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Abstract

We present an explicit computation of some determinants which
can be considered as generalizations of the Vandermonde determinant.
The result is not new [1]. As an application we compute the Wronskian
of the standard solutions of the general linear homogeneous ordinary
differential equation with constant coefficients, whose associated char-
acteristic equation has repeated roots.
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1 The calculation of generalized (or conflu-

ent) Vandermonde determinants

It is well known that∣∣∣∣∣∣∣∣∣∣∣
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=

∏
1≤j<k≤ν

(xk − xj), (1.1)
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where the left-hand side of (1.1) is the so-called ν × ν Vandermonde deter-
minant. The justification of equation (1.1) is relatively easy. One can use,
e.g., induction on ν or, alternatively, one can first notice that the sides of
(1.1) have to be equal up to a constant factor cν , since both sides are poly-
nomials in the variables x1, . . . , xν of the same degree and having the same
one-degree factors. Then, the evaluation of cν can be done by, say, comparing
coefficients of some monomial.

Definition. Let A and α be integers with A ≥ α ≥ 1. The A× α (general-
ized) Vandermonde block is the matrix

B(x;A× α) = (cjk) 1≤j≤A
1≤k≤α

, where cjk :=

(
j − 1

k − 1

)
xj−k, (1.2)

with the convention that
(
j−1
k−1

)
= 0 for j < k. Notice that B(x;A × α) is a

square matrix only if A = α, and in this case its determinant is 1.

Next, let α1, . . . , αm be strictly positive integers and

A = α1 + · · ·+ αm . (1.3)

Putting the blocks B(x1;A × α1), . . . , B(xm;A × αm) side by side we form
the A× A (square) matrix

M(x1, . . . , xm;α1, . . . , αm) := [B(x1;A× α1) · · ·B(xm;A× αm)] . (1.4)

Then, we consider its determinant

F (x1, . . . , xm;α1, . . . , αm) := detM(x1, . . . , xm;α1, . . . , αm), (1.5)

namely

F (x1, . . . , xm;α1, . . . , αm)

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
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(1.6)
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Thus, F (x1, . . . , xm;α1, . . . , αm) is a polynomial in x1, . . . , xm. For instance,
if m = 3 and (α1, α2, α3) = (2, 3, 1) we get

F (x1, x2, x3; 2, 3, 1) =

∣∣∣∣∣∣∣∣∣∣∣∣
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∣∣∣∣∣∣∣∣∣∣∣∣
= (x2−x1)

6(x3−x1)
2(x3−x2)

3.

(1.7)
In the case α1 = · · · = αA = 1 (hence m = A), F (x1, . . . , xA; 1, . . . , 1)
becomes the standard Vandermonde determinant and we have

F (x1, . . . , xA; 1, . . . , 1) =
∏

1≤j<k≤A

(xk − xj).

On the other hand, in the extreme case m = 1 we have α1 = A and

F (x1;A) ≡ 1.

Observation. Assume αj ≥ 2 for some j = 1, . . . ,m. Set

f(y) := F (x1, . . . , xj−1, xj, y, xj+1, . . . , xm;α1, . . . , αj−1, (αj−1), 1, αj+1, . . . , αm)
(1.8)

(thus, f(y) is a polynomial in the m+ 1 variables x1, . . . , xm and y). Then

F (x1, . . . , xm;α1, . . . , αm) =
f (αj−1)(xj)

(αj − 1)!
. (1.9)

For example, if we take m = 3, (α1, α2, α3) = (2, 3, 1), and j = 2 we have

f(y) = F (x1, x2, y, x3; 2, 2, 1, 1) =

∣∣∣∣∣∣∣∣∣∣∣∣
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∣∣∣∣∣∣∣∣∣∣∣∣
(1.10)

and f ′′(x2) = 2!F (x1, x2, x3; 2, 3, 1), where F (x1, x2, x3; 2, 3, 1) is the deter-
minant of (1.7).

The following proposition appears as a problem in [1].

Proposition. Let m ≥ 2. Then,

F (x1, . . . , xm;α1, . . . , αm) =
∏

1≤j<k≤m

(xk − xj)
αjαk . (1.11)
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Proof. We will use induction on max{α1, . . . , αm}, i.e. the maximum of the
αj’s. If α1 = · · · = αm = 1, the left-hand side of (1.11) becomes the standard
Vandermonde determinant and (1.11) holds.
First inductive hypothesis: Assume that (1.11) is true for max{α1, . . . , αm} <
n, where n ≥ 2. We need to show that (1.11) also holds for max{α1, . . . , αm} =
n. We will prove this by induction on #{αj : αj = n}, namely the number
of αj’s that assume the maximum value n.
We begin by considering the case where αi = n for some i ∈ {1, . . . ,m} and
maxj ̸=i αj < n, namely #{αj : αj = n} = 1. Set

f(y) := F (x1, . . . , xi−1, xi, y, xi+1, . . . , xm;α1, . . . , αi−1, (αi−1), 1, αi+1, . . . , αm).
(1.12)

Then, since max{α1, . . . , αi−1, (αi − 1), 1, αi+1, . . . , αm} = n − 1, the first
inductive hypothesis implies that

f(y) = (y−xi)
n−1

m∏
l=1
l̸=i

(y−xl)
αl
i

m∏
l=1
l ̸=i

(xi−xl)
(n−1)αl

i

∏
1≤j<k≤m

j,k ̸=i

(xk−xj)
αjαk , (1.13)

where for typographical convenience we have set (y−xl)i := (y−xl)sgn(i− l)
and (xi − xl)i := (xi − xl)sgn(i − l). We continue by writing (1.13) in the
form

f(y) = (y − xi)
n−1f1(y), (1.14)

where

f1(y) :=
m∏
l=1
l̸=i

(y − xl)
αl
i

m∏
l=1
l̸=i

(xi − xl)
(n−1)αl

i

∏
1≤j<k≤m

j,k ̸=i

(xk − xj)
αjαk . (1.15)

Now, the observation (1.9) applied to (1.12) gives

F (x1, . . . , xm;α1, . . . , αm) =
f (n−1)(xi)

(n− 1)!
. (1.16)

Applying (1.16) to (1.14) yields

F (x1, . . . , xm;α1, . . . , αm) = f1(xi) (1.17)

and hence, in view of (1.15) we get that F (x1, . . . , xm;α1, . . . , αm) satisfies
(1.11).
Second inductive hypothesis: Assume now that (1.11) is true for max{α1, . . . , αm} =
n and #{αj : αj = n} < p, where p ≥ 2. It remains to show that
(1.11) is also true for max{α1, . . . , αm} = n and #{αj : αj = n} = p.
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Of course, p ≤ m (since it is impossible to have p > m) and there are indices
1 ≤ i1 < · · · < ip ≤ m such that αi1 = · · · = αip = n (while αj < n for any
index j ̸∈ {i1, . . . , ip}).
Let us set

g(y) := F (x1, . . . , xip−1, xip , y, xip+1, . . . , xm;α1, . . . , αip−1, (αip−1), 1, αip+1, . . . , αm).
(1.18)

Among the m+1 numbers α1, . . . , αip−1, (αip − 1), 1, αip+1, . . . , αm, there are
exactly p − 1 which are equal to n, hence the second inductive hypothesis
implies that

g(y) = (y − xip)
n−1

m∏
l=1
l̸=ip

(y − xl)
αl
ip

m∏
l=1
l̸=ip

(xip − xl)
(n−1)αl

ip

∏
1≤j<k≤m

j,k ̸=ip

(xk − xj)
αjαk ,

(1.19)
where, as before (y − xl)ip = (y − xl)sgn(ip − l) and (xip − xl)ip = (xi −
xl)sgn(ip − l). We write (1.19) in the form

g(y) = (y − xip)
n−1g1(y), (1.20)

where

g1(y) :=
m∏
l=1
l ̸=ip

(y − xl)
αl
ip

m∏
l=1
l̸=ip

(xip − xl)
(n−1)αl

ip

∏
1≤j<k≤m

j,k ̸=ip

(xk − xj)
αjαk . (1.21)

Next, the observation (1.9) applied to (1.18) gives

F (x1, . . . , xm;α1, . . . , αm) =
g(n−1)(xip)

(n− 1)!
. (1.22)

Applying (1.22) to (1.20) yields

F (x1, . . . , xm;α1, . . . , αm) = g1(xip) (1.23)

and hence, in view of (1.21) we get that F (x1, . . . , xm;α1, . . . , αm) satisfies
(1.11). �

2 An application

Consider the differential equation

dAu

dtA
+

A−1∑
k=0

ck
dku

dtk
= 0, (2.1)
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where the ck’s, k = 0, . . . , A− 1 are complex constants.
The characteristic equation associated to (2.1) is

p(r) := rA +
A−1∑
k=0

ckr
k = 0. (2.2)

Let us assume that the polynomial p(r) of (2.2) can be factored as

p(r) =
m∏
j=1

(r − xj)
αj , (2.3)

where x1, . . . , xm are distinct complex numbers (of course, α1+· · ·+αm = A).
Then, it is well known that the functions

ex1t, tex1t, . . . ,
tα1−1ex1t

(α1 − 1)!
; . . . ; exmt, texmt, . . . ,

tαm−1exmt

(αm − 1)!
(2.4)

(a total of A functions) are solutions of (2.1). Their Wronskian W (t) satisfies
the Abel’s formula, which in our case reads

W (t) = W (0) exp(−cA−1t). (2.5)

Using the fact that

dj

dtj

[
tkext

k!

]∣∣∣∣
t=0

=

(
j

k

)
xj−k, j, k = 0, 1, . . . (2.6)

(we, again, use the convention that
(
j
k

)
= 0, if j < k) one obtains that

W (0) = F (x1, . . . , xm;α1, . . . , αm), (2.7)

where F (x1, . . . , xm;α1, . . . , αm) is the generalized (or confluent) Vander-
monde determinant introduced in (1.5). Hence, in view of (1.11) we have
that (2.7) becomes

W (0) =
∏

1≤j<k≤m

(xk − xj)
αjαk (2.8)

and, furthermore, an immediate corollary of (2.8) is the well-known fact that
the functions appearing in (2.4) are linearly independent.
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