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WITH APPLICATIONS IN FINANCE

ANTONIS PAPAPANTOLEON

Abstract. These lectures notes aim at introducing Lévy processes in
an informal and intuitive way, accessible to non-specialists in the field.
In the first part, we focus on the theory of Lévy processes. We analyze
a ‘toy’ example of a Lévy process, viz. a Lévy jump-diffusion, which yet
offers significant insight into the distributional and path structure of a
Lévy process. Then, we present several important results about Lévy
processes, such as infinite divisibility and the Lévy-Khintchine formula,
the Lévy-Itô decomposition, the Itô formula for Lévy processes and Gir-
sanov’s transformation. Some (sketches of) proofs are presented, still
the majority of proofs is omitted and the reader is referred to textbooks
instead. In the second part, we turn our attention to the applications
of Lévy processes in financial modeling and option pricing. We discuss
how the price process of an asset can be modeled using Lévy processes
and give a brief account of market incompleteness. Popular models in
the literature are presented and revisited from the point of view of Lévy
processes, and we also discuss three methods for pricing financial deriva-
tives. Finally, some indicative evidence from applications to market data
is presented.
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Part 1. Theory

1. Introduction

Lévy processes play a central role in several fields of science, such as
physics, in the study of turbulence, laser cooling and in quantum field theory;
in engineering, for the study of networks, queues and dams; in economics, for
continuous time-series models; in the actuarial science, for the calculation
of insurance and re-insurance risk; and, of course, in mathematical finance.
A comprehensive overview of several applications of Lévy processes can be
found in Prabhu (1998), in Barndorff-Nielsen, Mikosch, and Resnick (2001),
in Kyprianou, Schoutens, and Wilmott (2005) and in Kyprianou (2006).
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Figure 1.1. USD/JPY exchange rate, Oct. 1997–Oct. 2004.

In mathematical finance, Lévy processes are becoming extremely fashion-
able because they can describe the observed reality of financial markets in
a more accurate way than models based on Brownian motion. In the ‘real’
world, we observe that asset price processes have jumps or spikes, and risk
managers have to take them into consideration; in Figure 1.1 we can observe
some big price changes (jumps) even on the very liquid USD/JPY exchange
rate. Moreover, the empirical distribution of asset returns exhibits fat tails
and skewness, behavior that deviates from normality; see Figure 1.2 for a
characteristic picture. Hence, models that accurately fit return distributions
are essential for the estimation of profit and loss (P&L) distributions. Simi-
larly, in the ‘risk-neutral’ world, we observe that implied volatilities are con-
stant neither across strike nor across maturities as stipulated by the Black
and Scholes (1973) (actually, Samuelson 1965) model; Figure 1.3 depicts a
typical volatility surface. Therefore, traders need models that can capture
the behavior of the implied volatility smiles more accurately, in order to
handle the risk of trades. Lévy processes provide us with the appropriate
tools to adequately and consistently describe all these observations, both in
the ‘real’ and in the ‘risk-neutral’ world.

The main aim of these lecture notes is to provide an accessible overview
of the field of Lévy processes and their applications in mathematical finance
to the non-specialist reader. To serve that purpose, we have avoided most
of the proofs and only sketch a number of proofs, especially when they offer
some important insight to the reader. Moreover, we have put emphasis on
the intuitive understanding of the material, through several pictures and
simulations.

We begin with the definition of a Lévy process and some known exam-
ples. Using these as the reference point, we construct and study a Lévy
jump-diffusion; despite its simple nature, it offers significant insights and an
intuitive understanding of general Lévy processes. We then discuss infinitely
divisible distributions and present the celebrated Lévy–Khintchine formula,
which links processes to distributions. The opposite way, from distributions
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Figure 1.2. Empirical distribution of daily log-returns for
the GBP/USD exchange rate and fitted Normal distribution.

to processes, is the subject of the Lévy-Itô decomposition of a Lévy pro-
cess. The Lévy measure, which is responsible for the richness of the class of
Lévy processes, is studied in some detail and we use it to draw some conclu-
sions about the path and moment properties of a Lévy process. In the next
section, we look into several subclasses that have attracted special atten-
tion and then present some important results from semimartingale theory.
A study of martingale properties of Lévy processes and the Itô formula for
Lévy processes follows. The change of probability measure and Girsanov’s
theorem are studied is some detail and we also give a complete proof in the
case of the Esscher transform. Next, we outline three ways for constructing
new Lévy processes and the first part closes with an account on simulation
methods for some Lévy processes.

The second part of the notes is devoted to the applications of Lévy pro-
cesses in mathematical finance. We describe the possible approaches in mod-
eling the price process of a financial asset using Lévy processes under the
‘real’ and the ‘risk-neutral’ world, and give a brief account of market incom-
pleteness which links the two worlds. Then, we present a primer of popular
Lévy models in the mathematical finance literature, listing some of their
key properties, such as the characteristic function, moments and densities
(if known). In the next section, we give an overview of three methods for pric-
ing options in Lévy-driven models, viz. transform, partial integro-differential
equation (PIDE) and Monte Carlo methods. Finally, we present some em-
pirical results from the application of Lévy processes to real market financial
data. The appendices collect some results about Poisson random variables
and processes, explain some notation and provide information and links re-
garding the data sets used.

Naturally, there is a number of sources that the interested reader should
consult in order to deepen his knowledge and understanding of Lévy pro-
cesses. We mention here the books of Bertoin (1996), Sato (1999), Apple-
baum (2004), Kyprianou (2006) on various aspects of Lévy processes. Cont
and Tankov (2003) and Schoutens (2003) focus on the applications of Lévy
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Figure 1.3. Implied volatilities of vanilla options on the
EUR/USD exchange rate on November 5, 2001.

processes in finance. The books of Jacod and Shiryaev (2003) and Prot-
ter (2004) are essential readings for semimartingale theory, while Shiryaev
(1999) blends semimartingale theory and applications to finance in an im-
pressive manner. Other interesting and inspiring sources are the papers by
Eberlein (2001), Cont (2001), Barndorff-Nielsen and Prause (2001), Carr et
al. (2002), Eberlein and Özkan(2003) and Eberlein (2007).

2. Definition

Let (Ω,F ,F, P ) be a filtered probability space, where F = FT and the
filtration F = (Ft)t∈[0,T ] satisfies the usual conditions. Let T ∈ [0,∞] denote
the time horizon which, in general, can be infinite.

Definition 2.1. A càdlàg, adapted, real valued stochastic process L =
(Lt)0≤t≤T with L0 = 0 a.s. is called a Lévy process if the following con-
ditions are satisfied:

(L1): L has independent increments, i.e. Lt −Ls is independent of Fs
for any 0 ≤ s < t ≤ T .

(L2): L has stationary increments, i.e. for any 0 ≤ s, t ≤ T the distri-
bution of Lt+s − Lt does not depend on t.

(L3): L is stochastically continuous, i.e. for every 0 ≤ t ≤ T and ε > 0:
lims→t P (|Lt − Ls| > ε) = 0.

The simplest Lévy process is the linear drift, a deterministic process.
Brownian motion is the only (non-deterministic) Lévy process with contin-
uous sample paths. Other examples of Lévy processes are the Poisson and
compound Poisson processes. Notice that the sum of a linear drift, a Brow-
nian motion and a compound Poisson process is again a Lévy process; it
is often called a “jump-diffusion” process. We shall call it a “Lévy jump-
diffusion” process, since there exist jump-diffusion processes which are not
Lévy processes.
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Figure 2.4. Examples of Lévy processes: linear drift (left)
and Brownian motion.
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Figure 2.5. Examples of Lévy processes: compound Poisson
process (left) and Lévy jump-diffusion.

3. ‘Toy’ example: a Lévy jump-diffusion

Assume that the process L = (Lt)0≤t≤T is a Lévy jump-diffusion, i.e. a
Brownian motion plus a compensated compound Poisson process. The paths
of this process can be described by

Lt = bt+ σWt +
( Nt∑
k=1

Jk − tλκ
)

(3.1)

where b ∈ R, σ ∈ R>0, W = (Wt)0≤t≤T is a standard Brownian motion,
N = (Nt)0≤t≤T is a Poisson process with parameter λ (i.e. IE[Nt] = λt)
and J = (Jk)k≥1 is an i.i.d. sequence of random variables with probability
distribution F and IE[J ] = κ < ∞. Hence, F describes the distribution of
the jumps, which arrive according to the Poisson process. All sources of
randomness are mutually independent.

It is well known that Brownian motion is a martingale; moreover, the
compensated compound Poisson process is a martingale. Therefore, L =
(Lt)0≤t≤T is a martingale if and only if b = 0.
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The characteristic function of Lt is

IE
[
eiuLt

]
= IE

[
exp

(
iu
(
bt+ σWt +

Nt∑
k=1

Jk − tλκ
))]

= exp
[
iubt

]
IE
[

exp
(
iuσWt

)
exp

(
iu
( Nt∑
k=1

Jk − tλκ
))]

;

since all the sources of randomness are independent, we get

= exp
[
iubt

]
IE
[

exp
(
iuσWt

)]
IE
[

exp
(
iu

Nt∑
k=1

Jk − iutλκ
)]

;

taking into account that

IE[eiuσWt ] = e−
1
2
σ2u2t, Wt ∼ Normal(0, t)

IE[eiu
PNt
k=1 Jk ] = eλt(IE[eiuJ−1]), Nt ∼ Poisson(λt)

(cf. also Appendix B) we get

= exp
[
iubt

]
exp

[
− 1

2
u2σ2t

]
exp

[
λt
(
IE[eiuJ − 1]− iuIE[J ]

)]
= exp

[
iubt

]
exp

[
− 1

2
u2σ2t

]
exp

[
λt
(
IE[eiuJ − 1− iuJ ]

)]
;

and because the distribution of J is F we have

= exp
[
iubt

]
exp

[
− 1

2
u2σ2t

]
exp

[
λt

∫
R

(
eiux − 1− iux

)
F (dx)

]
.

Now, since t is a common factor, we re-write the above equation as

IE
[
eiuLt

]
= exp

[
t
(
iub− u2σ2

2
+
∫
R

(eiux − 1− iux)λF (dx)
)]
.(3.2)

Since the characteristic function of a random variable determines its dis-
tribution, we have a “characterization” of the distribution of the random
variables underlying the Lévy jump-diffusion. We will soon see that this dis-
tribution belongs to the class of infinitely divisible distributions and that
equation (3.2) is a special case of the celebrated Lévy-Khintchine formula.

Remark 3.1. Note that time factorizes out, and the drift, diffusion and
jumps parts are separated; moreover, the jump part factorizes to expected
number of jumps (λ) and distribution of jump size (F ). It is only natural
to ask if these features are preserved for all Lévy processes. The answer is
yes for the first two questions, but jumps cannot be always separated into a
product of the form λ× F .
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4. Infinitely divisible distributions and the Lévy-Khintchine
formula

There is a strong interplay between Lévy processes and infinitely divisible
distributions. We first define infinitely divisible distributions and give some
examples, and then describe their relationship to Lévy processes.

Let X be a real valued random variable, denote its characteristic function
by ϕX and its law by PX , hence ϕX(u) =

∫
R eiuxPX(dx). Let µ ∗ ν denote

the convolution of the measures µ and ν, i.e. (µ∗ν)(A) =
∫

R ν(A−x)µ(dx).

Definition 4.1. The law PX of a random variable X is infinitely divisible,
if for all n ∈ N there exist i.i.d. random variables X(1/n)

1 , . . . , X
(1/n)
n such

that

X
d= X

(1/n)
1 + . . .+X(1/n)

n .(4.1)

Equivalently, the law PX of a random variable X is infinitely divisible if for
all n ∈ N there exists another law PX(1/n) of a random variable X(1/n) such
that

PX = PX(1/n) ∗ . . . ∗ PX(1/n)︸ ︷︷ ︸
n times

.(4.2)

Alternatively, we can characterize an infinitely divisible random variable
using its characteristic function.

Characterization 4.2. The law of a random variable X is infinitely divis-
ible, if for all n ∈ N, there exists a random variable X(1/n), such that

ϕX(u) =
(
ϕX(1/n)(u)

)n
.(4.3)

Example 4.3 (Normal distribution). Using the characterization above, we
can easily deduce that the Normal distribution is infinitely divisible. Let
X ∼ Normal(µ, σ2), then we have

ϕX(u) = exp
[
iuµ− 1

2
u2σ2

]
= exp

[
n(iu

µ

n
− 1

2
u2σ

2

n
)
]

=

(
exp

[
iu
µ

n
− 1

2
u2σ

2

n

])n
=
(
ϕX(1/n)(u)

)n
,

where X(1/n) ∼ Normal(µn ,
σ2

n ).

Example 4.4 (Poisson distribution). Following the same procedure, we can
easily conclude that the Poisson distribution is also infinitely divisible. Let
X ∼ Poisson(λ), then we have

ϕX(u) = exp
[
λ(eiu − 1)

]
=

(
exp

[λ
n

(eiu − 1)
])n

=
(
ϕX(1/n)(u)

)n
,

where X(1/n) ∼ Poisson(λn).
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Remark 4.5. Other examples of infinitely divisible distributions are the
compound Poisson distribution, the exponential, the Γ-distribution, the geo-
metric, the negative binomial, the Cauchy distribution and the strictly stable
distribution. Counter-examples are the uniform and binomial distributions.

The next theorem provides a complete characterization of random vari-
ables with infinitely divisible distributions via their characteristic functions;
this is the celebrated Lévy-Khintchine formula. We will use the following
preparatory result (cf. Sato 1999, Lemma 7.8).

Lemma 4.6. If (Pk)k≥0 is a sequence of infinitely divisible laws and Pk →
P , then P is also infinitely divisible.

Theorem 4.7. The law PX of a random variable X is infinitely divisible if
and only if there exists a triplet (b, c, ν), with b ∈ R, c ∈ R>0 and a measure
satisfying ν({0}) = 0 and

∫
R(1 ∧ |x|2)ν(dx) <∞, such that

IE[eiuX ] = exp
[
ibu− u2c

2
+
∫
R

(eiux − 1− iux1{|x|<1})ν(dx)
]
.(4.4)

Sketch of Proof. Here we describe the proof of the “if” part, for the full proof
see Theorem 8.1 in Sato (1999). Let (εn)n∈N be a sequence in R, monotonic
and decreasing to zero. Define for all u ∈ R and n ∈ N

ϕXn(u) = exp
[
iu
(
b−

∫
εn<|x|≤1

xν(dx)
)
− u2c

2
+

∫
|x|>εn

(eiux − 1)ν(dx)
]
.

Each ϕXn is the convolution of a normal and a compound Poisson distri-
bution, hence ϕXn is the characteristic function of an infinitely divisible
probability measure PXn . We clearly have that

lim
n→∞

ϕXn(u) = ϕX(u);

then, by Lévy’s continuity theorem and Lemma 4.6, ϕX is the characteristic
function of an infinitely divisible law, provided that ϕX is continuous at 0.

Now, continuity of ϕX at 0 boils down to the continuity of the integral
term, i.e.

ψν(u) =
∫
R

(eiux − 1− iux1{|x|<1})ν(dx)

=
∫

{|x|≤1}

(eiux − 1− iux)ν(dx) +
∫

{|x|>1}

(eiux − 1)ν(dx).

Using Taylor’s expansion, the Cauchy–Schwarz inequality, the definition of
the Lévy measure and dominated convergence, we get

|ψν(u)| ≤ 1
2

∫
{|x|≤1}

|u2x2|ν(dx) +
∫

{|x|>1}

|eiux − 1|ν(dx)

≤ |u|
2

2

∫
{|x|≤1}

|x2|ν(dx) +
∫

{|x|>1}

|eiux − 1|ν(dx)

−→ 0 as u→ 0. �
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The triplet (b, c, ν) is called the Lévy or characteristic triplet and the
exponent in (4.4)

ψ(u) = iub− u2c

2
+
∫
R

(eiux − 1− iux1{|x|<1})ν(dx)(4.5)

is called the Lévy or characteristic exponent. Moreover, b ∈ R is called the
drift term, c ∈ R>0 the Gaussian or diffusion coefficient and ν the Lévy
measure.

Remark 4.8. Comparing equations (3.2) and (4.4), we can immediately
deduce that the random variable Lt of the Lévy jump-diffusion is infinitely
divisible with Lévy triplet b = b · t, c = σ2 · t and ν = (λF ) · t.

Now, consider a Lévy process L = (Lt)0≤t≤T ; for any n ∈ N and any
0 < t ≤ T we trivially have that

Lt = L t
n

+ (L 2t
n
− L t

n
) + . . .+ (Lt − L (n−1)t

n

).(4.6)

The stationarity and independence of the increments yield that (L tk
n
−

L t(k−1)
n

)k≥1 is an i.i.d. sequence of random variables, hence we can conclude
that the random variable Lt is infinitely divisible.

Theorem 4.9. For every Lévy process L = (Lt)0≤t≤T , we have that

IE[eiuLt ] = etψ(u)(4.7)

= exp
[
t
(
ibu− u2c

2
+
∫
R

(eiux − 1− iux1{|x|<1})ν(dx)
)]

where ψ(u) is the characteristic exponent of L1, a random variable with an
infinitely divisible distribution.

Sketch of Proof. Define the function φu(t) = ϕLt(u), then we have

φu(t+ s) = IE[eiuLt+s ] = IE[eiu(Lt+s−Ls)eiuLs ](4.8)

= IE[eiu(Lt+s−Ls)]IE[eiuLs ] = φu(t)φu(s).

Now, φu(0) = 1 and the map t 7→ φu(t) is continuous (by stochastic con-
tinuity). However, the unique continuous solution of the Cauchy functional
equation (4.8) is

φu(t) = etϑ(u), where ϑ : R→ C.(4.9)

Since L1 is an infinitely divisible random variable, the statement follows. �

We have seen so far, that every Lévy process can be associated with the
law of an infinitely divisible distribution. The opposite, i.e. that given any
random variable X, whose law is infinitely divisible, we can construct a Lévy
process L = (Lt)0≤t≤T such that L(L1) := L(X), is also true. This will be
the subject of the Lévy-Itô decomposition. We prepare this result with an
analysis of the jumps of a Lévy process and the introduction of Poisson
random measures.
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5. Analysis of jumps and Poisson random measures

The jump process ∆L = (∆Lt)0≤t≤T associated to the Lévy process L is
defined, for each 0 ≤ t ≤ T , via

∆Lt = Lt − Lt−,
where Lt− = lims↑t Ls. The condition of stochastic continuity of a Lévy
process yields immediately that for any Lévy process L and any fixed t > 0,
then ∆Lt = 0 a.s.; hence, a Lévy process has no fixed times of discontinuity.

In general, the sum of the jumps of a Lévy process does not converge, in
other words it is possible that∑

s≤t
|∆Ls| =∞ a.s.

but we always have that ∑
s≤t
|∆Ls|2 <∞ a.s.

which allows us to handle Lévy processes by martingale techniques.
A convenient tool for analyzing the jumps of a Lévy process is the random

measure of jumps of the process. Consider a set A ∈ B(R\{0}) such that
0 /∈ A and let 0 ≤ t ≤ T ; define the random measure of the jumps of the
process L by

µL(ω; t, A) = #{0 ≤ s ≤ t; ∆Ls(ω) ∈ A}(5.1)

=
∑
s≤t

1A(∆Ls(ω));

hence, the measure µL(ω; t, A) counts the jumps of the process L of size in
A up to time t. Now, we can check that µL has the following properties:

µL(t, A)− µL(s,A) ∈ σ({Lu − Lv; s ≤ v < u ≤ t})

hence µL(t, A)−µL(s,A) is independent of Fs, i.e. µL(·, A) has independent
increments. Moreover, µL(t, A) − µL(s,A) equals the number of jumps of
Ls+u−Ls in A for 0 ≤ u ≤ t−s; hence, by the stationarity of the increments
of L, we conclude:

L(µL(t, A)− µL(s,A)) = L(µL(t− s,A))

i.e. µL(·, A) has stationary increments.
Hence, µL(·, A) is a Poisson process and µL is a Poisson random measure.

The intensity of this Poisson process is ν(A) = IE[µL(1, A)].

Theorem 5.1. The set function A 7→ µL(ω; t, A) defines a σ-finite measure
on R\{0} for each (ω, t). The set function ν(A) = IE[µL(1, A)] defines a
σ-finite measure on R\{0}.

Proof. The set function A 7→ µL(ω; t, A) is simply a counting measure on
B(R\{0}); hence,

IE[µL(t, A)] =
∫
µL(ω; t, A)dP (ω)

is a Borel measure on B(R\{0}). �
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Definition 5.2. The measure ν defined by

ν(A) = IE[µL(1, A)] = IE
[∑
s≤1

1A(∆Ls(ω))
]

is the Lévy measure of the Lévy process L.

Now, using that µL(t, A) is a counting measure we can define an in-
tegral with respect to the Poisson random measure µL. Consider a set
A ∈ B(R\{0}) such that 0 /∈ A and a function f : R → R, Borel measur-
able and finite on A. Then, the integral with respect to a Poisson random
measure is defined as follows:∫

A

f(x)µL(ω; t,dx) =
∑
s≤t

f(∆Ls)1A(∆Ls(ω)).(5.2)

Note that each
∫
A f(x)µL(t,dx) is a real-valued random variable and gen-

erates a càdlàg stochastic process. We will denote the stochastic process by∫ ·
0

∫
A f(x)µL(ds, dx) = (

∫ t
0

∫
A f(x)µL(ds, dx))0≤t≤T .

Theorem 5.3. Consider a set A ∈ B(R\{0}) with 0 /∈ A and a function
f : R→ R, Borel measurable and finite on A.
A. The process (

∫ t
0

∫
A f(x)µL(ds, dx))0≤t≤T is a compound Poisson process

with characteristic function

IE
[

exp
(
iu

∫ t

0

∫
A
f(x)µL(ds, dx)

)]
= exp

(
t

∫
A

(eiuf(x) − 1)ν(dx)
)
.(5.3)

B. If f ∈ L1(A), then

IE
[ ∫ t

0

∫
A
f(x)µL(ds, dx)

]
= t

∫
A
f(x)ν(dx).(5.4)

C. If f ∈ L2(A), then

Var
(∣∣∣ ∫ t

0

∫
A
f(x)µL(ds, dx)

∣∣∣) = t

∫
A
|f(x)|2ν(dx).(5.5)

Sketch of Proof. The structure of the proof is to start with simple functions
and pass to positive measurable functions, then take limits and use domi-
nated convergence; cf. Theorem 2.3.8 in Applebaum (2004). �

6. The Lévy-Itô decomposition

Theorem 6.1. Consider a triplet (b, c, ν) where b ∈ R, c ∈ R>0 and ν is a
measure satisfying ν({0}) = 0 and

∫
R(1∧|x|2)ν(dx) <∞. Then, there exists

a probability space (Ω,F , P ) on which four independent Lévy processes exist,
L(1), L(2), L(3) and L(4), where L(1) is a constant drift, L(2) is a Brownian
motion, L(3) is a compound Poisson process and L(4) is a square integrable
(pure jump) martingale with an a.s. countable number of jumps of magnitude
less than 1 on each finite time interval. Taking L = L(1) +L(2) +L(3) +L(4),
we have that there exists a probability space on which a Lévy process L =
(Lt)0≤t≤T with characteristic exponent

ψ(u) = iub− u2c

2
+
∫
R

(eiux − 1− iux1{|x|<1})ν(dx)(6.1)
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for all u ∈ R, is defined.

Proof. See chapter 4 in Sato (1999) or chapter 2 in Kyprianou (2006). �

The Lévy-Itô decomposition is a hard mathematical result to prove; here,
we go through some steps of the proof because it reveals much about the
structure of the paths of a Lévy process. We split the Lévy exponent (6.1)
into four parts

ψ = ψ(1) + ψ(2) + ψ(3) + ψ(4)

where

ψ(1)(u) = iub, ψ(2)(u) =
u2c

2
,

ψ(3)(u) =
∫
|x|≥1

(eiux − 1)ν(dx),

ψ(4)(u) =
∫
|x|<1

(eiux − 1− iux)ν(dx).

The first part corresponds to a deterministic linear process (drift) with pa-
rameter b, the second one to a Brownian motion with coefficient

√
c and

the third part corresponds to a compound Poisson process with arrival rate
λ := ν(R\(−1, 1)) and jump magnitude F (dx) := ν(dx)

ν(R\(−1,1))1{|x|≥1}.

The last part is the most difficult to handle; let ∆L(4) denote the jumps
of the Lévy process L(4), that is ∆L(4)

t = L
(4)
t − L

(4)
t− , and let µL

(4)
denote

the random measure counting the jumps of L(4). Next, one constructs a
compensated compound Poisson process

L
(4,ε)
t =

∑
0≤s≤t

∆L(4)
s 1{1>|∆L(4)

s |>ε}
− t
( ∫

1>|x|>ε

xν(dx)
)

=

t∫
0

∫
1>|x|>ε

xµL
(4)

(dx, ds)− t
( ∫

1>|x|>ε

xν(dx)
)

and shows that the jumps of L(4) form a Poisson process; using Theorem
5.3 we get that the characteristic exponent of L(4,ε) is

ψ(4,ε)(u) =
∫

ε<|x|<1

(eiux − 1− iux)ν(dx).

Then, there exists a Lévy process L(4) which is a square integrable martingale,
such that L(4,ε) → L(4) uniformly on [0, T ] as ε → 0+. Clearly, the Lévy
exponent of the latter Lévy process is ψ(4).

Therefore, we can decompose any Lévy process into four independent
Lévy processes L = L(1) + L(2) + L(3) + L(4), as follows

Lt = bt+
√
cWt +

t∫
0

∫
|x|≥1

xµL(ds, dx) +

t∫
0

∫
|x|<1

x(µL − νL)(ds, dx)(6.2)
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Figure 7.6. The distribution function of the Lévy measure
of the standard Poisson process (left) and the density of the
Lévy measure of a compound Poisson process with double-
exponentially distributed jumps.
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Figure 7.7. The density of the Lévy measure of an NIG
(left) and an α-stable process.

where νL(ds, dx) = ν(dx)ds. Here L(1) is a constant drift, L(2) a Brownian
motion, L(3) a compound Poisson process and L(4) a pure jump martingale.
This result is the celebrated Lévy-Itô decomposition of a Lévy process.

7. The Lévy measure, path and moment properties

The Lévy measure ν is a measure on R that satisfies

ν({0}) = 0 and
∫
R

(1 ∧ |x|2)ν(dx) <∞.(7.1)

Intuitively speaking, the Lévy measure describes the expected number of
jumps of a certain height in a time interval of length 1. The Lévy measure
has no mass at the origin, while singularities (i.e. infinitely many jumps) can
occur around the origin (i.e. small jumps). Moreover, the mass away from
the origin is bounded (i.e. only a finite number of big jumps can occur).

Recall the example of the Lévy jump-diffusion; the Lévy measure is ν(dx) =
λ× F (dx); from that we can deduce that the expected number of jumps is
λ and the jump size is distributed according to F .

More generally, if ν is a finite measure, i.e. λ := ν(R) =
∫

R ν(dx) < ∞,
then we can define F (dx) := ν(dx)

λ , which is a probability measure. Thus,
λ is the expected number of jumps and F (dx) the distribution of the jump
size x. If ν(R) =∞, then an infinite number of (small) jumps is expected.
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Figure 7.8. The Lévy measure must integrate |x|2 ∧ 1 (red
line); it has finite variation if it integrates |x| ∧ 1 (blue line);
it is finite if it integrates 1 (orange line).

The Lévy measure is responsible for the richness of the class of Lévy
processes and carries useful information about the structure of the process.
Path properties can be read from the Lévy measure: for example, Figures
7.6 and 7.7 reveal that the compound Poisson process has a finite number
of jumps on every time interval, while the NIG and α-stable processes have
an infinite one; we then speak of an infinite activity Lévy process.

Proposition 7.1. Let L be a Lévy process with triplet (b, c, ν).
(1) If ν(R) < ∞, then almost all paths of L have a finite number of

jumps on every compact interval. In that case, the Lévy process has
finite activity.

(2) If ν(R) = ∞, then almost all paths of L have an infinite number of
jumps on every compact interval. In that case, the Lévy process has
infinite activity.

Proof. See Theorem 21.3 in Sato (1999). �

Whether a Lévy process has finite variation or not also depends on the
Lévy measure (and on the presence or absence of a Brownian part).

Proposition 7.2. Let L be a Lévy process with triplet (b, c, ν).
(1) If c = 0 and

∫
|x|≤1 |x|ν(dx) < ∞, then almost all paths of L have

finite variation.
(2) If c 6= 0 or

∫
|x|≤1 |x|ν(dx) = ∞, then almost all paths of L have

infinite variation.

Proof. See Theorem 21.9 in Sato (1999). �

The different functions a Lévy measure has to integrate in order to have
finite activity or variation, are graphically exhibited in Figure 7.8. The com-
pound Poisson process has finite measure, hence it has finite variation as
well; on the contrary, the NIG Lévy process has an infinite measure and has
infinite variation. In addition, the CGMY Lévy process for 0 < Y < 1 has
infinite activity, but the paths have finite variation.
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The Lévy measure also carries information about the finiteness of the
moments of a Lévy process. This is particularly useful information in math-
ematical finance, related to the existence of a martingale measure.

The finiteness of the moments of a Lévy process is related to the finiteness
of an integral over the Lévy measure (more precisely, the restriction of the
Lévy measure to jumps larger than 1 in absolute value, i.e. big jumps).

Proposition 7.3. Let L be a Lévy process with triplet (b, c, ν). Then
(1) Lt has finite p-th moment for p ∈ R>0 (IE|Lt|p < ∞) if and only if∫

|x|≥1 |x|
pν(dx) <∞.

(2) Lt has finite p-th exponential moment for p ∈ R (IE[epLt ] < ∞) if
and only if

∫
|x|≥1 epxν(dx) <∞.

Proof. The proof of these results can be found in Theorem 25.3 in Sato
(1999). Actually, the conclusion of this theorem holds for the general class of
submultiplicative functions (cf. Definition 25.1 in Sato 1999), which contains
exp(px) and |x|p ∨ 1 as special cases. �

In order to gain some understanding of this result and because it blends
beautifully with the Lévy-Itô decomposition, we will give a rough proof of
the sufficiency for the second statement (inspired by Kyprianou 2006).

Recall from the Lévy-Itô decomposition, that the characteristic exponent
of a Lévy process was split into four independent parts, the third of which
is a compound Poisson process with arrival rate λ := ν(R\(−1, 1)) and
jump magnitude F (dx) := ν(dx)

ν(R\(−1,1))1{|x|≥1}. Finiteness of IE[epLt ] implies

finiteness of IE[epL
(3)
t ], where

IE[epL
(3)
t ] = e−λt

∑
k≥0

(λt)k

k!

∫
R

epxF (dx)

k

= e−λt
∑
k≥0

tk

k!

∫
R

epx1{|x|≥1}ν(dx)

k

.

Since all the summands must be finite, the one corresponding to k = 1 must
also be finite, therefore

e−λt
∫
R

epx1{|x|≥1}ν(dx) <∞ =⇒
∫
|x|≥1

epxν(dx) <∞.

The graphical representation of the functions the Lévy measure must
integrate so that a Lévy process has finite moments is given in Figure 7.9.
The NIG process possesses moments of all order, while the α-stable does not;
one can already observe in Figure 7.7 that the tails of the Lévy measure of
the α-stable are much heavier than the tails of the NIG.

Remark 7.4. As can be observed from Propositions 7.1, 7.2 and 7.3, the
variation of a Lévy process depends on the small jumps (and the Brownian
motion), the moment properties depend on the big jumps, while the activity
of a Lévy process depends on all the jumps of the process.
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Figure 7.9. A Lévy process has first moment if the Lévy
measure integrates |x| for |x| ≥ 1 (blue line) and second
moment if it integrates x2 for |x| ≥ 1 (orange line).

8. Some classes of particular interest

We already know that a Brownian motion, a (compound) Poisson process
and a Lévy jump-diffusion are Lévy processes, their Lévy-Itô decomposition
and their characteristic functions. Here, we present some further subclasses
of Lévy processes that are of special interest.

8.1. Subordinator. A subordinator is an a.s. increasing (in t) Lévy process.
Equivalently, for L to be a subordinator, the triplet must satisfy ν(−∞, 0) =
0, c = 0,

∫
(0,1) xν(dx) <∞ and γ = b−

∫
(0,1) xν(dx) > 0.

The Lévy-Itô decomposition of a subordinator is

(8.1) Lt = γt+

t∫
0

∫
(0,∞)

xµL(ds, dx)

and the Lévy-Khintchine formula takes the form

(8.2) IE[eiuLt ] = exp
[
t
(
iuγ +

∫
(0,∞)

(eiux − 1)ν(dx)
)]
.

Two examples of subordinators are the Poisson and the inverse Gaussian
process, cf. Figures 8.10 and A.14.

8.2. Jumps of finite variation. A Lévy process has jumps of finite vari-
ation if and only if

∫
|x|≤1 |x|ν(dx) <∞. In this case, the Lévy-Itô decompo-

sition of L resumes the form

(8.3) Lt = γt+
√
cWt +

t∫
0

∫
R

xµL(ds, dx)

and the Lévy-Khintchine formula takes the form

(8.4) IE[eiuLt ] = exp
[
t
(
iuγ − u2c

2
+
∫
R

(eiux − 1)ν(dx)
)]
,
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where γ is defined similarly to subsection 8.1.
Moreover, if ν([−1, 1]) <∞, which means that ν(R) <∞, then the jumps

of L correspond to a compound Poisson process.

8.3. Spectrally one-sided. A Lévy processes is called spectrally negative
if ν(0,∞) = 0. The Lévy-Itô decomposition of a spectrally negative Lévy
process has the form

Lt = bt+
√
cWt +

t∫
0

∫
x<−1

xµL(ds, dx) +

t∫
0

∫
−1<x<0

x(µL − νL)(ds, dx)(8.5)

and the Lévy-Khintchine formula takes the form

(8.6) IE[eiuLt ] = exp
[
t
(
iub− u2c

2
+

∫
(−∞,0)

(eiux − 1− iu1{x>−1})ν(dx)
]
.

Similarly, a Lévy processes is called spectrally positive if −L is spectrally
negative.

8.4. Finite first moment. As we have seen already, a Lévy process has
finite first moment if and only if

∫
|x|≥1 |x|ν(dx) < ∞. Therefore, we can

also compensate the big jumps to form a martingale, hence the Lévy-Itô
decomposition of L resumes the form

(8.7) Lt = b′t+
√
cWt +

t∫
0

∫
R

x(µL − νL)(ds, dx)

and the Lévy-Khintchine formula takes the form

(8.8) IE[eiuLt ] = exp
[
t
(
iub′ − u2c

2
+
∫
R

(eiux − 1− iux)ν(dx)
)]
,

where b′ = b+
∫
|x|≥1 xν(dx).

Remark 8.1 (Assumption (M)). For the remaining parts we will work
only with Lévy process that have finite first moment. We will refer to them
as Lévy processes that satisfy Assumption (M). For the sake of simplicity,
we suppress the notation b′ and write b instead.

9. Elements from semimartingale theory

A semimartingale is a stochastic process X = (Xt)0≤t≤T which admits
the decomposition

X = X0 +M +A(9.1)

where X0 is finite and F0-measurable, M is a local martingale with M0 = 0
and A is a finite variation process with A0 = 0. X is a special semimartingale
if A is predictable.

Every special semimartingale X admits the following, so-called, canonical
decomposition

X = X0 +B +Xc + x ∗ (µX − νX).(9.2)
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Figure 8.10. Simulated path of a normal inverse Gaussian
(left) and an inverse Gaussian process.

Here Xc is the continuous martingale part of X and x ∗ (µX − νX) is the
purely discontinuous martingale part of X. µX is called the random measure
of jumps of X; it counts the number of jumps of specific size that occur in
a time interval of specific length. νX is called the compensator of µX ; for a
detailed account, we refer to Jacod and Shiryaev (2003, Chapter II).

Remark 9.1. Note that W ∗ µ, for W = W (ω; s, x) and the integer-valued
measure µ = µ(ω; dt,dx), t ∈ [0, T ], x ∈ E, denotes the integral process

·∫
0

∫
E

W (ω; t, x)µ(ω; dt,dx).

Consider a predictable function W : Ω × [0, T ] × E → R in Gloc(µ); then
W ∗ (µ− ν) denotes the stochastic integral

·∫
0

∫
E

W (ω; t, x)(µ− ν)(ω; dt,dx).

Now, recalling the Lévy-Itô decomposition (8.7) and comparing it to (9.2),
we can easily deduce that a Lévy process with triplet (b, c, ν) which satisfies
Assumption (M), has the following canonical decomposition

Lt = bt+
√
cWt +

t∫
0

∫
R

x(µL − νL)(ds, dx),(9.3)

where
t∫

0

∫
R

xµL(ds, dx) =
∑

0≤s≤t
∆Ls

and

IE
[ t∫

0

∫
R

xµL(ds, dx)
]

=

t∫
0

∫
R

xνL(ds, dx) = t

∫
R

xν(dx).
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Therefore, a Lévy process that satisfies Assumption (M) is a special semi-
martingale where the continuous martingale part is a Brownian motion with
coefficient

√
c and the random measure of the jumps is a Poisson random

measure. The compensator νL of the Poisson random measure µL is a prod-
uct measure of the Lévy measure with the Lebesgue measure, i.e. νL = ν⊗λ\;
one then also writes νL(ds, dx) = ν(dx)ds.

We denote the continuous martingale part of L by Lc and the purely
discontinuous martingale part of L by Ld, i.e.

Lct =
√
cWt and Ldt =

t∫
0

∫
R

x(µL − νL)(ds, dx).(9.4)

Remark 9.2. Every Lévy process is also a semimartingale; this follows
easily from (9.1) and the Lévy–Itô decomposition of a Lévy process. Every
Lévy process with finite first moment (i.e. that satisfies Assumption (M))
is also a special semimartingale; conversely, every Lévy process that is a
special semimartingale, has a finite first moment. This is the subject of the
next result.

Lemma 9.3. Let L be a Lévy process with triplet (b, c, ν). The following
conditions are equivalent

(1) L is a special semimartingale,
(2)

∫
R(|x| ∧ |x|2)ν(dx) <∞,

(3)
∫

R |x|1{|x|≥1}ν(dx) <∞.

Proof. From Lemma 2.8 in Kallsen and Shiryaev (2002) we have that, a
Lévy process (semimartingale) is special if and only if the compensator of
its jump measure satisfies

·∫
0

∫
R

(|x| ∧ |x|2)νL(ds, dx) ∈ V.

For a fixed t ∈ R, we get

t∫
0

∫
R

(|x| ∧ |x|2)νL(ds, dx) =

t∫
0

∫
R

(|x| ∧ |x|2)ν(dx)ds

= t ·
∫
R

(|x| ∧ |x|2)ν(dx)

and the last expression is an element of V if and only if∫
R

(|x| ∧ |x|2)ν(dx) <∞;

this settles (1)⇔ (2). The equivalence (2)⇔ (3) follows from the properties
of the Lévy measure, namely that

∫
|x|<1 |x|

2ν(dx) <∞, cf. (7.1). �
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10. Martingales and Lévy processes

We give a condition for a Lévy process to be a martingale and discuss
when the exponential of a Lévy process is a martingale.

Proposition 10.1. Let L = (Lt)0≤t≤T be a Lévy process with Lévy triplet
(b, c, ν) and assume that IE[|Lt|] < ∞, i.e. Assumption (M) holds. L is a
martingale if and only if b = 0. Similarly, L is a submartingale if b > 0 and
a supermartingale if b < 0.

Proof. The assertion follows immediately from the decomposition of a Lévy
process with finite first moment into a finite variation process, a continuous
martingale and a pure-jump martingale, cf. equation (9.3). �

Proposition 10.2. Let L = (Lt)0≤t≤T be a Lévy process with Lévy triplet
(b, c, ν), assume that

∫
|x|≥1 euxν(dx) <∞, for u ∈ R and denote by κ the cu-

mulant of L1, i.e. κ(u) = log IE[euL1 ]. The process M = (Mt)0≤t≤T , defined
via

Mt =
euLt

etκ(u)

is a martingale.

Proof. Applying Proposition 7.3, we get that IE[euLt ] = etκ(u) < ∞, for all
0 ≤ t ≤ T . Now, for 0 ≤ s ≤ t, we can re-write M as

Mt =
euLs

esκ(u)

eu(Lt−Ls)

e(t−s)κ(u)
= Ms

eu(Lt−Ls)

e(t−s)κ(u)
.

Using the fact that a Lévy process has stationary and independent incre-
ments, we can conclude

IE
[
Mt

∣∣∣Fs] = MsIE
[eu(Lt−Ls)

e(t−s)κ(u)

∣∣∣Fs] = Mse(t−s)κ(u)e−(t−s)κ(u)

= Ms. �

The stochastic exponential E(L) of a Lévy process L = (Lt)0≤t≤T is the
solution Z of the stochastic differential equation

(10.1) dZt = Zt−dLt, Z0 = 1,

also written as

(10.2) Z = 1 + Z− · L,

where F ·Y means the stochastic integral
∫ ·

0 FsdYs. The stochastic exponen-
tial is defined as

E(L)t = exp
(
Lt −

1
2
〈Lc〉t

) ∏
0≤s≤t

(
1 + ∆Ls

)
e−∆Ls .(10.3)

Remark 10.3. The stochastic exponential of a Lévy process that is a mar-
tingale is a local martingale (cf. Jacod and Shiryaev 2003, Theorem I.4.61)
and indeed a (true) martingale when working in a finite time horizon (cf.
Kallsen 2000, Lemma 4.4).
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The converse of the stochastic exponential is the stochastic logarithm,
denoted LogX; for a process X = (Xt)0≤t≤T , the stochastic logarithm is
the solution of the stochastic differential equation:

(10.4) LogXt =

t∫
0

dXs

Xs−
,

also written as

(10.5) LogX =
1
X−
·X.

Now, if X is a positive process with X0 = 1 we have for LogX

(10.6) LogX = logX +
1

2X2
−
· 〈Xc〉 −

∑
0≤s≤·

(
log
(

1 +
∆Xs

Xs−

)
− ∆Xs

Xs−

)
;

for more details see Kallsen and Shiryaev (2002) or Jacod and Shiryaev
(2003).

11. Itô’s formula

We state a version of Itô’s formula directly for semimartingales, since this
is the natural framework to work into.

Lemma 11.1. Let X = (Xt)0≤t≤T be a real-valued semimartingale and f a
class C2 function on R. Then, f(X) is a semimartingale and we have

f(Xt) = f(X0) +

t∫
0

f ′(Xs−)dXs +
1
2

t∫
0

f ′′(Xs−)d〈Xc〉s(11.1)

+
∑

0≤s≤t

(
f(Xs)− f(Xs−)− f ′(Xs−)∆Xs

)
,

for all t ∈ [0, T ]; alternatively, making use of the random measure of jumps,
we have

f(Xt) = f(X0) +

t∫
0

f ′(Xs−)dXs +
1
2

t∫
0

f ′′(Xs−)d〈Xc〉s(11.2)

+

t∫
0

∫
R

(
f(Xs− + x)− f(Xs−)− f ′(Xs−)x

)
µX(ds, dx).

Proof. See Theorem I.4.57 in Jacod and Shiryaev (2003). �

Remark 11.2. An interesting account (and proof) of Itô’s formula for Lévy
processes of finite variation can be found in Kyprianou (2006, Chapter 4).

Lemma 11.3 (Integration by parts). Let X,Y be semimartingales. Then
XY is also a semimartingale and

XY =
∫
X−dY +

∫
Y−dX + [X,Y ],(11.3)
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where the quadratic covariation of X and Y is given by

[X,Y ] = 〈Xc, Y c〉+
∑
s≤·

∆Xs∆Ys.(11.4)

Proof. See Corollary II.6.2 in Protter (2004) and Theorem I.4.52 in Jacod
and Shiryaev (2003). �

As a simple application of Itô’s formula for Lévy processes, we will work
out the dynamics of the stochastic logarithm of a Lévy process.

Let L = (Lt)0≤t≤T be a Lévy process with triplet (b, c, ν) and L0 = 1.
Consider the C2 function f : R → R with f(x) = log |x|; then, f ′(x) = 1

x

and f ′′(x) = − 1
x2 . Applying Itô’s formula to f(L) = log |L|, we get

log |Lt| = log |L0|+
t∫

0

1
Ls−

dLs −
1
2

t∫
0

1
L2
s−

d〈Lc〉s

+
∑

0≤s≤t

(
log |Ls| − log |Ls−| −

1
Ls−

∆Ls
)

⇔ LogLt = log |Lt|+
1
2

t∫
0

d〈Lc〉s
L2
s−
−
∑

0≤s≤t

(
log
∣∣∣ Ls
Ls−

∣∣∣− ∆Ls
Ls−

)
.

Now, making again use of the random measure of jumps of the process L
and using also that d〈Lc〉s = d〈

√
cW 〉s = cds, we can conclude that

LogLt = log |Lt|+
c

2

t∫
0

ds
L2
s−
−

t∫
0

∫
R

(
log
∣∣∣1 +

x

Ls−

∣∣∣− x

Ls−

)
µL(ds, dx).

12. Girsanov’s theorem

We will describe a special case of Girsanov’s theorem for semimartin-
gales, where a Lévy process remains a process with independent increments
(PII) under the new measure. Here we will restrict ourselves to a finite time
horizon, i.e. T ∈ [0,∞).

Let P and P̄ be probability measures defined on the filtered probability
space (Ω,F ,F). Two measures P and P̄ are equivalent, if P (A) = 0 ⇔
P̄ (A) = 0, for all A ∈ F , and then one writes P ∼ P̄ .

Given two equivalent measures P and P̄ , there exists a unique, positive,
P -martingale Z = (Zt)0≤t≤T such that Zt = IE

[
dP̄
dP

∣∣Ft], ∀ 0 ≤ t ≤ T . Z is
called the density process of P̄ with respect to P .

Conversely, given a measure P and a positive P -martingale Z = (Zt)0≤t≤T ,
one can define a measure P̄ on (Ω,F ,F) equivalent to P , using the Radon-
Nikodym derivative IE

[
dP̄
dP

∣∣FT ] = ZT .

Theorem 12.1. Let L = (Lt)0≤t≤T be a Lévy process with triplet (b, c, ν)
under P , that satisfies Assumption (M), cf. Remark 8.1. Then, L has the
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canonical decomposition

Lt = bt+
√
cWt +

t∫
0

∫
R

x(µL − νL)(ds, dx).(12.1)

(A1): Assume that P ∼ P̄ with density process Z. Then, there exist a
deterministic process β and a measurable non-negative deterministic
process Y , satisfying

t∫
0

∫
R

|x
(
Y (s, x)− 1

)
|ν(dx)ds <∞,(12.2)

and
t∫

0

(
c · β2

s

)
ds <∞,

P̄ -a.s. for 0 ≤ t ≤ T ; they are defined by the following formulae:

〈Zc, Lc〉 =

·∫
0

(c · βs · Zs−)ds(12.3)

and

Y = MP
µL

(
Z

Z−

∣∣∣P̃) .(12.4)

(A2): Conversely, if Z is a positive martingale of the form

Z = exp
[ ·∫

0

βs
√
cdWs −

1
2

·∫
0

β2
scds(12.5)

+

·∫
0

∫
R

(Y (s, x)− 1)(µL − νL)(ds, dx)

−
·∫

0

∫
R

(Y (s, x)− 1− ln(Y (s, x)))µL(ds, dx)
]
.

then it defines a probability measure P̄ on (Ω,F ,F), such that P ∼ P̄ .
(A3): In both cases, we have that W̄ = W −

∫ ·
0

√
cβsds is a P̄ -Brownian

motion, ν̄L(ds, dx) = Y (s, x)νL(ds, dx) is the P̄ -compensator of µL

and L has the following canonical decomposition under P̄ :

Lt = b̄t+
√
cW̄t +

t∫
0

∫
R

x(µL − ν̄L)(ds, dx),(12.6)

where

b̄t = bt+

t∫
0

cβsds+

t∫
0

∫
R

x
(
Y (s, x)− 1

)
νL(ds, dx).(12.7)
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Proof. Theorems III.3.24, III.5.19 and III.5.35 in Jacod and Shiryaev (2003)
yield the result. �

Remark 12.2. In (12.4) P̃ = P ⊗ B(R) is the σ-field of predictable sets in
Ω̃ = Ω × [0, T ] × R and MP

µL
= µL(ω; dt,dx)P (dω) is the positive measure

on (Ω× [0, T ]× R,F ⊗ B([0, T ])⊗ B(R)) defined by

(12.8) MP
µL(W ) = E(W ∗ µL)T ,

for measurable nonnegative functions W = W (ω; t, x) given on Ω×[0, T ]×R.
Now, the conditional expectation MP

µL

(
Z
Z−
|P̃
)

is, by definition, the MP
µL

-a.s.

unique P̃-measurable function Y with the property

(12.9) MP
µL

( Z
Z−

U
)

= MP
µL(Y U),

for all nonnegative P̃-measurable functions U = U(ω; t, x).

Remark 12.3. Notice that from condition (12.2) and assumption (M), fol-
lows that L has finite first moment under P̄ as well, i.e.

(12.10) ĪE|Lt| <∞, for all 0 ≤ t ≤ T .
Verification follows from Proposition 7.3 and direct calculations.

Remark 12.4. In general, L is not necessarily a Lévy process under the
measure P̄ ; this depends on the tuple (β, Y ). The following cases exist.

(G1): if (β, Y ) are deterministic and independent of time, then L re-
mains a Lévy process under P̄ ; its triplet is (b̄, c, Y · ν).

(G2): if (β, Y ) are deterministic but depend on time, then L becomes
a process with independent (but not stationary) increments under
P̄ , often called an additive process.

(G3): if (β, Y ) are neither deterministic nor independent of time, then
we just know that L is a semimartingale under P̄ .

Remark 12.5. Notice that c, the diffusion coefficient, and µL, the random
measure of jumps of L, did not change under the change of measure from P
to P̄ . That happens because c and µL are path properties of the process and
do not change under an equivalent change of measure. Intuitively speaking,
the paths do not change, the probability of certain paths occurring changes.

Example 12.6. Assume that L is a Lévy process with canonical decompo-
sition (12.1) under P . Assume that P ∼ P̄ and the density process is

Zt = exp
[
β
√
cWt +

t∫
0

∫
R

αx(µL − νL)(ds, dx)(12.11)

−
(cβ2

2
+
∫
R

(eαx − 1− αx)ν(dx)
)
t
]
,

where β ∈ R>0 and α ∈ R are constants.
Then, comparing (12.11) with (12.5), we have that the tuple of functions

that characterize the change of measure is (β, Y ) = (β, f), where f(x) = eαx.
Because (β, f) are deterministic and independent of time, L remains a Lévy
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process under P̄ , its Lévy triplet is (b̄, c, fν) and its canonical decomposition
is given by equations (12.6) and (12.7).

Actually, the change of measure of the previous example corresponds to
the so-called Esscher transformation or exponential tilting. In chapter 3 of
Kyprianou (2006), one can find a significantly easier proof of Girsanov’s
theorem for Lévy processes for the special case of the Esscher transform.
Here, we reformulate the result of example 12.6 and give a complete proof
(inspired by Eberlein and Papapantoleon 2005).

Proposition 12.7. Let L = (Lt)0≤t≤T be a Lévy process with canonical
decomposition (12.1) under P and assume that IE[euLt ] < ∞ for all u ∈
[−p, p], p > 0. Assume that P ∼ P̄ with density process Z = (Zt)0≤t≤T ,
or conversely, assume that P̄ is defined via the Radon-Nikodym derivative
dP̄
dP = ZT ; here, we have that

Zt =
eβL

c
t eαL

d
t

IE[eβLct ]IE[eαLdt ]
(12.12)

for β ∈ R and |α| < p. Then, L remains a Lévy process under P̄ , its Lévy
triplet is (b̄, c, ν̄), where ν̄ = f · ν for f(x) = eαx, and its canonical decom-
position is given by the following equations

Lt = b̄t+
√
cW̄t +

t∫
0

∫
R

x(µL − ν̄L)(ds, dx),(12.13)

and

b̄ = b+ βc+
∫
R

x
(
eαx − 1

)
ν(dx).(12.14)

Proof. Firstly, using Proposition 10.2, we can immediately deduce that Z
is a positive P -martingale; moreover, Z0 = 1. Hence, Z serves as a density
process.

Secondly, we will show that L has independent and stationary increments
under P̄ . Using that L has independent and stationary increments under P
and that Z is a P -martingale, we arrive at the following helpful conclusions:
for any B ∈ B(R), Fs ∈ Fs and 0 ≤ s < t ≤ T

(1) 1{Lt−Ls∈B}
Zt
Zs

is independent of 1{Fs}Zs and of Zs;
(2) E[Zs] = 1.

Then, we have that

P̄ ({Lt − Ls ∈ B} ∩ Fs) = IE
[
1{Lt−Ls∈B}1{Fs}Zt

]
= IE

[
1{Lt−Ls∈B}

Zt
Zs

]
IE
[
1{Fs}Zs

]
= IE

[
1{Lt−Ls∈B}

Zt
Zs

]
IE[Zs]IE

[
1{Fs}Zs

]
= IE

[
1{Lt−Ls∈B}Zt

]
IE
[
1{Fs}Zs

]
= P̄ ({Lt − Ls ∈ B})P̄ (Fs)
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which yields the independence of the increments. Similarly, regarding the
stationarity of the increments of L under P̄ , we have that

P̄ ({Lt − Ls ∈ B}) = IE
[
1{Lt−Ls∈B}Zt

]
= IE

[
1{Lt−Ls∈B}

Zt
Zs

]
IE
[
Zs
]

= IE
[
1{Lt−Ls∈B}

eα(Lct−Lcs)eβ(Ldt−Lds)

IE[eα(Lct−Lcs)eβ(Ldt−Lds)]

]
= IE

[
1{Lt−Ls∈B}

eαL
c
t−s+βL

d
t−s

IE[eαL
c
t−s+βL

d
t−s ]

]
= IE

[
1{Lt−s∈B}Zt−s

]
= P̄ ({Lt−s ∈ B})

which yields the stationarity of the increments.
Thirdly, we determine the characteristic function of L under P̄ , which also

yields the triplet and canonical decomposition. Applying Theorem 25.17 in
Sato (1999), the moment generating function MLt of Lt exists for u ∈ C
with <u ∈ [−p, p]. We get

ĪE
[
ezLt

]
= IE

[
ezLtZt

]
= IE

[
ezLteβL

c
t eαL

d
t

IE[eβLct ]IE[eαLdt ]

]
=

IE[ezbte(z+β)Lct e(z+α)Ldt ]
IE[eβLct ]IE[eαLdt ]

= exp

t[zb+
(z + β)2c

2
+
∫
R

(
e(z+α)x − 1− (z + α)x

)
ν(dx)

−β
2c

2
−
∫
R

(
eαx − 1− αx

)
ν(dx)

]
= exp

t[z(b+ βc+
∫
R

x
(
eαx − 1

)
ν(dx)

)
+
z2c

2

+
∫
R

(
ezx − 1− zx

)
eαxν(dx)

]
= exp

t[zb̄+
z2c

2
+
∫
R

(
ezx − 1− zx

)
ν̄(dx)

] .

Finally, the statement follows by proving that ν̄(dx) = eαxν(dx) is a Lévy
measure, i.e.

∫
R(1 ∧ x2)eαxν(dx) <∞. It suffices to note that

(12.15)
∫
|x|≤1

x2eαxν(dx) ≤ C
∫
|x|≤1

x2ν(dx) <∞,

where C is a positive constant, because ν is a Lévy measure; the other part
follows from the assumptions, since |α| < p. �
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Remark 12.8. Girsanov’s theorem is a very powerful tool, widely used in
mathematical finance. In the second part, it will provide the link between
the ‘real-world’ and the ‘risk-neutral’ measure in a Lévy-driven asset price
model. Other applications of Girsanov’s theorem allow to simplify certain
valuation problems, cf. e.g. Papapantoleon (2007) and references therein.

13. Construction of Lévy processes

Three popular methods to construct a Lévy process are described below.
(C1): Specifying a Lévy triplet ; more specifically, whether there ex-

ists a Brownian component or not and what is the Lévy measure.
Examples of Lévy process constructed this way include the stan-
dard Brownian motion, which has Lévy triplet (0, 1, 0) and the Lévy
jump-diffusion, which has Lévy triplet (b, σ2, λF ).

(C2): Specifying an infinitely divisible random variable as the density
of the increments at time scale 1 (i.e. L1). Examples of Lévy process
constructed this way include the standard Brownian motion, where
L1 ∼ Normal(0, 1) and the normal inverse Gaussian process, where
L1 ∼ NIG(α, β, δ, µ).

(C3): Time-changing Brownian motion with an independent increas-
ing Lévy process. Let W denote the standard Brownian motion; we
can construct a Lévy process by ‘replacing’ the (calendar) time t
by an independent increasing Lévy process τ , therefore Lt := Wτ(t),
0 ≤ t ≤ T . The process τ has the useful – in Finance – interpretation
as ‘business time’. Models constructed this way include the normal
inverse Gaussian process, where Brownian motion is time-changed
with the inverse Gaussian process and the variance gamma process,
where Brownian motion is time-changed with the gamma process.

Naturally, some processes can be constructed using more than one meth-
ods. Nevertheless, each method has some distinctive advantages which are
very useful in applications. The advantages of specifying a triplet (C1) are
that the characteristic function and the pathwise properties are known and
allows the construction of a rich variety of models; the drawbacks are that
parameter estimation and simulation (in the infinite activity case) can be
quite involved. The second method (C2) allows the easy estimation and sim-
ulation of the process; on the contrary the structure of the paths might be
unknown. The method of time-changes (C3) allows for easy simulation, yet
estimation might be quite difficult.

14. Simulation of Lévy processes

We shall briefly describe simulation methods for Lévy processes. Our at-
tention is focused on finite activity Lévy processes (i.e. Lévy jump-diffusions)
and some special cases of infinite activity Lévy processes, namely the nor-
mal inverse Gaussian and the variance gamma processes. Several speed-up
methods for the Monte Carlo simulation of Lévy processes are presented in
Webber (2005).

Here, we do not discuss simulation methods for random variables with
known density; various algorithms can be found in Devroye (1986), also avail-
able online at http://cg.scs.carleton.ca/ luc/rnbookindex.html.



INTRODUCTION TO LÉVY PROCESSES 29

14.1. Finite activity. Assume we want to simulate the Lévy jump-diffusion

Lt = bt+ σWt +
Nt∑
k=1

Jk

where Nt ∼ Poisson(λt) and J ∼ F (dx). W denotes a standard Brownian
motion, i.e. Wt ∼ Normal(0, t).

We can simulate a discretized trajectory of the Lévy jump-diffusion L at
fixed time points t1, . . . , tn as follows:

• generate a standard normal variate and transform it into a normal
variate, denoted Gi, with variance σ∆ti, where ∆ti = ti − ti−1;
• generate a Poisson random variate N with parameter λT ;
• generate N random variates τk uniformly distributed in [0, T ]; these

variates correspond to the jump times;
• simulate the law of jump size J , i.e. simulate random variates Jk

with law F (dx).
The discretized trajectory is

Lti = bti +
i∑

j=1

Gj +
N∑
k=1

1{τk<ti}Jk.

14.2. Infinite activity. The variance gamma and the normal inverse Gauss-
ian process can be easily simulated because they are time-changed Brownian
motions; we follow Cont and Tankov (2003) closely. A general treatment of
simulation methods for infinite activity Lévy processes can be found in Cont
and Tankov (2003) and Schoutens (2003).

Assume we want to simulate a normal inverse Gaussian (NIG) process
with parameters α, β, δ, µ; cf. also section 16.5. We can simulate a discretized
trajectory at fixed time points t1, . . . , tn as follows:

• simulate n independent inverse Gaussian variables Ii with parame-
ters (δ∆ti)2 and α2 − β2, where ∆ti = ti − ti−1, i = 1, . . . , n;
• simulate n i.i.d. standard normal variables Gi;
• set ∆Li = µ∆ti + βIi +

√
IiGi.

The discretized trajectory is

Lti =
i∑

k=1

∆Lk.

Assume we want to simulate a variance gamma (VG) process with pa-
rameters σ, θ, κ; we can simulate a discretized trajectory at fixed time points
t1, . . . , tn as follows:

• simulate n independent gamma variables Γi with parameter ∆ti
κ

• set Γi = κΓi;
• simulate n standard normal variables Gi;
• set ∆Li = θΓi + σ

√
ΓiGi.

The discretized trajectory is

Lti =
i∑

k=1

∆Lk.
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Part 2. Applications in Finance

15. Asset price model

We describe an asset price model driven by a Lévy process, both under
the ‘real’ and under the ‘risk-neutral’ measure. Then, we present an informal
account of market incompleteness.

15.1. Real-world measure. Under the real-world measure, we model the
asset price process as the exponential of a Lévy process, that is

St = S0 expLt, 0 ≤ t ≤ T ,(15.1)

where, L is the Lévy process whose infinitely divisible distribution has been
estimated from the data set available for the particular asset. Hence, the log-
returns of the model have independent and stationary increments, which are
distributed – along time intervals of specific length, e.g. 1 – according to an
infinitely divisible distribution L(X), i.e. L1

d= X.
Naturally, the path properties of the process L carry over to S; if, for

example, L is a pure-jump Lévy process, then S is also a pure-jump process.
This fact allows us to capture, up to a certain extent, the microstructure of
price fluctuations, even on an intraday time scale.

An application of Itô’s formula yields that S = (St)0≤t≤T is the solution
of the stochastic differential equation

dSt = St−

(
dLt +

c

2
dt+

∫
R

(ex − 1− x)µL(dt,dx)
)
.(15.2)

We could also specify S by replacing the Brownian motion in the Black–
Scholes SDE by a Lévy process, i.e. via

dSt = St−dLt,(15.3)

whose solution is the stochastic exponential

St = S0E(Lt).(15.4)

The second approach is unfavorable for financial applications, because (a)
the asset price can take negative values, unless jumps are restricted to be
larger than−1, i.e. supp(ν) ⊂ [−1,∞), and (b) the distribution of log-returns
is not known. Of course, in the special case of the Black–Scholes model the
two approaches coincide.

Remark 15.1. The two modeling approaches are nevertheless closely re-
lated and, in some sense, complementary of each other. One approach is
suitable for studying the distributional properties of the price process and
the other for investigating the martingale properties. For the connection be-
tween the natural and stochastic exponential for Lévy processes, we refer to
Lemma A.8 in Goll and Kallsen (2000).

The fact that the price process is driven by a Lévy process, makes the
market, in general, incomplete; the only exceptions are the markets driven
by the Normal (Black-Scholes model) and Poisson distributions. Therefore,
there exists a large set of equivalent martingale measures, i.e. candidate
measures for risk-neutral valuation.
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Eberlein and Jacod (1997) provide a thorough analysis and characteriza-
tion of the set of equivalent martingale measures for Lévy-driven models.
Moreover, they prove that the range of option prices for a convex payoff
function, e.g. a call option, under all possible equivalent martingale mea-
sures spans the whole no-arbitrage interval, e.g. [(S0 − Ke−rT )+, S0] for a
European call option with strike K. Selivanov (2005) discusses the existence
and uniqueness of martingale measures for exponential Lévy models in finite
and infinite time horizon and for various specifications of the no-arbitrage
condition.

The Lévy market can be completed using particular assets, such as mo-
ment derivatives (e.g. variance swaps), and then there exists a unique equiv-
alent martingale measure; see Corcuera, Nualart, and Schoutens (2005a,
2005b). For example, if an asset is driven by a Lévy jump-diffusion

Lt = bt+
√
cWt +

Nt∑
k=1

Jk(15.5)

where Jk ≡ α ∀k, then the market can be completed using only variance
swaps on this asset; this example will be revisited in section 15.3.

15.2. Risk-neutral measure. Under the risk neutral measure, denoted by
P̄ , we model the asset price process as an exponential Lévy process

St = S0 expLt(15.6)

where the Lévy process L has the triplet (b̄, c̄, ν̄) and satisfies Assumptions
(M) (cf. Remark 8.1) and (EM) (see below).

The process L has the canonical decomposition

Lt = b̄t+
√
c̄W̄t +

t∫
0

∫
R

x(µL − ν̄L)(ds, dx)(15.7)

where W̄ is a P̄ -Brownian motion and ν̄L is the P̄ -compensator of the jump
measure µL.

Because we have assumed that P̄ is a risk neutral measure, the asset price
has mean rate of return µ , r−δ and the discounted and re-invested process
(e(r−δ)tSt)0≤t≤T , is a martingale under P̄ . Here r ≥ 0 is the (domestic) risk-
free interest rate, δ ≥ 0 the continuous dividend yield (or foreign interest
rate) of the asset. Therefore, the drift term b̄ takes the form

b̄ = r − δ − c̄

2
−
∫
R

(ex − 1− x)ν̄(dx);(15.8)

see Eberlein, Papapantoleon, and Shiryaev (2008) and Papapantoleon (2007)
for all the details.

Assumption (EM). We assume that the Lévy process L has finite first
exponential moment, i.e.

(15.9) ĪE[eLt ] <∞.
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There are various ways to choose the martingale measure such that it
is equivalent to the real-world measure. We refer to Goll and Rüschendorf
(2001) for a unified exposition – in terms of f -divergences – of the different
methods for selecting an equivalent martingale measure (EMM). Note that,
some of the proposed methods to choose an EMM preserve the Lévy property
of log-returns; examples are the Esscher transformation and the minimal
entropy martingale measure (cf. Esche and Schweizer 2005).

The market practice is to consider the choice of the martingale measure
as the result of a calibration to market data of vanilla options. Hakala and
Wystup (2002) describe the calibration procedure in detail. Cont and Tankov
(2004, 2006) and Belomestny and Reiß (2005) present numerically stable
calibration methods for Lévy driven models.

15.3. On market incompleteness. In order to gain a better understand-
ing of why the market is incomplete, let us make the following observation.
Assume that the price process of a financial asset is modeled as an exponen-
tial Lévy process under both the real and the risk-neutral measure. Assume
that these measures, denoted P and P̄ , are equivalent and denote the triplet
of the Lévy process under P and P̄ by (b, c, ν) and (b̄, c̄, ν̄) respectively.

Now, applying Girsanov’s theorem we get that these triplets are related
via c̄ = c, ν̄ = Y · ν and

b̄ = b+ cβ + x(Y − 1) ∗ ν,(15.10)

where (β, Y ) is the tuple of functions related to the density process. On the
other hand, from the martingale condition we get that

b̄ = r − c̄

2
− (ex − 1− x) ∗ ν̄.(15.11)

Equating (15.10) and (15.11) and using c = c̄ and ν = Y · ν̄, we have that

0 = b+ cβ + x(Y − 1) ∗ ν − r +
c̄

2
+ (ex − 1− x) ∗ ν̄

⇔ 0 = b− r + c(β +
1
2

) +
(
(ex − 1)Y − x

)
∗ ν;(15.12)

therefore, we have one equation but two unknown parameters, β and Y
stemming from the change of measure. Every solution tuple (β, Y ) of equa-
tion (15.12) corresponds to a different equivalent martingale measure, which
explains why the market is not complete. The tuple (β, Y ) could also be
termed the tuple of ‘market price of risk’.

Example 15.2 (Black–Scholes model). Let us consider the Black–Scholes
model, where the driving process is a Brownian motion with drift, i.e. Lt =
bt+

√
cWt. Then, equation (15.12) has a unique solution, namely

(15.13) β =
r − b
c
− 1

2
,

the martingale measure is unique and the market is complete. We can also
easily check that plugging (15.13) into (15.10), we recover the martingale
condition (15.11).
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Remark 15.3. The quantity β in (15.13) is nothing else than the so-called
market price of risk. The difference from the quantity often encountered in
textbooks, i.e. r−µ

c , stems from the fact that we model using the natural
instead of the stochastic exponential, i.e. using SDE (15.2) and not (15.3).

Example 15.4 (Poisson model). Let us consider the Poisson model, where
the driving motion is a Poisson process with intensity λ > 0 and jump size
α, i.e. Lt = bt+ αNt and ν(dx) = λ1{α}(dx). Then, equation (15.12) has a
unique solution for Y , which is

0 = b− r +
(
(ex − 1)Y − x

)
∗ λ1{α}(dx)

⇔ 0 = b− r +
(
(eα − 1)Y − α

)
λ

⇔ Y =
r − b+ αλ

(eα − 1)λ
;(15.14)

therefore the martingale measure is unique and the market is complete. By
the analogy to the Black–Scholes case, we could call the quantity Y in (15.14)
the market price of jump risk.

Moreover, we can also check that plugging (15.14) into (15.10), we recover
the martingale condition (15.11); indeed, we have that

b̄ = b+ αλ(Y − 1)

= b+ αλ(Y − 1) + (eα − 1)Y λ− (eα − 1)Y λ

= r − (eα − 1− α)λ̄,

where we have used (15.14) and that ν̄ = Y · ν, which in the current frame-
work translates to λ̄ = Y λ.

Example 15.5 (A simple incomplete model). Assume that the driving
process consists of a drift, a Brownian motion and a Poisson process, i.e.
Lt = bt+

√
cWt + αNt, as in examples 15.2 and 15.4. Based on (15.13) and

(15.14) we postulate that the solutions of equation (15.12) are of the form

βε = ε
r − b
c
− 1

2
and Yε =

(1− ε)(r − b) + αλ

(eα − 1)λ
(15.15)

for any ε ∈ (0, 1). One can easily verify that βε and Yε satisfy (15.12). But
then, to any ε ∈ (0, 1) corresponds an equivalent martingale measure and
we can easily conclude that this simple market is incomplete.

16. Popular models

In this section, we review some popular models in the mathematical fi-
nance literature from the point of view of Lévy processes. We describe their
Lévy triplets and characteristic functions and provide, whenever possible,
their – infinitely divisible – laws.

16.1. Black–Scholes. The most famous asset price model based on a Lévy
process is that of Samuelson (1965), Black and Scholes (1973) and Merton
(1973). The log-returns are normally distributed with mean µ and variance
σ2, i.e. L1 ∼ Normal(µ, σ2) and the density is

fL1(x) =
1

σ
√

2π
exp

[
− (x− µ)2

2σ2

]
.



34 ANTONIS PAPAPANTOLEON

The characteristic function is

ϕL1(u) = exp
[
iµu− σ2u2

2

]
,

the first and second moments are

E[L1] = µ, Var[L1] = σ2,

while the skewness and kurtosis are

skew[L1] = 0, kurt[L1] = 3.

The canonical decomposition of L is

Lt = µt+ σWt

and the Lévy triplet is (µ, σ2, 0).

16.2. Merton. Merton (1976) was one of the first to use a discontinuous
price process to model asset returns. The canonical decomposition of the
driving process is

Lt = µt+ σWt +
Nt∑
k=1

Jk

where Jk ∼ Normal(µJ , σ2
J), k = 1, ..., hence the distribution of the jump

size has density

fJ(x) =
1

σJ
√

2π
exp

[
− (x− µJ)2

2σ2
J

]
.

The characteristic function of L1 is

ϕL1(u) = exp
[
iµu− σ2u2

2
+ λ

(
eiµJu−σ

2
Ju

2/2 − 1
)]
,

and the Lévy triplet is (µ, σ2, λ× fJ).
The density of L1 is not known in closed form, while the first two moments

are

E[L1] = µ+ λµJ and Var[L1] = σ2 + λµ2
J + λσ2

J

16.3. Kou. Kou (2002) proposed a jump-diffusion model similar to Mer-
ton’s, where the jump size is double-exponentially distributed. Therefore,
the canonical decomposition of the driving process is

Lt = µt+ σWt +
Nt∑
k=1

Jk

where Jk ∼ DbExpo(p, θ1, θ2), k = 1, ..., hence the distribution of the jump
size has density

fJ(x) = pθ1e−θ1x1{x<0} + (1− p)θ2eθ2x1{x>0}.

The characteristic function of L1 is

ϕL1(u) = exp
[
iµu− σ2u2

2
+ λ

( pθ1

θ1 − iu
− (1− p)θ2

θ2 + iu
− 1
)]
,

and the Lévy triplet is (µ, σ2, λ× fJ).



INTRODUCTION TO LÉVY PROCESSES 35

The density of L1 is not known in closed form, while the first two moments
are

E[L1] = µ+
λp

θ1
− λ(1− p)

θ2
and Var[L1] = σ2 +

λp

θ2
1

+
λ(1− p)

θ2
2

.

16.4. Generalized Hyperbolic. The generalized hyperbolic model was
introduced by Eberlein and Prause (2002) following the seminal work on
the hyperbolic model by Eberlein and Keller (1995). The class of hyper-
bolic distributions was invented by O. E. Barndorff-Nielsen in relation to
the so-called ‘sand project’ (cf. Barndorff-Nielsen 1977). The increments of
time length 1 follow a generalized hyperbolic distribution with parameters
α, β, δ, µ, λ, i.e. L1 ∼ GH(α, β, δ, µ, λ) and the density is

fGH(x) = c(λ, α, β, δ)
(
δ2 + (x− µ)2

)(λ− 1
2

)/2

×Kλ− 1
2

(
α
√
δ2 + (x− µ)2

)
exp

(
β(x− µ)

)
,

where

c(λ, α, β, δ) =
(α2 − β2)λ/2

√
2παλ−

1
2Kλ

(
δ
√
α2 − β2

)
and Kλ denotes the Bessel function of the third kind with index λ (cf.
Abramowitz and Stegun 1968). Parameter α > 0 determines the shape,
0 ≤ |β| < α determines the skewness, µ ∈ R the location and δ > 0 is a
scaling parameter. The last parameter, λ ∈ R affects the heaviness of the
tails and allows us to navigate through different subclasses. For example, for
λ = 1 we get the hyperbolic distribution and for λ = −1

2 we get the normal
inverse Gaussian (NIG).

The characteristic function of the GH distribution is

ϕGH(u) = eiuµ
( α2 − β2

α2 − (β + iu)2

)λ
2 Kλ

(
δ
√
α2 − (β + iu)2

)
Kλ

(
δ
√
α2 − β2

) ,

while the first and second moments are

E[L1] = µ+
βδ2

ζ

Kλ+1(ζ)
Kλ(ζ)

and

Var[L1] =
δ2

ζ

Kλ+1(ζ)
Kλ(ζ)

+
β2δ4

ζ2

(Kλ+2(ζ)
Kλ(ζ)

−
K2
λ+1(ζ)
K2
λ(ζ)

)
,

where ζ = δ
√
α2 − β2.

The canonical decomposition of a Lévy process driven by a generalized
hyperbolic distribution (i.e. L1 ∼ GH) is

Lt = tE[L1] +

t∫
0

∫
R

x(µL − νGH)(ds, dx)
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and the Lévy triplet is (E[L1], 0, νGH). The Lévy measure of the GH distri-
bution has the following form

νGH(dx) =
eβx

|x|

 ∞∫
0

exp(−
√

2y + α2 |x|)
π2y(J2

|λ|(δ
√

2y ) + Y 2
|λ|(δ
√

2y ))
dy + λe−α|x|1{λ≥0}

 ;

here Jλ and Yλ denote the Bessel functions of the first and second kind with
index λ. We refer to Raible (2000, section 2.4.1) for a fine analysis of this
Lévy measure.

The GH distribution contains as special or limiting cases several known
distributions, including the normal, exponential, gamma, variance gamma,
hyperbolic and normal inverse Gaussian distributions; we refer to Eberlein
and v. Hammerstein (2004) for an exhaustive survey.

16.5. Normal Inverse Gaussian. The normal inverse Gaussian distribu-
tion is a special case of the GH for λ = −1

2 ; it was introduced to finance in
Barndorff-Nielsen (1997). The density is

fNIG(x) =
α

π
exp

(
δ
√
α2 − β2 + β(x− µ)

)K1

(
αδ
√

1 + (x−µδ )2
)

√
1 + (x−µδ )2

,

while the characteristic function has the simplified form

ϕNIG(u) = eiuµ
exp(δ

√
α2 − β2)

exp(δ
√
α2 − (β + iu)2)

.

The first and second moments of the NIG distribution are

E[L1] = µ+
βδ√
α2 − β2

and Var[L1] =
δ√

α2 − β2
+

β2δ

(
√
α2 − β2)3

,

and similarly to the GH, the canonical decomposition is

Lt = tE[L1] +

t∫
0

∫
R

x(µL − νNIG)(ds, dx),

where now the Lévy measure has the simplified form

νNIG(dx) = eβx
δα

π|x|
K1(α|x|)dx.

The NIG is the only subclass of the GH that is closed under convolution,
i.e. if X ∼ NIG(α, β, δ1, µ1) and Y ∼ NIG(α, β, δ2, µ2) and X is independent
of Y , then

X + Y ∼ NIG(α, β, δ1 + δ2, µ1 + µ2).

Therefore, if we estimate the returns distribution at some time scale, then
we know it – in closed form – for all time scales.
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16.6. CGMY. The CGMY Lévy process was introduced by Carr, Geman,
Madan, and Yor (2002); another name for this process is (generalized) tem-
pered stable process (see e.g. Cont and Tankov 2003). The characteristic
function of Lt, t ∈ [0, T ] is

ϕLt(u) = exp
(
tCΓ(−Y )

[
(M − iu)Y + (G+ iu)Y −MY −GY

])
.

The Lévy measure of this process admits the representation

νCGMY (dx) = C
e−Mx

x1+Y
1{x>0}dx+ C

eGx

|x|1+Y
1{x<0}dx,

where C > 0, G > 0, M > 0, and Y < 2. The CGMY process is a pure jump
Lévy process with canonical decomposition

Lt = tE[L1] +

t∫
0

∫
R

x(µL − νCGMY )(ds, dx),

and Lévy triplet (E[L1], 0, νCGMY ), while the density is not known in closed
form.

The CGMY processes are closely related to stable processes; in fact, the
Lévy measure of the CGMY process coincides with the Lévy measure of the
stable process with index α ∈ (0, 2) (cf. Samorodnitsky and Taqqu 1994, Def.
1.1.6), but with the additional exponential factors; hence the name tempered
stable processes. Due to the exponential tempering of the Lévy measure,
the CGMY distribution has finite moments of all orders. Again, the class of
CGMY distributions contains several other distributions as subclasses, for
example the variance gamma distribution (Madan and Seneta 1990) and the
bilateral gamma distribution (Küchler and Tappe 2008).

16.7. Meixner. The Meixner process was introduced by Schoutens and
Teugels (1998), see also Schoutens (2002). Let L = (Lt)0≤t≤T be a Meixner
process with Law(H1|P ) = Meixner(α, β, δ), α > 0, −π < β < π, δ > 0,
then the density is

fMeixner(x) =

(
2 cos β2

)2δ

2απΓ(2δ)
exp

(
βx

α

) ∣∣∣∣Γ(δ +
ix

α

)∣∣∣∣2 .
The characteristic function Lt, t ∈ [0, T ] is

ϕLt(u) =

(
cos β2

cosh αu−iβ
2

)2δt

,

and the Lévy measure of the Meixner process admits the representation

νMeixner(dx) =
δ exp

(
β
αx
)

x sinh(πxα )
.
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The Meixner process is a pure jump Lévy process with canonical decompo-
sition

Lt = tE[L1] +

t∫
0

∫
R

x(µL − νMeixner)(ds, dx),

and Lévy triplet (E[L1], 0, νMeixner).

17. Pricing European options

The aim of this section is to review the three predominant methods
for pricing European options on assets driven by general Lévy processes.
Namely, we review transform methods, partial integro-differential equation
(PIDE) methods and Monte Carlo methods. Of course, all these methods
can be used – under certain modifications – when considering more general
driving processes as well.

The setting is as follows: we consider an asset S = (St)0≤t≤T modeled as
an exponential Lévy process, i.e.

St = S0 expLt, 0 ≤ t ≤ T ,(17.1)

where L = (Lt)0≤t≤T has the Lévy triplet (b, c, ν). We assume that the
asset is modeled directly under a martingale measure, cf. section 15.2, hence
the martingale restriction on the drift term b is in force. For simplicity, we
assume that r > 0 and δ = 0 throughout this section.

We aim to derive the price of a European option on the asset S with
payoff function g maturing at time T , i.e. the payoff of the option is g(ST ).

17.1. Transform methods. The simpler, faster and most common method
for pricing European options on assets driven by Lévy processes is to de-
rive an integral representation for the option price using Fourier or Laplace
transforms. This blends perfectly with Lévy processes, since the represen-
tation involves the characteristic function of the random variables, which is
explicitly provided by the Lévy-Khintchine formula. The resulting integral
can be computed numerically very easily and fast. The main drawback of
this method is that exotic derivatives cannot be handled so easily.

Several authors have derived valuation formulae using Fourier or Laplace
transforms, see e.g. Carr and Madan (1999), Borovkov and Novikov (2002)
and Eberlein, Glau, and Papapantoleon (2008). Here, we review the method
developed by S. Raible (cf. Raible 2000, Chapter 3).

Assume that the following conditions regarding the driving process of the
asset and the payoff function are in force.

(T1): Assume that ϕLT (z), the extended characteristic function of LT ,
exists for all z ∈ C with =z ∈ I1 ⊃ [0, 1].

(T2): Assume that PLT , the distribution of LT , is absolutely continu-
ous w.r.t. the Lebesgue measure λ\ with density ρ.

(T3): Consider an integrable, European-style, payoff function g(ST ).
(T4): Assume that x 7→ e−Rx|g(e−x)| is bounded and integrable for

all R ∈ I2 ⊂ R.
(T5): Assume that I1 ∩ I2 6= ∅.
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Furthermore, let Lh(z) denote the bilateral Laplace transform of a func-
tion h at z ∈ C, i.e. let

Lh(z) :=
∫
R

e−zxh(x)dx.

According to arbitrage pricing, the value of an option is equal to its dis-
counted expected payoff under the risk-neutral measure P . Hence, we get

CT (S,K) = e−rT IE[g(ST )] = e−rT
∫
Ω

g(ST )dP

= e−rT
∫
R

g(S0ex)dPLT (x) = e−rT
∫
R

g(S0ex)ρ(x)dx

because PLT is absolutely continuous with respect to the Lebesgue measure.
Define the function π(x) = g(e−x) and let ζ = − logS0, then

CT (S,K) = e−rT
∫
R

π(ζ − x)ρ(x)dx = e−rT (π ∗ ρ)(ζ) =: C(17.2)

which is a convolution of π with ρ at the point ζ, multiplied by the discount
factor.

The idea now is to apply a Laplace transform on both sides of (17.2) and
take advantage of the fact that the Laplace transform of a convolution equals
the product of the Laplace transforms of the factors. The resulting Laplace
transforms are easier to calculate analytically. Finally, we can invert the
Laplace transforms to recover the option value.

Applying Laplace transforms on both sides of (17.2) for C 3 z = R +
iu,R ∈ I1 ∩ I2, u ∈ R, we get that

LC(z) = e−rT
∫
R

e−zx(π ∗ ρ)(x)dx

= e−rT
∫
R

e−zxπ(x)dx
∫
R

e−zxρ(x)dx

= e−rTLπ(z)Lρ(z).

Now, inverting this Laplace transform yields the option value, i.e.

CT (S,K) =
1

2πi

R+i∞∫
R−i∞

eζzLC(z)dz

=
1

2π

∫
R

eζ(R+iu)LC(R+ iu)du

=
eζR

2π

∫
R

eiζue−rTLπ(R+ iu)Lρ(R+ iu)du

=
e−rT+ζR

2π

∫
R

eiζuLπ(R+ iu)ϕLT (iR− u)du.
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Here, Lπ is the Laplace transform of the modified payoff function π(x) =
g(e−x) and ϕLT is provided directly from the Lévy-Khintchine formula.
Below, we describe two important examples of payoff functions and their
Laplace transforms.

Example 17.1 (Call and put option). A European call option pays off
g(ST ) = (ST −K)+, for some strike price K. The Laplace transform of its
modified payoff function π is

Lπ(z) =
K1+z

z(z + 1)
(17.3)

for z ∈ C with <z = R ∈ I2 = (−∞,−1).
Similarly, for a European put option that pays off g(ST ) = (K − ST )+,

the Laplace transform of its modified payoff function π is given by (17.3) for
z ∈ C with <z = R ∈ I2 = (0,∞).

Example 17.2 (Digital option). A European digital call option pays off
g(ST ) = 1{ST>K}. The Laplace transform of its modified payoff function π
is

Lπ(z) = −K
z

z
(17.4)

for z ∈ C with <z = R ∈ I2 = (−∞, 0).
Similarly, for a European digital put option that pays off g(ST ) = 1{ST<K},

the Laplace transform of its modified payoff function π is

Lπ(z) =
Kz

z
(17.5)

for z ∈ C with <z = R ∈ I2 = (0,∞).

17.2. PIDE methods. An alternative to transform methods for pricing
options is to derive and then solve numerically the partial integro-differential
equation (PIDE) that the option price satisfies. Note that in their seminal
paper Black and Scholes derive such a PDE for the price of a European
option. The advantage of PIDE methods is that complex and exotic payoffs
can be treated easily; the limitations are the slower speed in comparison
to transform methods and the computational complexity when handling
options on several assets.

Here, we derive the PIDE corresponding to the price of a European option
in a Lévy-driven asset, using martingale techniques; of course, we could
derive the same PIDE by constructing a self-financing portfolio.

Let us denote by G(St, t) the time-t price of a European option with payoff
function g on the asset S; the price is given by

G(St, t) = e−r(T−t)IE[g(ST )] =: Vt, 0 ≤ t ≤ T .(17.6)

By arbitrage theory, we know that the discounted option price process must
be a martingale under a martingale measure. Therefore, any decomposition
of the price process as

e−rtVt = V0 +Mt +At,(17.7)

where M ∈ Mloc and A ∈ Aloc, must satisfy At = 0 for all t ∈ [0, T ]. This
condition yields the desired PIDE.
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Now, for notational but also computational convenience, we work with
the driving process L and not the asset price process S, hence we derive a
PIDE involving f(Lt, t) := G(St, t), or in other words

f(Lt, t) = e−r(T−t)IE[g(S0eLT )] = Vt, 0 ≤ t ≤ T .(17.8)

Let us denote by ∂if the derivative of f with respect to the i-th argument,
∂2
i f the second derivative of f with respect to the i-th argument, and so on.

Assume that f ∈ C2,1(R×[0, T ]), i.e. it is twice continuously differentiable
in the first argument and once continuously differentiable in the second
argument. An application of Itô’s formula yields:

d(e−rtVt) = d(e−rtf(Lt−, t))

= −re−rtf(Lt−, t)dt+ e−rt∂2f(Lt−, t)dt

+ e−rt∂1f(Lt−, t)dLt +
1
2

e−rt∂2
1f(Lt−, t)d〈Lct〉

+ e−rt
∫
R

(
f(Lt− + z, t)− f(Lt−, t)− ∂1f(Lt− , t)z

)
µL(dz,dt)

= e−rt
{
− rf(Lt−, t)dt+ ∂2f(Lt−, t)dt+ ∂1f(Lt−, t)bdt

+ ∂1f(Lt−, t)
√
cdWt +

∫
R

∂1f(Lt−, t)z(µL − νL)(dz,dt)

+
1
2
∂2

1f(Lt−, t)cdt

+
∫
R

(
f(Lt− + z, t)− f(Lt−, t)− ∂1f(Lt− , t)z

)
(µL − νL)(dz, dt)

+
∫
R

(
f(Lt− + z, t)− f(Lt−, t)− ∂1f(Lt− , t)z

)
ν(dz)dt

}
.

Now, the stochastic differential of the bounded variation part of the option
price process is

e−rt
{
− rf(Lt−, t) + ∂2f(Lt−, t) + ∂1f(Lt−, t)b+

1
2
∂2

1f(Lt−, t)c

+
∫
R

(
f(Lt− + z, t)− f(Lt−, t)− ∂1f(Lt− , t)z

)
ν(dz)

}
,

while the remaining parts constitute of the local martingale part.
As was already mentioned, the bounded variation part vanishes identi-

cally. Hence, the price of the option satisfies the partial integro-differential
equation

0 = −rf(x, t) + ∂2f(x, t) + ∂1f(x, t)b+
c

2
∂2

1f(x, t)(17.9)

+
∫
R

(
f(x+ z, t)− f(x, t)− ∂1f(x, t)z

)
ν(dz),
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for all (x, t) ∈ R× (0, T ), subject to the terminal condition

f(x, T ) = g(ex).(17.10)

Remark 17.3. Using the martingale condition (15.8) to make the drift term
explicit, we derive an equivalent formulation of the PIDE:

0 = −rf(x, t) + ∂2f(x, t) +
(
r − c

2
)
∂1f(x, t) +

c

2
∂2

1f(x, t)

+
∫
R

(
f(x+ z, t)− f(x, t)− (ez − 1)∂1f(x, t)

)
ν(dz),

for all (x, t) ∈ R× (0, T ), subject to the terminal condition

f(x, T ) = g(ex).

Remark 17.4. Numerical methods for solving the above partial integro-
differential equations can be found, for example, in Matache et al. (2004),
in Matache et al. (2005) and in Cont and Tankov (2003, Chapter 12).

17.3. Monte Carlo methods. Another method for pricing options is to
use a Monte Carlo simulation. The main advantage of this method is that
complex and exotic derivatives can be treated easily – which is very impor-
tant in applications, since little is known about functionals of Lévy processes.
Moreover, options on several assets can also be handled easily using Monte
Carlo simulations. The main drawback of Monte Carlo methods is the slow
computational speed.

We briefly sketch the pricing of a European call option on a Lévy driven
asset. The payoff of the call option with strike K at the time of maturity T
is g(ST ) = (ST −K)+ and the price is provided by the discounted expected
payoff under a risk-neutral measure, i.e.

CT (S,K) = e−rT IE[(ST −K)+].

The crux of pricing European options with Monte Carlo methods is to sim-
ulate the terminal value of asset price ST = S0 expLT – see section 14 for
simulation methods for Lévy processes. Let STk for k = 1, . . . , N denote
the simulated values; then, the option price CT (S,K) is estimated by the
average of the prices for the simulated asset values, that is

ĈT (S,K) = e−rT
N∑
k=1

(STk −K)+,

and by the Law of Large Numbers we have that

ĈT (S,K)→ CT (S,K) as N →∞.

18. Empirical evidence

Lévy processes provide a framework that can easily capture the empiri-
cal observations both under the “real world” and under the “risk-neutral”
measure. We provide here some indicative examples.

Under the “real world” measure, Lévy processes are generated by dis-
tributions that are flexible enough to capture the observed fat-tailed and
skewed (leptokurtic) behavior of asset returns. One such class of distribu-
tions is the class of generalized hyperbolic distributions (cf. section 16.4). In
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Figure 18.11. Densities of hyperbolic (red), NIG (blue) and
hyperboloid distributions (left). Comparison of the GH (red)
and Normal distributions (with equal mean and variance).
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Figure 18.12. Empirical distribution and Q-Q plot of
EUR/USD daily log-returns with fitted GH (red).

Figure 18.11, various densities of generalized hyperbolic distributions and a
comparison of the generalized hyperbolic and normal density are plotted.

A typical example of the behavior of asset returns can be seen in Figures
1.2 and 18.12. The fitted normal distribution has lower peak, fatter flanks
and lighter tails than the empirical distribution; this means that, in real-
ity, tiny and large price movements occur more frequently, and small and
medium size movements occur less frequently, than predicted by the nor-
mal distribution. On the other hand, the generalized hyperbolic distribution
gives a very good statistical fit of the empirical distribution; this is further
verified by the corresponding Q-Q plot.

Under the “risk-neutral” measure, the flexibility of the generating dis-
tributions allows the implied volatility smiles produced by a Lévy model
to accurately capture the shape of the implied volatility smiles observed in
the market. A typical volatility surface can be seen in Figure 1.3. Figure
18.13 exhibits the volatility smile of market data (EUR/USD) and the cal-
ibrated implied volatility smile produced by the NIG distribution; clearly,
the resulting smile fits the data particularly well.



44 ANTONIS PAPAPANTOLEON

0  20 40 ATM 60 80 100

13.5

14.5

15.5

16.5

17.5

delta (%)

im
pl

ie
d 

vo
la

til
ity

 (
%

)

 

 

market prices
model prices

Figure 18.13. Implied volatilities of EUR/USD options and
calibrated NIG smile.

Appendix A. Poisson random variables and processes

Definition A.1. Let X be a Poisson distributed random variable with pa-
rameter λ ∈ R>0. Then, for n ∈ N the probability distribution is

P (X = n) = e−λ
λn

n!
and the first two centered moments are

E[X] = λ and Var[X] = λ.

Definition A.2. A càdlàg, adapted stochastic process N = (Nt)0≤t≤T with
Nt : Ω× R>0 → N ∪ {0} is called a Poisson process if

(1) N0 = 0,
(2) Nt −Ns is independent of Fs for any 0 ≤ s < t < T ,
(3) Nt −Ns is Poisson distributed with parameter λ(t− s) for any 0 ≤

s < t < T .
Then, λ ≥ 0 is called the intensity of the Poisson process.

Definition A.3. Let N be a Poisson process with parameter λ. We shall
call the process N = (N t)0≤t≤T with N t : Ω× R>0 → R where

N t := Nt − λt(A.1)

a compensated Poisson process.

A simulated path of a Poisson and a compensated Poisson process can be
seen in Figure A.14.

Proposition A.4. The compensated Poisson process defined by (A.1) is a
martingale.

Proof. We have that
(1) the process N is adapted to the filtration because N is adapted (by

definition);
(2) IE[|N t|] <∞ because IE[|Nt|] <∞, for all 0 ≤ t ≤ T ;
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Figure A.14. Plots of the Poisson (left) and compensated
Poisson process.

(3) finally, let 0 ≤ s < t < T , then

IE[N t|Fs] = IE[Nt − λt|Fs]
= IE[Ns − (Nt −Ns)|Fs]− λ(s− (t− s))
= Ns − IE[(Nt −Ns)|Fs]− λ(s− (t− s))
= Ns − λs
= N s. �

Remark A.5. The characteristic functions of the Poisson and compensated
Poisson random variables are respectively

IE[eiuNt ] = exp
[
λt(eiu − 1)

]
and

IE[eiuNt ] = exp
[
λt(eiu − 1− iu)

]
.

Appendix B. Compound Poisson random variables

Let N be a Poisson distributed random variable with parameter λ ≥ 0
and J = (Jk)k≥1 an i.i.d. sequence of random variables with law F . Then,
by conditioning on the number of jumps and using independence, we have
that the characteristic function of a compound Poisson distributed random
variable is

IE
[
eiu

PN
k=1 Jk

]
=
∑
n≥0

IE
[
eiu

PN
k=1 Jk

∣∣N = n
]
P (N = n)

=
∑
n≥0

IE
[
eiu

Pn
k=1 Jk

]
e−λ

λn

n!

=
∑
n≥0

∫
R

eiuxF (dx)

n

e−λ
λn

n!

= exp

λ ∫
R

(eiux − 1)F (dx)

 .
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Appendix C. Notation

d= equality in law, L(X) law of the random variable X
a ∧ b = min{a, b}, a ∨ b = max{a, b}
C 3 z = α+ iβ, with α, β ∈ R; then <z = α and =z = β
1A denotes the indicator of the generic event A, i.e.

1A(x) =
{

1, if x ∈ A,
0, if x /∈ A.

Classes:
Mloc local martingales
Aloc processes of locally bounded variation
V processes of finite variation
Gloc(µ) functions integrable wrt the compensated random measure µ− ν

Appendix D. Datasets

The EUR/USD implied volatility data are from 5 November 2001. The
spot price was 0.93, the domestic rate (USD) 5% and the foreign rate (EUR)
4%. The data are available at

http://www.mathfinance.de/FF/sampleinputdata.txt.

The USD/JPY, EUR/USD and GBP/USD foreign exchange time se-
ries correspond to noon buying rates (dates: 22/10/1997 − 22/10/2004,
4/1/99 − 3/3/2005 and 1/5/2002 − 3/3/2005 respectively). The data can
be downloaded from

http://www.newyorkfed.org/markets/foreignex.html.

Appendix E. Paul Lévy

Processes with independent and stationary increments are named Lévy
processes after the French mathematician Paul Lévy (1886-1971), who made
the connection with infinitely divisible laws, characterized their distributions
(Lévy-Khintchine formula) and described their path structure (Lévy-Itô de-
composition). Paul Lévy is one of the founding fathers of the theory of
stochastic processes and made major contributions to the field of probabil-
ity theory. Among others, Paul Lévy contributed to the study of Gaussian
variables and processes, the law of large numbers, the central limit theorem,
stable laws, infinitely divisible laws and pioneered the study of processes
with independent and stationary increments.

More information about Paul Lévy and his scientific work, can be found
at the websites

http://www.cmap.polytechnique.fr/ rama/levy.html

and

http://www.annales.org/archives/x/paullevy.html

(in French).
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