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Abstract

We present an explicit computation of some determinants which
can be considered as generalizations of the Vandermonde determinant.
The result is not new [1]. As an application we compute the Wronskian
of the standard solutions of the general linear homogeneous ordinary
differential equation with constant coefficients, whose associated char-
acteristic equation has repeated roots.
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1 The calculation of generalized (or conflu-
ent) Vandermonde determinants

It is well known that
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where the left-hand side of (1.1) is the so-called v x v Vandermonde deter-
minant. The justification of equation (1.1) is relatively easy. One can use,
e.g., induction on v or, alternatively, one can first notice that the sides of
(1.1) have to be equal up to a constant factor ¢,, since both sides are poly-
nomials in the variables x1,...,x, of the same degree and having the same
one-degree factors. Then, the evaluation of ¢, can be done by, say, comparing
coefficients of some monomial.

Definition. Let A and a be integers with A > a > 1. The A x « (general-
ized) Vandermonde block is the matrix

N\
B(z; A x a) = (¢i) <A, where ¢jj 1= (‘; B 1) zI 7 (1.2)
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with the convention that (J_1) = 0 for j < k. Notice that B(z; A x a) is a
square matrix only if A = «, and in this case its determinant is 1.

Next, let aq, ..., a,, be strictly positive integers and
A=+ -+ a,. (1.3)

Putting the blocks B(z1; A X ay), ..., B(xm,; A X ;) side by side we form
the A x A (square) matrix

M(zy,...,xm;00,. . ) = [B(x; A X aq) -+ By A X a)] . (1.4)

Then, we consider its determinant

F(zy,...,xm;0q,. . ) i=det M(xq, ..., Zp; 00, ..., Qo) (1.5)
namely
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Thus, F(x1,...,Zm;a1,...,0y) is a polynomial in 1, . .., x,,. For instance,
if m =3 and (a1, a9, 03) = (2,3,1) we get
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In the case oy = -+ = ay = 1 (hence m = A), F(x1,...,x4;1,...,1)
becomes the standard Vandermonde determinant and we have
F(zy,...,x41,...,1) = H () — x;).
1<j<k<A
On the other hand, in the extreme case m = 1 we have ay; = A and
F(z;A) = 1.
Observation. Assume «; > 2 for some j =1,...,m. Set
f(y) = F(:Ela ey i1 T5, Y Tjp1s - v o3 Ty ALy - e ey A1, (aj_l)a ]-7 Ojt1s - aam)
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(thus, f(y) is a polynomial in the m + 1 variables z1, ..., x,, and y). Then

f(aj—l)(a;j)

e (1.9)

F(zy,...,xm;on,. .. ) =

For example, if we take m = 3, (a1, az,a3) = (2,3,1), and j = 2 we have
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and f"(zq) = 2!F (21,29, x3;2,3,1), where F(z1,x9,23;2,3,1) is the deter-

minant of (1.7).
The following proposition appears as a problem in [1].
Proposition. Let m > 2. Then,
F(z1,. . xm;0q,. . ) = H (@), — @)Y, (1.11)

1<j<k<m



Proof. We will use induction on max{aq,...,ay}, i.e. the maximum of the

aj’s. lf o = -+ =y, = 1, the left-hand side of (1.11) becomes the standard

Vandermonde determinant and (1.11) holds.

First inductive hypothesis: Assume that (1.11) is true for max{ay, ..., an,} <

n, where n > 2. We need to show that (1.11) also holds for max{ay, ..., an} =

n. We will prove this by induction on #{«; : a; = n}, namely the number
of a;’s that assume the maximum value n.

We begin by considering the case where «; = n for some i € {1,...,m} and
max;; a; < n, namely #{a; : o;j =n} =1. Set

f(y) = F(xla s L1 Ty Yy Lig 1y - ooy Ty ALy - -+ Q1 (ai_]-)a laai—‘rl) s 7am)-
(1.12)
Then, since max{ay,...,a;—1,(a; — 1), 1, @;41,...,a;n} = n — 1, the first

inductive hypothesis implies that
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where for typographical convenience we have set (y—;); :== (y—x;)sgn(i—1)
and (z; — x;); = (z; — x;)sgn(i — ). We continue by writing (1.13) in the
form

fy) = (y—z)"" fiy), (1.14)

where
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Now, the observation (1.9) applied to (1.12) gives

‘ B f(n—l)(xi)

F(xl,...,:rm,oq,...,ozm)—m. (116)

Applying (1.16) to (1.14) yields
F(zy,...,xm;00,. .. am) = fi(x;) (1.17)

and hence, in view of (1.15) we get that F(xq,...,Tn;a1,...,q,) satisfies
(1.11).
Second inductive hypothesis: Assume now that (1.11) is true for max{a,...,an} =
n and #{a; : o = n} < p, where p > 2. It remains to show that
(1.11) is also true for max{aq,...,a,} = n and #{o; : a; = n} = p.
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Of course, p < m (since it is impossible to have p > m) and there are indices

1 <4y <--- <i, <msuch that o, = --- = a;, = n (while a;; < n for any

index j & {i1,...,0}).

Let us set

9(y) = F(x1, . Tiy1, Tipy Yy Tipg1s -+ - T Oy -, 1, (0, — 1), 1, - -
(1.18)

Among the m + 1 numbers oy, ..., o, 1, (a5, — 1), 1, @41, - . ., Oy, there are

exactly p — 1 which are equal to n, hence the second inductive hypothesis
implies that
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(1.19)
where, as before (y — ;);, = (y — x1)sgn(i, — 1) and (z;, — 27);, = (2; —
x7)sgn(i, —1). We write (1.19) in the form

9(y) = (y —z:,)" 91 (y), (1.20)
where
) =T -2 [T, -2 I (ox—ap)oe. (1.21)
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Next, the observation (1.9) applied to (1.18) gives

gD (z;,)

F(zy,...,xm o, .. ) = e (1.22)
Applying (1.22) to (1.20) yields
F(oy, ..., opmi00,...,00) = g1(;,) (1.23)
and hence, in view of (1.21) we get that F(z1,...,zm;0q,. .., q,,) satisfies
(1.11). n
2 An application
Consider the differential equation
T '
=0 2.1
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where the ¢;’s, k =0,..., A — 1 are complex constants.
The characteristic equation associated to (2.1) is

p(r) =1+ chrk = 0. (2.2)

Let us assume that the polynomial p(r) of (2.2) can be factored as

p(r) = [[(r =2, (2.3)
j=1
where x1, ..., x,, are distinct complex numbers (of course, ay+- - -+a,, = A).

Then, it is well known that the functions
tal—lexlt tozm—lexmt
(o =1 ", — 1)!

(a total of A functions) are solutions of (2.1). Their Wronskian W (t) satisfies
the Abel’s formula, which in our case reads

W (t) = W(0)exp(—ca_it). (2.5)

et et et tetmt

(2.4)

Using the fact that
d] tkemt
dti [ k! }
(we, again, use the convention that (i) =0, if j < k) one obtains that

W(O) :F(‘rla"‘?xm;alan-;am>7 (27)

- (J)J:j_k, jk=0,1,... (2.6)
t=0 k

where F(xq,...,Tm;Q1,...,q,) is the generalized (or confluent) Vander-
monde determinant introduced in (1.5). Hence, in view of (1.11) we have
that (2.7) becomes

W)= [[ (ox—aye (2:8)

1<j<k<m

and, furthermore, an immediate corollary of (2.8) is the well-known fact that
the functions appearing in (2.4) are linearly independent.
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