

)+
]

= e−δ1T IE

[
e−rTS1

T

e−δ1TS1
0

η1
T

η1
T

(
1−

S2
T

S1
T

)+
]

where η1 = IE[exp(L1)] = IE[exp〈v, L〉], for v = (1, 0) and using (6.1) we get

= e−δ1T η1
T IE

[
eL1

T

η1
T

(
1−

S2
T

S1
T

)+
]
. (6.6)
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Define a new measure ĨP via its Radon-Nikodym derivative

dĨP
dIP

=
eL1

T

IE[eL1
T ]

and the valuation problem takes the form

Ṽ = e−δ1T η1
T ĨE

[(
1− ŜT

)+
]

where, using (6.1) we get

Ŝt :=
S2

t

S1
t

=
S2

0

S1
0

e(δ1−δ2)t+L2
t−L1

t =: Ŝ0 exp
[
(δ1 − δ2)t+ L̂t

]
(6.7)

and L̂ := L2 − L1 = 〈u, L〉 for u = (−1, 1). The characteristic triplet of L̂,
(B̂, Ĉ, ν̂) under ĨP, is given by Proposition 6.1 for v = (1, 0) and u = (−1, 1).

Observe that e(r−δ1)tŜt is not a ĨP-martingale. However, if we define

Lt := (δ1 − r)t− 1
2

t∫
0

ĉsds−
t∫

0

∫
R

(ex − 1− x)ν̂(ds,dx)

+

t∫
0

ĉ1/2
s dW̃s +

t∫
0

∫
R

x(µbL − ν̂)(ds,dx) (6.8)

where W̃ is a ĨP-standard Brownian motion and µbL is the random measure
of jumps of L̂, then e(r−δ1)teLt ∈M. Therefore, we re-express the exponent
of (6.7) as L̂t + (δ1 − δ2)t = Lt + Ĉt where

Ĉt = (r − δ2)t+

t∫
0

b̂sds+
1
2

t∫
0

ĉsds+

t∫
0

∫
R

(ex − 1− x)ν̂(ds,dx) (6.9)

and define St := Ŝ0 expLt.
Now the result follows, because

Ṽ = e−δ1T η1
T ĨE

[(
1− ŜT

)+
]

= e−δ1T η1
T ĨE

[(
1− ST e

bCT

)+
]

= e−δ1T η1
T e

bCT ĨE
[(

e−
bCT − ST

)+
]
.

�

Theorem 6.3. Let Assumption (EM) be in force and assume that the asset
price evolves as an exponential PIIAC according to equations (2.3)–(2.5).
We can relate the value of a Quanto and a European plain vanilla call option
via the following symmetry:

Vqc(S1
0 , S

2
0 ,K; r, δ, C, ν) = IE[S1

T ]e
bCT Vp

(
S2

0 ,K; δ1, r, Ĉ, ν̂
)

(6.10)
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where K = e−bCT , the constant Ĉ is given by

Ĉt = (2r − δ1 − δ2)t+

t∫
0

b̂sds+
1
2

t∫
0

ĉsds+

t∫
0

∫
R

(ex − 1− x)ν̂(ds,dx)

and the characteristics (Ĉ, ν̂) are given by Proposition 6.1 for v = (1, 0) and
u = (0, 1). A similar relationship holds for the Quanto and European plain
vanilla put options.

Proof. The proof follows along the lines of that of Theorem 6.2. �

Theorem 6.4. Let Assumption (EM) be in force and assume that the asset
price evolves as an exponential PIIAC according to equations (2.3)–(2.5).
We can relate the value of a 2-dimensional asset-or-nothing and a cash-or-
nothing option via the following symmetry:

Van(S1
0 , S

2
0 ,K; r, δ, C, ν) = IE[S1

T ]Vcn

(
S2

0 ,K; δ1, r, Ĉ, ν̂
)

(6.11)

where K = Ke−bCT , the constant Ĉ is given by

Ĉt = (2r − δ1 − δ2)t+

t∫
0

b̂sds+
1
2

t∫
0

ĉsds+

t∫
0

∫
R

(ex − 1− x)ν̂(ds,dx)

and the characteristics (Ĉ, ν̂) are given by Proposition 6.1 for v = (1, 0) and
u = (0, 1). A similar relationship holds for the corresponding put options.

Proof. The proof follows along the lines of that of Theorem 6.2. �

Remark 6.5. Notice that the factor IE[S1
T ] is the forward price of the asset

S1, the numéraire asset.
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pricing and advanced Lévy models, pp. 129–147. Wiley.

Alili, L. and A. E. Kyprianou (2005). Some remarks on first passage of
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tanić, E. Jouini, and M. Musiela (Eds.), Option pricing, interest rates
and risk management, pp. 67–104. Cambridge University Press.

Eberlein, E. and J. Jacod (1997). On the range of options prices. Finance
Stoch. 1, 131–140.

Eberlein, E., J. Jacod, and S. Raible (2005). Lévy term structure models:
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