Hopf and Frobenius algebras: generalizations
and the Larson-Sweedler theorem

Christina Vasilakopoulou

University of California, Riverside

Riverside Mathematics Workshop for Excellence and Diversity

20 October 2018



Hopf and Frobenius algebras Hopf and Frobenius categories The Larson-Sweedler theorem

Outline

1. Hopf and Frobenius algebras
2. Hopf and Frobenius (enriched) categories

3. Larson-Sweedler theorem

* How can generalize this result from a field k to commutative rings or
more general structures?



Hopf and Frobenius algebras

Bialgebras
Let k be a field.

A k-algebra (M, u,n) is a monoid in the symmetric monoidal category
(Vecty, ®, k).

A k-coalgebra (C, d,€) is a comonoid in (Vecty, ®, k);
Sweedler’s sigma notation J(x) = X ()X1) ® X(2)-

A k-bialgebra (A, 1, n, 9, €) is a bimonoid in (Vecty, ®, k):
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+3 more axioms.



Hopf and Frobenius algebras

Hopf algebras
A k-bialgebra A is called Hopf if there exists s: A — A, the antipode,
such that
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It is a Hopf monoid in (Vecty, ®, k).

Examples
= Group-algebra k[G] = {3, c« rzg} of a group, d(x)=x®x.
= Universal enveloping algebra U(g) of Lie algebra, §(x)=x®1+1® x.
= Coordinate algebra O(G) of an algebraic group, 6(f)(x,y) = f(xy).



Hopf and Frobenius algebras

Frobenius algebras
A k-algebra and k-coalgebra (A, u,n,0,€) is Frobenius if
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It is a Frobenius monoid in (Vecty, ®, k).
* Every Frobenius k-algebra is finite dimensional.
Examples

= Matrix algebra M,(k), e(X) = tr(X).

= k[G] for finite group, d(g) = >, gh 1 @ h.

= Frobenius algebras correspond to 2-dimensional TQFT.
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Hopf categories

* If (V,®,1,0) symmetric monoidal, Comon()) is monoidal:
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Definition

» A one-object Comon(V)-category is a bimonoid in V.

»A one-object Hopf V-category is a Hopf monoid in V.



Hopf and Frobenius categories

Axioms
“Myyz:i Hey @ Hy , — Hy 7y jxi | — Hyex ‘global’ multiplication
“dap: Hap — Hap @ Hap, €ap: Hap — 1 ‘local’ comultiplication
dxy ®dyz
Hey ® Hy; ————>Hy, @ Hy, ® Hy , @ Hy ,
\L1®U®1
Mxyz HX,y ® Hy7z ® Hx,y ® H 4
mxyz®mxyz
Hx,z 4 Hx,z X Hx,z
“ Sxyi Hyxy — Hy x ‘global’ antipode
1®5xy

Hyx,y ® Hxy ———— Hxy ® Hy x

dy w;

Exy

Hiy / = H,
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Frobenius categories

* A V-opcategory is a V°P-enriched category
Cyz: Axz = Axy @ Ay 7, Exi Axx — | ‘global’ comultiplication

Definition

» A one-object Frobenius V-category is a Frobenius monoid in V.
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Larson-Sweedler for Hopf and Frobenius categories

»A V-category A is locally rigid when each A, , has a dual in V.
E.g. every Vectz-category.

»For a Hopf V-category (H,m, j,d, e, s), the left integral space is

e X X V4
/ = {t: 1= Hyey | ho t=en(h) T.Vhe H,,}
H.V

* In particular, one-object case gives k-algebras, R-algebras, any Hopf
and Frobenius monoids...
* In general, R-linear categories, weak and Turaev Hopf algebras...



Thank you for your attention!

Joint work with Mitch Buckley, Timmy Fieremans and Joost Vercruysse
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