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Nonuniform in Time Input-to-State Stability and the
Small-Gain Theorem

Iasson Karafyllis and J. Tsinias

Abstract—For time-varying control systems various equiva-
lent characterizations of the nonuniform in time input-to-state
stability (ISS) property are established. These characterizations
enable us to derive sufficient conditions for nonuniform in time
ISS concerning composite time-varying systems. Our main
result generalizes the well-known small-gain theorem due to
Jiang–Teel–Praly for autonomous systems under the presence of
uniform in time ISS.

Index Terms—Lyapunov functions, nonuniform in time input-to-
state stability (ISS), small-gain theorem, time-varying systems.

I. INTRODUCTION

THIS paper constitutes a continuation of authors’ work
on the concepts of robust global asymptotic stability

(RGAS) and input-to-state stability (ISS), nonuniform with
respect to initial values of time, and their applicability to sta-
bility and feedback stabilization of nonlinear control systems
(see [10]–[13], [30]–[32]). We consider nonlinear time-varying
systems of the form

(1.1)

where its dynamics are con-
tinuous with , namely, is an equilib-
rium, and we assume that is locally Lipschitz with respect
to , in the sense that for every bounded interval
and compact subset of , there is a constant
with for every

.

Our main purpose is to establish various equivalent character-
izations of nonuniform in time ISS and to derive sufficient con-
ditions for the validity of nonuniform in time ISS for composite
time-varying systems. The main result of the present paper con-
stitutes a generalization of the well-known Small-Gain Theorem
due to Jiang–Teel–Praly [7] for autonomous systems.

A. Motivations

The notions of nonuniform in time RGAS and nonuni-
form in time ISS are motivated by the problem of feedback
stabilization for a wide class of nonlinear systems, that,
although fail to be stabilized at a specific equilibrium by
continuous static time-invariant feedback law, a smooth ( )
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time-varying feedback can be found in such a way that the
equilibrium for the resulting closed-loop time-varying system
is nonuniformly in time RGAS. Problems, like feedback stabi-
lization for autonomous systems with uncertainties, as well as
stabilization at a reference trajectory are reduced to the study of
nonuniform in time RGAS and ISS at a specific equilibrium of
a system, whose dynamics are time-dependent being in general
unbounded with respect to time. We mention here the authors’
works [10]–[13], [30]–[32], where stabilization is exhibited
for a wide class of systems—including those having triangular
structure—by means of smooth time-varying feedback in such
a way that the origin of the resulting closed-loop system is
nonuniformly in time RGAS. We give below some interesting
examples of autonomous systems for which a continuous
time-invariant feedback stabilizer, exhibiting uniform in time
asymptotic stabilization, does not exist. The most typical
situation of such systems is the case of nonholonomic systems
(see, for instance, [4]) and here, let us consider the simplest
case of the nonholonomic integrator in chained form with input

for which a (static or dynamic) time-invariant feedback ex-
hibiting uniform in time asymptotic stabilization at the origin
does not exist. We establish in [10] that there exists a smooth
time-varying feedback in such a way that of the cor-
responding closed-loop system is nonuniformly in time GAS
and further its solution is tending to zero as with an
exponential rate of convergence. We also mention a couple of
interesting engineering applications, both taken from [16]. The
first is the problem of controlling a mobile robot moving on an
uneven surface, which is described as follows:

where , are functions and , are unknown
time-varying bounded parameters. The second example is the
problem of controlling the Cartesian position and orientation
of a surface vessel with two independent propellers

where is a constant. The systems above do not satisfy
Brockett’s necessary condition, hence, there are not (static
or dynamic) time-invariant feedback laws exhibiting uniform in
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time asymptotic stabilization at the origin. Using a constructive
strategy, it is established in [10] that both systems can be
stabilized nonuniformly with respect to time by means of
smooth time-varying feedback laws and further the solutions of
the corresponding closed-loop systems are tending to zero as

with an exponential rate of convergence. More results
are derived in [10] and [12], under the presence of nonuniform
in time RGAS. Particularly, necessary and sufficient conditions
for stabilization of linear time-varying systems as well as
sufficient conditions for stabilization of uncertain composite
autonomous systems with two inputs of the form

are established. The state feedback tracking control problem is
also solved in [10] and [12] for a class of nonholonomic systems
in chained form whose dynamics have triangular structure. The
corresponding sufficient conditions imposed in the previously
mentioned papers are much weaker and simpler than those in
earlier works on the same problem.

Important progress toward the notions of nonuniform in time
RGAS and nonuniform in time ISS has been obtained in [11]
and [32], where Lyapunov characterizations for these notions
are established for time-varying systems (1.1) with locally Lip-
schitz dynamics. These characterizations allowed us to derive
necessary and sufficient conditions for global stabilization of
affine in the control time-varying systems at a specific equilib-
rium by means of a smooth time-varying static feedback in such
a way that the equilibrium is nonuniformly in time RGAS with
respect to the resulting closed-loop system. The corresponding
results [11, Th. 5.1 and Prop. 5.2] generalize the well-known
“Artstein–Sontag” Theorem concerning the autonomous case.
It should be pointed out that smoothness around zero of the
time-varying feedback is guaranteed in [11] without assuming
the “small control property”, which has been imposed in [3],
[19], and [27]. It is worthwhile to emphasize here an impor-
tant consequence of the previously mentioned result for the au-
tonomous case where the dynamics are
locally Lipschitz with and assume that the system ad-
mits a time-varying control Lyapunov function (CLF)

, namely, satisfies ,
for all for certain and there exist
continuous functions with ,

, and for all such
that for any for which
it holds that

. Then, [11, Cor. 5.3] establishes that for every gain function
there exists a smooth time-

varying feedback law with , exhibiting
nonuniform in time ISS stabilization of system at zero; partic-
ularly, the resulting system , with

as input satisfies the nonuniform in time ISS property
with gain . An explicit formula for the feedback stabilizer in
terms of the CLF above is also provided in [11, Prop. 5.2].

B. Organization and Results

In Section II, we first provide the notions of nonuniform in
time RGAS and ISS as given in [11]. It should be pointed out
that the concept of nonuniform in time ISS as proposed in [11]
extends the ISS property as described in [28] for the autonomous
case. In Section III, we provide the nonuniform in time exten-
sion of the familiar notion of uniform in time ISS—as origi-
nally proposed by Sontag in [20] for autonomous systems (see
also versions of this property in [5] and [15])—and we estab-
lish in Proposition 3.1 equivalence between this notion and the
concept of ISS as suggested in [28] and [29]. More equiva-
lent characterizations of nonuniform in time ISS are also es-
tablished in Proposition 3.1 and links between this notion and
the concepts of converging-input–converging-state (CICS) and
bounded-input–bounded-state (BIBS) are also given in Corol-
lary 3.5. An interesting consequence of Proposition 3.1 is Propo-
sition 3.7 concerning the autonomous case

(1.2)

Particularly, we prove that, if (1.2) is forward complete and
satisfies the 0-GAS property, namely, is GAS with re-
spect to the unforced system , then (1.2) satisfies the
nonuniform in time ISS property. A typical case of systems that
satisfy the previous assumptions and do not satisfy the uniform
in time ISS property are bilinear systems
with being a Hurwitz matrix (see [24]). It is also worthwhile
to mention here the two-dimensional counter-example provided
in [2], for which neither ISS, or its weaker version “integral
ISS”, are fulfilled, however, is forward complete and satisfies
the 0-GAS property. A consequence of Proposition 3.7 is Corol-
lary 3.8, which asserts that system (1.2) satisfies the nonuniform
in time ISS property, if and only if, there is a smooth and every-
where strictly positive function such that

(1.3)

satisfies the uniform in time ISS property. In Section IV, we de-
rive sufficient conditions for nonuniform in time ISS for com-
posite time-varying systems

(1.4a)

(1.4b)

where , for all and
, are mappings, being locally Lipschitz with respect to

. The corresponding result (Theorem 4.1) is one of the
main results of this paper and constitutes an extension of the
well-known small-gain theorem due to Jiang–Teel–Praly in
[7], and its relative extensions for autonomous systems under
the presence of uniform in time ISS (see, for instance, [8], [9],
[25], and [26]). For the autonomous case (1.4), namely, when
both , are independent of , it is known that uniform in time
ISS for (1.4a) with as input and for (1.4b) with
as input lead to a simple sufficient condition under which the
overall system satisfies the ISS property from the input . For
the time-varying case (1.4) we establish in Theorem 4.1 that a
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set of additional conditions concerning (1.4a) and (1.4b) guar-
antees nonuniform in time ISS for the overall system (1.4). For
the special case of (1.4) where is independent of , namely,
for the cascade interconnection

(1.5a)

(1.5b)

the sufficient conditions of Theorem 4.1 are considerably sim-
plified. Particularly, Corollary 4.3 provides sufficient conditions
for nonuniform in time ISS for (1.5) and generalizes a well-
known result from the autonomous case, which asserts that (1.5)
satisfies the ISS property from the input , provided that both
(1.5a) with as input and (1.5b) with as input satisfy the
ISS property. Finally, in Section V we provide some applica-
tions and numerical examples of our Small-Gain Theorem 4.1.
Among other things, we combine the results of Corollary 3.8 to
derive sufficient conditions for the existence of a smooth output
time-varying feedback stabilizer for the autonomous case

(1.6a)

(1.6b)

where , , are mappings both vanishing at zero
and only the component of the solution is available. We make
the following hypotheses:

System (1.6a) satisfies the GAS property. (1.7a)

System (1.6a) is forward complete with as input.

(1.7b)

The matrix is Hurwitz (1.7c)

By applying the results of Proposition 3.7 and Theorem 4.1,
we establish in Example 5.1 that, under (1.7a)–(1.7c), there ex-
ists a smooth time-varying feedback law with

in such a way that the closed-loop system (1.6) with
satisfies the nonuniform in time ISS property

from the input . This result generalizes the corresponding re-
sult in [7], which states that, if (1.7c) holds and if we strengthen
(1.7a), (1.7b) by assuming uniform in time ISS for (1.6a) with

as input, then there exists a smooth time-invariant feedback
law with exhibiting uniform in time
ISS from the input for the resulting closed-loop system with

. We note here that, under certain additional as-
sumptions, our previous result for the case (1.6) can be extended
to the partial state global stabilization problem for triangular
systems but we do not aim in the present paper to provide such
generalizations in terms of our Small-Gain Theorem 4.1. We re-
port instead the recent works [11], [13], and [30] toward global
stabilization of such systems, that contain more results on the
stability of the composite system, based on backstepping de-
sign being, more or less, equivalent to Theorem 4.1-based ap-
proach adopted here for the case (1.6). Another application of
Theorem 4.1 is the study of nonuniform in time GAS of linear
time-varying interconnected systems

(1.8a)

(1.8b)

where all elements of matrices above are real continuous
functions of time, being in general unbounded on . In
Example 5.2 a set of sufficient conditions are provided, which,
according to the Small-Gain Theorem 4.1, guarantee that (1.8)
satisfies the nonuniform in time ISS property.

Notations: Throughout this paper we adopt the following no-
tations.

• By we denote the set of all measurable functions from
to , where is a given compact subset of .

• By , where is a nonnegative in-
teger, we denote the class of functions (taking values in )
that have continuous derivatives of order on .

• For , denotes its transpose and its usual
Euclidean norm.

• denotes the set of all measurable functions
that are essentially bounded on any nonempty

compact subset of , and denotes the set
of all measurable functions that are essen-
tially bounded (integrable) on .

• By where and , we denote the closed
sphere in of radius , centered at .

• denotes the solution of (1.1)
at time that corresponds to some input

, initiated from at
time .

• denotes the class of positive functions
. For the definitions of classes , see [14].

By we denote the set of all continuous functions
with the properties: (i) for

each the mapping is of class ; (ii) for
each , the mapping is nonincreasing with

.

For the reader’s convenience, we have collected below some
properties concerning functions of the classes ,
which are repeatedly used in the rest of this paper.

Fact I [2, Cor. IV.5]: Consider the function
and assume that for each the mappings and
are of class . Then, there exists a function such that

for all .
Fact II [24, Cor. 10 and Rem. 11]: For each , there

exists such that for all
.

Fact III [24, Prop. 7]: Assume that . Then,
there exist functions of class so that

for all .
Fact IV [11, Lemma 2.3]: Let such

that: i) for each the functions and are nonde-
creasing ; ii) for all it holds .

Then there exist functions and such that
for all .

The proofs of the following facts are found in the Appendix.
Fact V: Let be a set that satisfies: i) ; ii) for

every the set is compact. Let
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be a function with for all . Then, there exist
and such that

(1.9)

Fact VI: Let , be functions of class . Then, there
exists such that

(1.10)

Fact VII: Let be a function, be of class
and be a pair of class in such a way that

for all .

Then, there exist and such that

(1.11)

II. REVIEW OF THE NOTIONS OF NONUNIFORM IN TIME RGAS
AND ISS

In this section, we provide the definition of nonuniform in
time RGAS and ISS as precisely given in [11]. We consider
time-varying systems of the form

(2.1)

where is a compact set, is
a map being locally Lipschitz with respect to and
satisfies for all .

Definition 2.1: We say that zero is nonuniformly in
time RGAS for (2.1), if for every , and
the corresponding solution of (2.1) exists for all and
satisfies the following properties.

P1 (Stability): For every , , it holds that

and there exists a such that
.

P2 (Attractivity): For every , and ,
there exists a such that

.
Proposition 2.2 [11]: The origin is nonuniformly in

time RGAS for (2.1), if and only if there exists a pair of func-
tions , such that for every
and the corresponding solution of (2.1) with initial
condition satisfies
for every .

Definition 2.3: We say that system (1.1) satisfies the nonuni-
form in time 0-GAS property , if P1 and P2 of Definition 2.1 are
fulfilled for , namely, is nonuniformly in
time GAS for the unforced system .

Definition 2.4: Consider system (1.1) and let
being continuous, locally Lipschitz in and such

that for each fixed the mapping is a positive–def-
inite function. We say that (1.1) satisfies the “weak” nonuni-
form in time ISS property (wISS) with gain , if each solution

of (1.1) exists for all and satis-
fies Properties P1 and P2 of Definition 2.1, provided that is

of class and satisfies , a.e.
for . If in addition for each , the function is
of class , then we say that (1.1) satisfies the nonuniform in
time ISS property with gain .

The following proposition summarizes some useful equiva-
lent descriptions of the nonuniform in time wISS property. It
constitutes a generalization of the well-known results in [17]
and [22].

Proposition 2.5 [11, Prop. 4.3]: Let
be a continuous function, which is locally Lipschitz in

and such that for each fixed the mapping is a
positive–definite function. Then, the following statements are
equivalent.

i) System (1.1) satisfies the (nonuniform in time) wISS
property with gain .

ii) is nonuniformly in time RGAS for the system

.
iii) There exist functions and such that

the following property holds for all :

(2.2)

iv) There exist functions , ,
, , being positive

definite and with ,

such that the following hold for all
:

(2.3)

v) There exist functions , ,
and , as in statement iv), such that (2.3) holds for all

with and .
Remark 2.6: An equivalent description of property iii) is

given in [11] as follows.

vi) There exist functions of class and a function
of class such that the following

property holds for all :

In order to show the equivalence between iii) and vi) let us
first assume that (2.4) holds. Using Fact V, there exist functions

and such that , for all
. It is then obvious that (2.2) holds with

. Conversely, suppose next that (2.2) holds.
We may then recall Fact III, which asserts that there exist func-
tions of class with
for all . Also, by Fact II, there exist functions

of class such that for all
. The previous discussion, in conjunction with

(2.2), implies (2.4) with .
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We finally provide an interesting result, which is the analogue
of [6, Th. 10.4.3].

Proposition 2.7: System (1.1) satisfies the nonuniform in
time wISS property from the input , if and only if it satisfies
the nonuniform in time 0-GAS property.

The proof of Proposition 2.7 is an immediate consequence
of the following lemma, which is a direct extension of Lemma
IV.10 in [2] and constitutes a powerful tool for the analysis in
the next section. Its proof is found in the Appendix .

Lemma 2.8: Suppose that the system (1.1) satisfies the
nonuniform in time 0-GAS property. Then, for every function

of class , there exist a map ,
functions of class , and of class ,
such that

(2.5a)

(2.5b)

The following example illustrates the nature of definitions of
nonuniform in time RGAS, wISS and ISS, as well as the result
of Proposition 2.7 for the case of linear time-varying systems.

Example 2.9: In [12], we proved that, if the origin of the
linear time-varying system

(2.6)

being a matrix whose elements are continuous func-
tions, is (nonuniformly in time) GAS, then there exists a func-
tion with

(2.7a)

and a positive–definite matrix such that

(2.7b)

for all (2.7c)

where is the unit matrix of dimensions . Consider now
the time-varying control system

(2.8)

where , are continuous matrices in such a
way that (2.7) holds. It turns out from Proposition 2.7 that (2.8)
satisfies the nonuniform in time wISS property. Moreover, by
virtue of (2.7b) it holds that

(2.9)

where . Evaluating the derivative of
along the trajectories of (2.8) and using

(2.9) we obtain

(2.10)

where and

Clearly, for each , thus, by recalling (2.7a),
Definition 2.4, and (2.10) it follows that (2.8) satisfies the
nonuniform in time ISS property.

III. CHARACTERIZATIONS OF THE NONUNIFORM IN TIME ISS

The following proposition provides equivalent characteriza-
tions of the nonuniform in time ISS property. As it is mentioned
in the Introduction, the proposition below establishes among
other things the equivalence between the notion of nonuniform
in time ISS as proposed in [11] (see (2.2) of statement iii) of
Proposition 2.5) and the Sontag-like version of ISS for the
nonuniform in time case (see (3.3) of statement iv) below).

Proposition 3.1: The following statements are equivalent.

i) System (1.1) satisfies the nonuniform in time ISS prop-
erty.

ii) There exist functions , and
such that

for (3.1)

iii) There exist functions , and
such that, for every and input of class

, the corresponding solution of
(1.1) with exists for all and satisfies

(3.2)

iv) There exist functions , and
such that, for every and input

, the corresponding solution of (1.1)
with exists for all and satisfies

(3.3)
v) There exist a function , being locally Lipschitz

on , and a function such that is
nonuniformly in time RGAS for the system

(3.4)
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vi) System (1.1) satisfies the nonuniform in time 0-GAS
Property and there exist functions and

such that, for every
and of class , the corre-
sponding solution of (1.1) with exists
for all and satisfies

(3.5)
vii) There exist a function , func-

tions , , of class and , of class such
that for all we have

(3.6a)

(3.6b)

Remark 3.2: When the functions and are bounded, then
(3.1) is equivalent to the uniform in time ISS property, as given
in [28] and [29]. Likewise, when and are bounded, then (3.3)
is equivalent to ISS property, as originally proposed in [20] by
E.D. Sontag. The equivalence between (3.1) and (3.3) general-
izes the well known fact that for the autonomous case and, when

is independent of , namely, is of class , the uniform in
time ISS property as given by Sontag, is equivalent to the cor-
responding characterization given in [28], [29]. Finally, we note
that, when and are bounded, then (3.6a), (3.6b) coincide
with the Lyapunov characterization given in [22]–[24] for the
uniform in time ISS property.

Proof of Proposition 3.1: We prove the implications
and .

Suppose that i) holds. According to statement iii) of Proposi-
tion 2.5, there exist functions , and a con-
tinuous function , where is locally
Lipschitz in , for each fixed and in such
a way that (2.2) holds. Let denote the inverse func-
tion of with respect to , namely, satis-
fies , for all .
Clearly, is continuous and thus by invoking Fact V we
may find functions and such that

for all . The latter inequality in conjunction
with (2.2) implies (3.1). Conversely, suppose that (3.1) holds.
Let be a function, locally Lipschitz on that satis-
fies for all and let .
It is a direct consequence of (3.1) and the equivalence between
i) and ii) of Proposition 2.5, that (1.1) satisfies the nonuniform
in time wISS property with gain and, thus, the nonuniform in
time ISS property, since, according to definition of , for each

the function is of class .
First, we establish that for every of

class and for every , the

corresponding solution of (1.1) with exists on
and satisfies (3.2) for the same functions ,

and as in statement ii). Notice that for
every of class there exists a maximal
interval, say for some , of existence of the so-
lution of (1.1) with . By (3.1), it follows, by
exploiting continuity of , and , that the solution
satisfies the estimate shown in (3.7) at the bottom of the page,
where the first, second, and third terms on the right-hand side
of (3.7) arise, respectively, for the cases

• for all ;
• ;
• for all for certain

which satisfies for
, close to (to be more precise, for the third

case, by continuity we obtain
and thus by (3.1)

for all , hence,
).

Notice, by virtue of the right-hand side inequality (3.1), that
, for all . Consequently, by

substituting and in the previous in-
equality, we obtain

hence, by considering the previous three cases, (3.7) is simpli-
fied as follows:

(3.8)

Estimation (3.8) implies both , namely, the solution
does not have a finite escape time, and (3.2) is fulfilled for every

of class .
We next show that (3.2) holds for arbitrary

. Let , and
be arbitrary and define

(3.9a)

(3.9b)

(3.9c)

(3.7)
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Notice that the right-hand side inequality (3.9c) is an immediate
consequence of definitions (3.9a), (3.9b). Moreover, by virtue
of definition (3.9b), for every constant there exists a
continuous nondecreasing function such that

(3.10)

From definitions (3.9a), (3.9c) and property (3.10), it follows
that

for almost all (3.11)

Since the space is dense in , we can find
such that

(3.12)
where is any Lipschitz constant for such that the fol-
lowing hold:

(3.13a)

where is defined by (3.9a) and

(3.13b)
Define

if
if (3.14)

Notice that definition (3.14) guarantees that with
for all . In addition, by virtue of defi-

nition (3.11), we have
for all , hence, by virtue of (3.10), it follows
that . Consequently, by
(3.9)–(3.11) and (3.14), it follows that

(3.15a)

(3.15b)

To be more precise, the first inequality in (3.15b) is a conse-
quence of (3.9b), the second follows from (3.10) and (3.11) and
the third one is a consequence of (3.9c). Moreover, definition
(3.14), in conjunction with (3.11) guarantees that

for almost all and therefore
. This in conjunction with (3.12) gives

(3.16)

Let us denote by and the corresponding solutions of
(1.1) with inputs and , respectively, with same initial values

. By virtue of (3.13b), (3.15a), and the fact
that (3.2) holds for every of class , it
follows:

(3.17)

Let be the maximal time for which for
all , where is defined by (3.13b). Using Gron-
wall’s inequality, we get by invoking (3.13a), (3.13b), (3.15a),
and (3.16): , for all .

This inequality in conjunction with (3.13b), (3.15b), and (3.17)
implies

(3.18)

Clearly, by virtue of the right-hand side inequality (3.18), it fol-
lows that , thus, (3.18) holds for all . Conse-
quently, (3.19) holds for . Obviously, since (3.18) holds for
arbitrary and , we conclude from the first
inequality of (3.18) that (3.2) holds for every input of
class .

By invoking Fact V, there exist functions
and such that for all

and if we set (that
obviously is of class ), the desired (3.3) is a consequence of
(3.2) and the previous inequality.

Without loss of generality we may assume that the
function involved in (3.3) is nondecreasing. Define

and let be a locally Lipschitz function
that satisfies for all . Then by virtue of (3.3)
it follows that for the solution of (1.1) it holds:

(3.19)

Obviously, (3.19) implies

(3.20)



KARAFYLLIS AND TSINIAS: NONUNIFORM IN TIME INPUT-TO-STATE STABILITY 203

Notice that every solution of (3.4) corresponding to some
coincides with the solution of (1.1) corresponding

to initiated from same initial
at time . Thus, by taking into account (3.19) and

(3.20), it follows that the solution of (3.4) satisfies:

(3.21a)

(3.21b)

Inequality (3.21b) asserts that is robustly stable for
(3.4). Next, we establish robust asymptotic stability. Consider
the function

where denotes the solution of (3.4) corresponding to some
. It suffices to show that , for

all . Clearly, by (3.21b) and definition of we
have

(3.22)

Let . We show that . Indeed, for

every there exists such that

(3.23)

Again recall definition of and (3.21a) which imply

for all

This inequality in conjunction with the pair (3.22) and (3.23)
gives

or, equivalently, for all , which yields
. According to definition of

the map , this implies attractivity, thus nonuniform in time
RGAS of zero with respect to (3.4).

Since is (nonuniformly in time) RGAS
for (3.4), it follows by the converse Lyapunov theorem in [11],
that there exist a function , functions

and such that (3.6a) holds and for all
we have

and therefore

(3.24)

Define (3.25), as shown at the bottom of the page. Clearly,
is continuous with for all

. Consequently, Fact V guarantees the existence of functions
and such that .

We next establish inequality (3.6b), with as previously, by
considering the following two cases.

• . In this case, inequality (3.6b) is a
direct consequence of (3.24).

• . In this case, by virtue of definition
(3.25) and definition of , we have

which implies (3.6b).
Obviously, (3.6a) and (3.6b) imply

(3.26)

Define and
and consider the trajectory of

(1.1) that corresponds to some measurable input for which

(3.27)

with as defined in (3.6b). Then, (3.26) implies
, a.e. for ,

provided that (3.27) holds. The desired (3.1) is a direct con-
sequence of (3.6a), definitions of and above and previous
inequality. Particularly, (3.1) holds with the same and as
defined in (3.6a) and (3.6b), respectively.

We finally establish the equivalence between vi) and iv). The
implication is obvious, so we proceed to the establish-
ment of . Suppose that (1.1) satisfies the nonuniform
in time 0-GAS property and assume in addition that (3.5) holds.
Then, invoking Lemma 2.8, there exist a map

and functions ( ) and
such that for all both inequalities

(3.25)
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(2.5a) and (2.5b) hold. Consider the solution of (1.1) cor-
responding to certain of class . Then,
by combining (3.5) and (2.5b), it follows that the time derivative
of along the trajectories of (1.1) satisfies

(3.28)

We define ,
and . Clearly, (3.28) in conjunc-
tion with previous definitions, implies

and, therefore, we get

for every . The latter, in conjunction with the
left hand-side inequality of (2.5a), implies the desired
(3.3) with ,

, and .
This completes the proof.

Remark 3.3: There are certain links between various gains
involved in the equivalent descriptions of nonuniform in time
ISS in statements of Proposition 3.1. For instance, if (3.1) holds
for certain , and , then (3.2) holds
with the same , and . Moreover,
if (3.2) holds for certain , and ,
then (3.3) holds for the same and . Also note
that, if (3.6a),(3.6b) hold for certain pair of functions

, then, according to the analysis made in the establishment
of implications , it follows that (3.1) and
(3.2) hold with same as above and (3.3) is fulfilled
with the same and for certain . To be more
precise, the selection of in proof of implication
implies for all away from zero, provided that

.
Remark 3.4: By exploiting the result of Proposition 3.1 and

particularly the equivalence between i) and iii), it can be easily
established that the nonuniform in time ISS property remains
invariant under the following transformations.

T1) Scaling of time: for certain
with .

T2) State transformations: , where
satisfying ,

,
and , for every

and for certain ( ).

T3) Input transformations: , where
which satisfies for

all , the map is locally Lipschitz
with respect to and there exists a function

with
for all .

The proof of previous statement is immediate and is left to the
reader. It should be emphasized here that statement of Remark
3.4 is not in general true for the uniform in time ISS property
under T1) and T3).

Finally, an immediate consequence of Proposition 3.1 is the
following corollary, which extends the well-known relationship
between the notion of uniform in time ISS and the concepts of
BIBS and CICS for the autonomous case (see, for instance, [21]
and [23]).

Corollary 3.5: Suppose that system (1.1) satisfies the
nonuniform in time ISS property and particularly assume that
(3.3) holds for certain functions , , .
Let in such a way that is bounded
over . Then for every , the corresponding
solution is bounded over and if in addition

, then .

Proof: Immediate consequence of statement iv) of Propo-
sition 3.1.

Remark 3.6: Corollary 3.5 determines the class of inputs al-
lowed to enter system (1.1) so that its solution remains bounded,
or converges to zero, respectively. A better estimation of this
class can be made by use of the Lyapunov characterization (3.6)
of nonuniform in time ISS. Indeed, (3.6a), (3.6b) imply that
for every and for every input
of class the corresponding solution of
(1.1) with initial condition , satisfies

from which can be easily deduced that the solution
is bounded over provided that is bounded over

and that , if .

Notice that according to Remark 3.3, for all
away from zero, provided that , hence, the Lyapunov
characterization (3.6) gives a less conservative estimation of the
amplitude of those inputs for which the corresponding solution
is bounded, or converges to zero, respectively.

Statement vii) of Proposition 3.1 shows that, under a special
type of forward completeness, nonuniform in time 0-GAS Prop-
erty for (1.1) is equivalent to nonuniform in time ISS for (1.1).
For the autonomous case (1.2) we establish below equivalence
between nonuniform in time ISS and 0-GAS property, provided
that (1.2) is forward complete. It should be pointed out here that,
as is shown in [2], the 0-GAS Property plus forward complete-
ness does not in general imply uniform in time ISS. Moreover,
since the system is autonomous, the nonuniform in time 0-GAS
property is equivalent to the uniform in time 0-GAS property.

Proposition 3.7: Consider the autonomous case (1.2), where
is locally Lipschitz with .

Suppose that i) is GAS for the unforced system
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(0-GAS Property) and ii) system (1.2) is forward com-
plete. Then, system (1.2) satisfies the nonuniform in time ISS
property. Particularly, the solutions of (1.2) satisfy estimates
(3.2), (3.3) as in statements iii) and iv), respectively, of Propo-
sition 3.1 with .

Proof: Since is GAS for system ,
then a slight modification of Lemma IV.10 in [2] asserts the ex-
istence of a smooth map and functions ,

of class , such that for all we
have and

. The previous inequalities give the fol-
lowing estimate of the solution of (1.2) initiated from

at time and corresponding to some input
of class :

(3.29)

Furthermore, since (1.2) is forward complete, [1, Cor. 2.11]
guarantees the existence of a smooth and proper map

, functions of class and a constant such
that for all it holds

and . It then
follows that the solution of (1.2) satisfies

(3.30)

Define . It turns out from (3.29) and
(3.30) that the following inequality holds for all :

(3.31)

In order to analyze further estimation (3.31) we first recall Fact
II, which guarantees the existence of a function such
that , for every
and let be a function of class satisfying

, for all . It then follows

(3.32)

and, thus, by (3.31) and (3.32), (3.33), shown
at the bottom of the page, holds. By defining

and

, it follows from
(3.33) that

(3.34)

hence, by virture of statement vi) of Proposition 3.1, we con-
clude that (1.2) satisfies the nonuniform in time ISS property.

Next we prove that (3.2) (statement (iii) of Proposition 3.1)
holds with . Let and such that

, for every whose ex-
istence is guaranteed from Fact V. Exploiting (3.29), (3.34) and
previous inequality we obtain (3.35), as shown at the bottom
of the page, where ,

and is an appropriate
function of class . Obviously, (3.35) implies that
the solutions of (1.2) satisfy (3.2) as in statement (iii) of Propo-
sition 3.1 with and .
It turns out by taking into account Remark 3.3 that statement iv)
of Proposition 3.1 as well with . This completes the
proof.

An immediate consequence of Proposition 3.7 is the fol-
lowing corollary, which provides an equivalent characterization
of the 0-GAS property plus forward completeness for au-
tonomous systems (1.2).

(3.33)

(3.35)
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Corollary 3.8: Consider the autonomous case (1.2), where
is locally Lipschitz with .

Then, (1.2) satisfies the hypotheses i) and ii) of Proposition 3.7,
if and only if there exists such that (1.3),
i.e., system (1.2) with , satisfies the uniform in time
ISS property from the input .

Proof: If hypotheses i) and ii) of Proposition 3.7 are ful-
filled, then statement of the previous proposition asserts that
(3.3) holds for certain , , and

. Let such that for
all . Clearly, system (1.3) satisfies the uniform in time ISS
property from the input . The converse statement is obvious.

IV. SMALL-GAIN THEOREM

In this section, we derive sufficient conditions for nonuni-
form in time ISS for system (1.4), where the mappings , ,
are , locally Lipschitz with respect to ( ) and satisfy

, , for all . The next
theorem provides a generalization of the small-gain theorem of
Jiang–Teel–Praly [7] for the time-varying case (1.4) under the
presence of nonuniform in time ISS.

Theorem 4.1: For (1.4), we assume the following.
A1: Subsystem (1.4a) satisfies the nonuniform in time

ISS property from the input ( ). Particularly, assume that
there exist , , , such
that, for every and for every input

, the solution of (1.4a) with
exists for all and (4.1), as shown at the

bottom of the page, holds.
A2: Subsystem (1.4b) satisfies the nonuniform in time ISS

property from the input ( ). Particularly, assume that there
exist , , and a constant

such that, for every and for every
input , the solution of (1.4b) with

exists for all and (4.2), as shown at the bottom
of the page, holds.

A3: In addition to (4.1) and (4.2) we assume that the fol-
lowing properties hold for all , :

(4.3a)

(4.3b)

A4: Moreover, there exists a function of class with

(4.4)

such that the following inequalities are satisfied for all :

(4.5a)

(4.5b)

Then, (1.4) satisfies the nonuniform in time ISS property from
the input .

Remark 4.2: Obviously, when and ( ) are
bounded over (case of uniform in time ISS property),
then Hypothesis A3 is automatically satisfied. Furthermore,
if we define for , ,

, then it can be easily established
that Hypothesis A4 is satisfied as well, provided that

(4.6)

which is exactly the same condition imposed in [7] for
the Small-Gain Theorem in the uniform in time case. In-
deed, if (4.6) holds, then by virtue of definitions of
and above, inequalities (4.5a), (4.5b) are satisfied with

.
Proof of Theorem 4.1: Let us denote by

the solution of (1.4) initiated at time from
and corresponding to some input

. The following claim is proved in the
Appendix and provides essential estimates for the solution of
(1.4).

Claim: Under hypotheses A1–A4, there exist functions
, ( , and ( )

such that the following estimates hold for the solution of
(1.4) for all ; see (4.7a)–(4.8b), as shown at the bottom of
the next page, where is defined in (4.4).

Next, we prove that under hypotheses A1-A4, system (1.4)
satisfies the nonuniform in time 0-GAS property. Without loss
of generality we may assume that the functions

(4.1)

(4.2)
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[involved in (4.7a), (4.7b) and (4.8a), (4.8b)] are both nonde-
creasing. Consider the solution of (1.4) ini-
tiated at time from and cor-
responding to zero input . Using the estimates (4.8a),
(4.8b) we get

(4.9)

By (4.9) it follows that the origin for system (1.4) with
is (nonuniformly in time) stable. Next, we establish asymptotic
stability. Consider the following functions defined for ,

, and :

(4.10)

In order to establish asymptotic stability, it suffices to show that
for , 2. Clearly, by virtue of (4.9),

both are bounded, thus

for , 2. It turns out that for every there exists
such that for , 2 it holds

(4.11)

Exploiting (4.7a), (4.7b) with we get (4.12a)–(4.12b), as
shown at the bottom of the page. By (4.10), (4.11), and (4.12a),
(4.12b), it then follows that

(4.13)

However, we have assumed in (4.4) that for all
and since is arbitrary, we conclude from (4.13) that

for , 2, thus system (1.4) sat-

isfies the nonuniform in time 0-GAS property. This fact in con-
junction with estimates (4.8a), (4.8b) asserts that statement vi)
of Proposition 3.1 is fulfilled and thus (1.4) satisfies the nonuni-
form in time ISS property. The proof is complete.

For the case of cascade systems (1.5) we obtain the following
result, which constitutes a generalization of recent results ob-
tained in [18] and [32] concerning time-varying systems.

Corollary 4.3: For the system (1.5) we assume that Hypoth-
esis A1 of Theorem 4.1 holds and subsystem (1.5b) satisfies
the nonuniform in time ISS property from the input ; partic-
ularly, there exist , , , , such
that, for every and for every input

, the solution of (1.5b) with ex-
ists for all and satisfies the equation shown bottom of the
page. Moreover, it holds

for all . Then, (1.5) satisfies the nonuniform in time
ISS property.

Proof: It is an immediate application of Theorem 4.1 with
.

(4.7a)

(4.7b)

(4.8a)

(4.8b)

(4.12a)

(4.12b)
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V. APPLICATIONS AND NUMERICAL EXAMPLES

In this section, we provide some applications and numerical
examples by exploiting the result of the Small-Gain Theorem
4.1. The first Example 5.1 deals with the problem of output feed-
back stabilization of (1.6) and constitutes a generalization of the
corresponding result in [7].

Example 5.1: We first apply the result of Corollary 3.8
and Theorem 4.1 for the output feedback stabilization for the
autonomous case (1.6), where is the output of the system.
We establish that, under hypotheses (1.7a)–(1.7c), there exists
a smooth time-varying output feedback with

that guarantees nonuniform in time ISS for the
resulting system (1.6) with from the input

. The procedure is similar to that employed in [7],
however a more careful analysis is needed here. First, by taking
into account the result of Proposition 3.7 it follows that there
exist functions , and
such that, for every and for every input

, the corresponding solution of system
(1.6a) with , exists for all and satisfies

(5.1)

Without loss of generality, we may assume that , for
all .

Claim 1: The functions and involved
in (5.1) can be selected in such a way that for all

and for all
for certain constants .

Proof of Claim 1: The proof is based on our hypothesis
(1.7c), namely, that the matrix is Hur-
witz and can be made by standard arguments like those for
the time-invariant case (see for instance [7], [20]). Assump-
tion (1.7c), guarantees that there exist constants
such that, for every , and
input with , the cor-

responding solution of system (1.6a) with sat-
isfies

(5.2)

We next combine (5.1) and (5.2) to reconstruct the functions
and in such a way that (5.1) holds and

simultaneously the rest desired properties of our claim are ful-
filled. Notice first, by recalling Facts III and V, that there exist
functions , and so that

and

for all , hence, by defining

, inequality (5.1) implies

(5.3)

By combining (5.2) and (5.3) we can construct mappings
and with

for all and for all
and in such a way that for all

and furthermore, for every
and for every input , the corresponding

solution of (1.6a) with satisfies

The last inequality shown previously proves Claim 1. Particu-
larly, (5.1) holds with , and
further the rest requirement for is fulfilled.

By taking into account properties of and in Claim 1 we
can determine a pair of locally Lipschitz functions
being linear near zero such that

(5.4)

In order to simplify the rest of the analysis, we first consider
the auxiliary one-dimensional system

(5.5)

and prove the following claim.
Claim 2: There exists a function with

, such that for every and for every
input , the solution of (5.5) with

exists for all and satisfies (5.6), as shown at
the bottom of the page, where is defined by (5.4).

Proof of Claim 2: We prove that there exists a func-
tion with such that for every

(5.6)
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and for every input
the solution of (5.5) with exists for all
and satisfies

(5.7)

Define
and notice, by using Fact V, that there exist functions ,

, such that for every , it holds
that

. Since is locally Lipschitz with respect
to and is linear near zero,
we may assume that and are both of class

and that the function can be selected
in such a way that is linear near zero. Let
be the odd extension of . Then, is of class

and satisfies for every
, and . By defining

and and taking
into account that for all , it follows that
the derivative of the function along the trajectories of
(5.5) satisfies: for ,

and . The previous property implies, according
to equivalence of statements iii) and iv) of Proposition 2.5,
the desired (5.7). Property (5.7), according to the equivalence
between statements ii) and iii) of Proposition 3.1, implies
(5.6). Precisely, in order to derive (5.6), we invoke implication

of Proposition 3.1 together with Remark 3.3 and use
the elementary inequality .

We next apply the nonuniform Small-Gain Theorem 4.1 for
the following composite system:

(5.8)

Inequalities (5.1) and (5.6) assert that hypotheses A1 and A2 of
Theorem 4.1 are fulfilled with , , ,

, and . Moreover,
definition (5.4) of guarantee

(5.9)

(5.10)

Inequalities (5.10) show that Hypothesis A4 of Theorem 4.1
holds with and properties (5.9) show that
Hypothesis A3 of same theorem is fulfilled as well, thus, The-
orem 4.1 asserts that system (5.8) satisfies the nonuniform in
time ISS property from the input . Therefore, according to
Proposition 3.1, there exist functions ,
and such that the solution of (5.8) satisfies the estimate
shown in (5.11) at the bottom of the page. We finally apply the
reverse transformation and system (5.8) takes the
original form: , . It
follows from (5.11) and by taking into account that
for all that (5.12), as shown at the bottom of the page,
holds. Hence, we conclude that (1.6) with ,

satisfies the nonuniform in time ISS prop-
erty from the input .

We next derive sufficient conditions for nonuniform in time
ISS for composite linear systems (1.8) and provide a numerical
example.

Example 5.2: Consider the linear time-varying system (1.8).
According to the analysis made in Example 2.9, the following
statements are equivalent.

• System (1.8) satisfies the nonuniform in time ISS property.
• The origin is nonuniformly in time GAS for

(1.8) with , namely, with respect to

(5.13a)

(5.13b)

We next establish that the origin is nonuniformly in time GAS
for system (5.13) under the following assumptions:

(5.11)

(5.12)
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H1: There exist functions , and ( , 2)
with such that the solu-
tion of (5.13) satisfies

(5.14a)

(5.14b)

H2: The functions , and satisfy

(5.15)

H3: In addition to (5.15), it holds that

(5.16a)

(5.16b)

Inequality (5.16a) is a generalization of the familiar small-
gain condition for autonomous linear systems (see, for instance,
[14]). Notice also that, by virtue of Example 2.8, Hypothesis H1
is equivalent to the assumption that zero is nonuniformly in time
GAS for the systems and . Moreover,
by invoking Remark 3.3, it follows that Assumption H1 implies
both Hypotheses A1 and A2 of Small-Gain Theorem 4.1. As-
sumption H2 also guarantees that Hypothesis A3 of Theorem
4.1 holds and further, by virtue of Assumption H3, there exists
a constant such that

(5.17a)

(5.17b)

Inequalities (5.17a), (5.17b) guarantee that Hypothesis A4 of
Theorem 4.1 holds as well with . We conclude, ac-
cording to the statement of Theorem 4.1, that zero is nonuni-
formly in time GAS for (5.13); equivalently, (1.8) satisfies the
nonuniform in time ISS property.

We illustrate the nature of the previous hypotheses (5.14a),
(5.14b), (5.15) and (5.16a), (5.16b) by considering the following
numerical example. Consider the planar system

(5.18a)

(5.18b)

where ( ) and are constants satisfying

(5.19)

We show that hypotheses (5.14a), (5.14b), (5.15), and (5.16a),
(5.16b) hold, thus, zero is nonuniformly in time GAS with re-
spect to (5.19). Let and yet to be specified and
let and .
We evaluate the derivative of along the trajectories of the
subsystem (5.18a). We find

and this (by virtue of Propo-
sition 2.5) implies

(5.20a)

Likewise, by setting and
for some , we obtain as previously

that for the trajectories of the subsystem (5.18b) it holds that

(5.20b)

It follows from (5.20a), (5.20b) that (5.14a), (5.14b) hold with
( ) as previously defined, ( ,2),

and . Finally, by using
the elementary inequality

and taking into account definitions of ( ), it
follows that (5.15) holds and for we have

(5.21)

with ( ,2) as precisely defined by (5.16b). Moreover, by
using (5.21) and invoking our hypothesis (5.19), we can deter-
mine constants and , in such a way that (5.16a)
holds as well. Therefore, all hypotheses (5.14a), (5.14b), (5.15)
and (5.16a), (5.16b) are fulfilled and Theorem 4.1 asserts that
zero is nonuniformly in time GAS for system (5.18).
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Example 5.3: Consider the nonlinear planar system

(5.22)

For the case and (constant), the stability
behavior of (5.22) is studied in [6] by applying the small-gain
theorem of Jiang–Teel–Praly. It is proved that, if ,
then the origin for the composite system (5.22) is uniformly
in time GAS. Here, we consider the system (5.22) under the
following more general hypothesis.

H: and are functions and there exist
a constant and a positive nondecreasing function

such that

(5.23a)

(5.23b)

To simplify the analysis, we first invoke Remark 3.4, which
asserts that nonuniform in time ISS remains invariant under
input transformations T3, thus (5.22) satisfies the nonuniform in
time ISS property from the input , if and only if the following
planar system satisfies the same property from the input :

(5.24a)

(5.24b)

for arbitrary choice of . Notice that subsystem (5.24a)
with as input, satisfies the nonuniform in time ISS property
and particularly, by virtue of first inequality of (5.23b), satis-
fies (4.1) with , ,
and for arbitrary choice of

. Indeed, by evaluating the time derivative of the
Lyapunov function along the trajectories of the
subsystem (5.24a) with and taking into ac-
count (5.23b) of our Hypothesis H and definitions of and
we find

Therefore, by virtue of the previous property, equivalence of
statements iii) and iv) of Proposition 2.5 and equivalence of
statements ii) and iii) of Proposition 3.1 plus Remark 3.3,
we deduce (4.1). Moreover, it may be shown that subsystem
(5.24b) with ( ) as input satisfies the nonuniform in time
ISS property and particularly, satisfies (4.2) with ,

, ,
and for arbitrary .
Indeed, the variation of constants formula for (5.24b) implies

Taking into account (5.23b) and the previous inequality, we ob-
tain the equation shown at the bottom of the page, which implies
(4.2). The definitions of , ( ,2) above, the fact
that is nondecreasing and inequalities (5.23a) guarantee that
the following properties hold for appropriate selection of con-
stants , , , and for all , :

(5.25a)

(5.25b)

The first pair of conditions (5.25a) is equivalent to (4.3a),
(4.3b) and the pair of inequalities (5.25b) is equivalent to
(4.5a), (4.5b) with . We conclude by Theorem 4.1
that (5.24) satisfies the nonuniform in time ISS property and
thus, according to Remark 3.4, the same property is satisfied
for system (5.22).

APPENDIX

Proof of Fact V: Define
. Obviously,
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satisfies all properties imposed in statement of Fact IV,
hence, there exist functions and such that

for all . The latter in conjunction
with definition of implies the desired (1.9).

Proof of Fact VI: Notice first that

and is of class . Define ,
which is a function and let

.
It then follows that and

(A1)

Clearly, for every there exist positive numbers
such that

(A2)

Thus, by recalling definitions of and using (A2), it follows
that for every it holds

(A3)

For the case , we obtain the estimate

(A4)

Since , it follows that for every
there exist and such that

and
; consequently, we

get

(A5)
Obviously, for we have

, hence, from (A3)–(A5), and taking into account
definition of , we obtain .
Since is arbitrary, we conclude that . Let

be a strictly decreasing function with
such that for all and define

. Obviously, and the desired
(1.10) is a consequence of (A1).

Proof of Fact VII: First, it can be easily shown that prop-
erty is equivalent to the

following one.
(P): “For any , , , there exists a

, such that for all
, and .”

Next, define and .
Moreover, define for ,

, and notice
that property (P) implies

(A6)

Also, define:

and notice that is finite-valued, since by virtue of property
(P) and definitions of we have the equation at the bottom
of the page. Furthermore, (A6) implies

for all and, according to definition of above, it
follows that for each and the mappings , are
both nondecreasing. Thus, satisfies all requirements of Fact IV
and consequently, there exist functions and
with , for all , . It turns out that

(A7)

Without loss of generality we may assume that is
nondecreasing. Let be any nondecreasing function
with , for all . Define

and

(A8)
Clearly, definition (A8) in conjunction with (A7) implies that

for all . Furthermore, according to definition
(A8), we have

(A9)

and
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By recalling Fact V, there exists a function and a function
of class such that

(A10)

Claim: .

Proof of Claim: Let be arbitrary. Clearly, for every
there exist positive numbers such that

implication (A2) holds. Moreover, there exists some finite time
such that . The

latter, in conjunction with (A2) and (A7), implies

(A11)

We finally examine the case
and . In this case we invoke property (P),
which asserts existence of a constant such that

for all ,
and , where

. Thus, for we
obtain

This inequality, in conjunction with (A11) and definition (A8),
implies that for all we have and, since

is arbitrary, we conclude that . Finally,

let be a continuous and strictly decreasing
function with and for all .

The latter, in conjunction with (A9) and (A10) asserts that the
desired inequality (1.11) holds with .

Proof of Lemma 2.8: Since is nonuniformly in
time GAS for the unforced system it follows, by
the converse Lyapunov theorem in [11], that there exist func-
tions , and ,
such that (2.5a) holds and

(A12)

Define:

(A13)

Then we may use Fact V, to determine functions
and such that

. Without loss of generality we may assume that

is strictly increasing and satisfies , for all . It
then follows from (A13) and previous inequalities that

(A14)

Using the inequality and defining
, we

obtain from (A14):

)

By recalling Facts I and II, there exist functions ,
such that and ,

thus (A15) implies that the following inequality holds for all
:

(A16)

where . We again recall Facts II
and V to determine functions ,
and such that and

. The desired
(2.5b) is then an immediate consequence of (A16). The proof
is complete.

Proof of Claim Made in the Proof of Theorem 4.1: We
proceed by first establishing the following properties.

Property 1: Under Hypothesis A3 of Theorem 4.1, there
exist functions and ( , 2) such that
for all and and for every nonnegative with

the following inequalities hold:

(A17)

(A18)

Proof: By using Fact VII and Hypothesis A3, there exist
functions and ( ) such that

(A19)

(A20)
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Furthermore, by using Fact VI, there exist functions
( ) such that

(A21)

(A22)

We define and
. Inequalities (A19)–(A22), along with

previous definitions, imply that for all and the
following inequalities hold:

(A23)

(A24)

We define for , the following functions of class
. The previous definitions, in con-

junction with inequalities (A23) and (A24), imply the desired
(A17) and (A18).

A consequence of Property 1 and Hypothesis A3 of The-
orem 4.1 is the following.

Property 2: Under Hypothesis A3 of Theorem 4.1, there
exist and ( ,2), such that for every

, the inequalities shown in (A25)–(A28) at
the bottom of the page, hold for all .

Proof: Fact V guarantees existence of functions
and ( ) such that for all and the following
inequalities hold:

(A29)

(A30)

where and ( ) are defined in (A19)
and (A20). Moreover, by (A19) and (A20), we obtain the equa-
tion, shown at the bottom of the page. These inequalities, in con-
junction with (A29) and (A30), assert that the desired (A25),
(A26), (A27), and (A28) hold for appropriate and

( , 2).
A straightforward consequence of Hypothesis A4 of The-

orem 4.1 is the following property.
Property 3: Under Hypotheses A3 and A4 of Theorem 4.1,

for every pair of mappings
of class , the following inequal-

ities hold for all ; see (A31) and (A32), shown at the
bottom of the page, where is the function involved in (4.4)
and (4.5a), (4.5b).

(A25)

(A26)

(A27)

(A28)
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Proof: Immediate consequence of inequalities (4.5a),
(4.5b).

We are now in a position to prove our Claim. Clearly, for
every , there exists a maximal interval

with such that the corresponding so-
lution of (1.4) exists. Exploiting (4.1) and (4.2), we obtain the
following estimates for the components and of the so-
lution of (1.4) on the interval

(A33)

(A34)

Combining (A33) and (A34), it follows that (A35)–(A36), as
shown at the bottom of the page, hold. Using (A17), (A18),
(A25)–(A28), and (A31)–(A36), we obtain the estimates, shown
in (A37)–(A38) at the bottom of the page, on the interval .
From (A37) and (A38), (A39)–(A40), as shown at the top of the
next page, hold. Inequalities (A39) and (A40), in conjunction
with our Hypothesis (4.4), imply that (A41)–(A42), as shown at
the top of the next page, hold.It follows from (A41), (A42) that
the solution does not have a finite escape time, equivalently

(A31)

(A32)

(A35)

(A36)

(A37)

(A38)
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(A39)

(A40)

(A41)

(A42)

. Furthermore, this implies that inequalities (A37),
(A38), (A41), and (A42) hold for all , thus (4.7a),(4.7b)
and (4.8a),(4.8b) are established.
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