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One goal of applied category theory is to understand open systems. We compare
two ways of describing open systems as cospans equipped with extra data. First, given a
functor L : A→ X, a ‘structured cospan’ is a diagram in X of the form L(a)→ x← L(b).
We give a new proof that if A and X have finite colimits and L preserves them, there
is a symmetric monoidal double category whose objects are those of A and whose
horizontal 1-cells are structured cospans. Second, given a pseudofunctor F : A→ Cat,
a ‘decorated cospan’ is a diagram in A of the form a → m ← b together with an
object of F (m). Generalizing the work of Fong, we show that if A has finite colimits
and F : (A,+) → (Cat,×) is symmetric lax monoidal, there is a symmetric monoidal
double category whose objects are those of A and whose horizontal 1-cells are decorated
cospans. We prove that under certain conditions, these two constructions become
isomorphic when we take X = ∫F to be the Grothendieck category of F . We illustrate
these ideas with applications to electrical circuits, Petri nets, dynamical systems and
epidemiological modeling.
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1 Introduction
An ‘open system’ is any sort of system that can interact with the outside world. Experience has
shown that open systems are nicely modeled using cospans [16, 20, 40]. A cospan in some category
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A is a diagram of this form:

a

m

b

i o

We call m the apex, a and b the feet, and i and o the legs of the cospan. The apex describes the
system itself. The feet describe ‘interfaces’ through which the system can interact with the outside
world. The legs describe how the interfaces are included in the system. If the category A has finite
colimits, we can compose cospans using pushouts: this describes the operation of attaching two
open systems together in series by identifying one interface of the first with one of the second.
We can also ‘tensor’ cospans using coproducts: this describes setting open systems side by side, in
parallel. Via these operations we obtain a symmetric monoidal double category with cospans in A
as its horizontal 1-cells [15, 38].

However, we often want the system itself to have more structure than its interfaces. This led
Fong to develop a theory of ‘decorated’ cospans [19]. Given a category A with finite colimits, a
symmetric lax monoidal functor F : (A,+)→ (Set,×) can be used to equip the apex m of a cospan
in A with some extra data: an element s ∈ F (m), which we call a decoration. Thus a decorated
cospan is a pair:

a m b, s ∈ F (m).i o

Fong proved that there is a symmetric monoidal category with objects of A as its objects and
equivalence classes of decorated cospans as its morphisms. Such categories were used to describe
a variety of open systems: electrical circuits, Markov processes, chemical reaction networks and
dynamical systems [6, 7, 9].

Unfortunately, many applications of decorated cospans were flawed. The problem is that while
Fong’s decorated cospans are good for decorating the apex m with an element of a set F (m), they
are unable to decorate it with an object of a category. An example would be equipping a finite set
m with edges making its elements into the nodes of a graph. We would like the following ‘open
graph’ to be a decorated cospan where the apex is the finite set m = {n1, n2, n3, n4}:

•
n1

•
n2

•
n3

•
n4

e1

e2

e3

e4

e51 2

a b

We might hope to do this using a symmetric lax monoidal functor F : (FinSet,+) → (Set,×)
assigning to each finite set m the set of all graphs with m as their set of nodes. But this hope
is doomed, for reasons painstakingly explained in [3, Section 5]. The key problem is that two
graphs with m as their set of nodes but different sets of edges give distinct elements of F (m),
and this prevents F from being symmetric lax monoidal. To solve this problem, we need to bring
isomorphisms of graphs into the framework—so we need F (m) to be a category of graphs with m
as their set of nodes.

Here we implement this solution. Instead of basing the theory of decorated cospans on a
symmetric lax monoidal functor F : (A,+) → (Set,×), we use a symmetric lax monoidal pseudo-
functor F : (A,+)→ (Cat,×). In Theorems 2.1 and 2.2, we use this data to construct a symmetric
monoidal double category FCsp in which:

• an object is an object of A,

• a vertical 1-morphism is a morphism of A,

• a horizontal 1-cell from a to b is a decorated cospan:

a m b, s ∈ F (m),i o
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• a 2-morphism is a map of decorated cospans: that is, a commutative diagram

a

a′

m b

b′m′

s ∈ F (m)

s′ ∈ F (m′)

i o

f g

i′ o′

h

together with a morphism τ : F (h)(s)→ s′ in F (m′).

In fact another solution to the problem is already known: the theory of structured cospans
[3, 16]. Given a functor L : A→ X, a structured cospan is a cospan in X whose feet come from
a pair of objects in A:

L(a)

x

L(b).

This is another way of letting the apex have more structure than the feet. When A and X have
finite colimits and L preserves them, there is a symmetric monoidal double category LCsp(X)
where:

• an object is an object of A,

• a vertical 1-morphism is a morphism of A,

• a horizontal 1-cell from a to b is a diagram in X of this form:

L(a) x L(b)i o

• a 2-morphism is a commutative diagram in X of this form:

L(a) L(b)x

L(a′) L(b′)x′

o

L(f) L(g)α

i

i′ o′

Many of the flawed applications of decorated cospans have been fixed using structured cospans
[3, Section 6], but not every decorated cospan double category is equivalent to a structured cospan
double category. Here we give sufficient conditions for a decorated cospan double category to be
equivalent—and in fact, isomorphic—to a structured cospan double category.

Suppose A has finite colimits and F : (A,+) → (Cat,×) is a symmetric lax monoidal pseudo-
functor. Then each category F (a) for a ∈ A becomes symmetric monoidal, and F becomes a pseud-
ofunctor F : A→ SymMonCat. Using the Grothendieck construction, F also gives an opfibration
U : X → A where X = ∫F . Let Rex be the 2-category of categories with finite colimits, functors
preserving finite colimits, and natural transformations. We show that if F : A → SymMonCat
factors through Rex as a pseudofunctor, the opfibration U : X → A is also a right adjoint. From
the accompanying left adjoint L : A → X, we construct a symmetric monoidal double category

LCsp(X) of structured cospans. In Theorem 4.1 we prove that this structured cospan double cat-
egory LCsp(X) is isomorphic to the decorated cospan double category FCsp. In fact, they are
isomorphic as symmetric monoidal double categories.

This result shows that under certain conditions, structured and decorated cospans provide
equivalent ways of describing open systems. We illustrate this in Section 6 with applications
to graphs, electrical circuits, Markov processes, Petri nets, Petri nets with rates, and dynamical
systems. This is meant to be a fairly thorough review of the existing literature. It becomes clear
that when either structured or decorated cospans can be used, structured cospans are simpler.
However, in some cases we need decorated cospans, for reasons we explain.
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Outline
In Section 2 we construct the double category of decorated cospans, FCsp, and show how to con-
struct maps between decorated cospan double categories. In Section 3 we give a new construction
of the double category of structured cospans, LCsp(X). In Section 4 we prove that the double
categories of decorated cospans and structured cospans are isomorphic under suitable conditions.
In Section 5 we establish the isomorphism between structured and decorated cospans at the level
of bicategories and categories (via decategorification). In Section 6 we describe applications.

Conventions
In this paper, we use a sans-serif font like C for categories, boldface like B for bicategories or
2-categories, and blackboard bold like D for double categories. For double categories with names
having more than one letter, like Csp(X), only the first letter is in blackboard bold. In this paper,
‘double category’ means ‘pseudo double category’, as in Definition A.3. A double category D has a
category of objects and a category of arrows, and we call these D0 and D1 despite the fact that they
are categories. Vertical composition in our double categories is strictly associative, while horizontal
composition need not be. We use (C,⊗) to stand for a monoidal or perhaps symmetric monoidal
category with ⊗ as its tensor product. For composition or morphisms we use concatenation or
occasionally ◦.
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Michael Shulman for suggesting a proof strategy that greatly improved this paper. The third
author would like to thank the General Secretariat for Research and Technology (GSRT) and the
Hellenic Foundation for Research and Innovation (HFRI).

2 Decorated cospans
In this section we build symmetric monoidal double categories of decorated cospans, and then
study the functoriality of this construction. Theorem 2.1 explains how to construct a double
category of decorated cospans from a lax monoidal pseudofunctor F : (A,+)→ (Cat,×) whenever
A has finite colimits. Theorem 2.2 gives conditions under which this double category is symmetric
monoidal. These results build on earlier work of Fong [19], and we recommend his thesis for
intuitive explanations of the fundamental ideas [20]. For concrete examples of the structures that
follow, we refer the reader to Section 6.

In all that follows, when we say a category ‘has finite colimits’ we mean it is equipped with
a choice of colimit for every finite diagram. Thus, if A has finite colimits it gives a cocartesian
monoidal category (A,+): that is, a symmetric monoidal category where the monoidal structure is
given by the chosen binary coproducts and initial object. However, when we say a functor ‘preserves
finite colimits’, it need only do this up to canonical isomorphism, unless otherwise specified. We
recall the concept of lax monoidal pseudofunctor in Appendix A.1.

Theorem 2.1. Let A be a category with finite colimits and (F, φ, φ0) : (A,+) → (Cat,×) a lax
monoidal pseudofunctor. Then there exists a double category FCsp in which

• an object is an object of A,

• a vertical 1-morphism is a morphism of A,

• a horizontal 1-cell is an F -decorated cospan, that is, a diagram in A of the form

a m b,
i o

together with a decoration s ∈ F (m),
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• a 2-morphism is a map of F -decorated cospans, that is, a commutative diagram in A of
the form

a

a′

m b

b′m′

s ∈ F (m)

s′ ∈ F (m′)

i o

f g

i′ o′

h

together with a decoration morphism τ : F (h)(s)→ s′ in F (m′), which can be thought of
as a natural transformation

1

F (m)

F (n)

⇓τ

s

s′

F (h) (1)

Note that the decoration s ∈ F (m) is now an object in the category F (m), not an element of a
set as in Fong’s original approach. Vertical composition in FCsp is done using composition in A.
The horizontal composite of F -decorated cospans

(a→ m← b, s ∈ F (m)) , (b→ n← c, t ∈ F (n))

is the usual composite via pushout of their underlying cospans, shown in dashed arrows here:

a

m

b

n

c

m+ n

m+b n

i o i′ o′

ψ

together with the decoration t� s ∈ F (m+b n) specified by this functor:

1 ∼= 1× 1 s× t−−−→ F (m)× F (n) φm,n−−−→ F (m+ n) F (ψ)−−−→ F (m+b n).

Given two horizontally composable maps of F -decorated cospans α and β:

a

a′

m b

b′m′

s ∈ F (m)

s′ ∈ F (m′)

b n c

b′ n′ c′

t ∈ F (n)

t′ ∈ F (n′)

τα : F (h1)(s)→ s′ τβ : F (h2)(t)→ t′

i1 o1

f g

i′1 o′1

h1

i2

g h2

i′2

o2

k

o′2

their composite β � α is the horizontal composite of the two maps of cospans in A:

a

a′

m+b n c

c′m′ +b′ n
′

t� s ∈ F (m+b n)

t′ � s′ ∈ F (m′ +b′ n
′)

f kh1 +g h2
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together with the decoration morphism τβ�α : F (h1+gh2)(t�s)→ (t′�s′) specified by this natural
transformation:

⇓τα×τβ1 ∼= 1× 1

F (m)× F (n)

φh1,h2∼=
∼=

F (m′)× F (n′)

F (m+ n)

F (m′ + n′)

F (m+b n)

F (m′ +b′ n
′)

φm,n

φm′,n′

F (ψ)

F (ψ)

F (h1 +g h2)F (h1 + h2)

s× t

s′ × t′

F (h1)× F (h2)

where the middle isomorphism is (6) from the pseudonaturality of φ and the right-hand isomor-
phism comes from the pseudofunctoriality of F .

Theorem 2.2. Let A be a category with finite colimits and let (F, φ, φ0) : (A,+) → (Cat,×)
be a symmetric lax monoidal pseudofunctor. Then the double category FCsp of Theorem 2.1 is
symmetric monoidal, where the tensor product

• of two objects a and b is their coproduct a+ b in A,

• of two vertical 1-morphisms f : a→ b and f ′ : a′ → b′ is f + f ′ : a+ a′ → b+ b′ in A,

• of two horizontal 1-cells (a i1−→ m
o1←− b, s ∈ F (m)) and (c i2−→ n

o2←− d, t ∈ F (n)) is

m+ n

a+ c b+ d,

i1+i2 o1+o2 s⊗ t := φm,n(s, t) ∈ F (m+ n)

• of two 2-morphisms α and β is:

a

a′

m b

b′m′

⊗ =
c n d

c′ n′ d′

τα : F (h)(s)→s′ in F (m′) τβ : F (h′)(t)→t′ in F (n′)

i1 o1

f g

i′1 o′1

h

i2

f ′ h′

i′2

o2

g′

o′2

a+ c

a′ + c′

m+ n b+ d

b′ + d′m′ + n′

τα⊗β : F (h+h′)(φm,n(s,t))→φm′,n′ (s
′,t′) in F (m′+n′)

i1 + i2 o1 + o2

f + f ′ g + g′

i′1 + i′2 o′1 + o′2

h+ h′

with decoration morphism τα⊗β given by the following diagram:

F (m)× F (n) F (m+ n)

1

F (m′)× F (n′) F (m′ + n′)

φm,n

F (h)×F (h′)
φh,h′∼=
(6)

F (h+h′)

s× t

s′× t′
⇓τα×τβ

φm′,n′

We prove both these theorems using the work of Shulman [43], who gives a general way to
construct a double category from a ‘Beck–Chevalley monoidal bifibration’—a concept recalled in
Appendix A.2.

Lemma 2.3 (Shulman). Suppose (A,+) is cocartesian monoidal and Φ: (C,⊗) → (A,+) is a
Beck–Chevalley monoidal bifibration. Then there is a double category Fr(Φ) in which

• an object is an object of A,

• a vertical 1-morphism is a morphism of A,

• a horizontal 1-cell is a pair of objects a, b ∈ A together with an object c ∈ C with Φ(c) = a+b,

• a 2-morphism is a pair of morphisms f : a → a′, g : b → b′ in A together with a morphism
h : c→ c′ in C with Φ(h) = f + g.

Accepted in Compositionality on 2022-02-14. Click on the title to verify. 6
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If Φ is a Beck–Chevalley symmetric monoidal bifibration then Fr(Φ) becomes a symmetric monoidal
double category.
Proof. This is [43, Theorem 14.9]; Shulman proves a dual version in more detail in his Theorem
14.4.

Note that when C is the arrow category of A and Φ maps any arrow in C to its domain, a
horizontal 1-cell in Fr(Φ) simply amounts to a cospan in A. In this case Fr(Φ) is the double category
of cospans in A. We shall use variations on this idea to construct double categories of decorated
and structured cospans, and to prove that under certain conditions these double categories are
equivalent. We begin with decorated cospans, proving Theorem 2.1 and 2.2 by applying Shulman’s
result to a particular monoidal bifibration built from a lax monoidal pseudofunctor F : (A,+) →
(Cat,×).

The Grothendieck construction gives a bijection between pseudofunctors F : A → Cat and
opfibrations U : ∫F → A. We need two refinements of this construction: one that gives monoidal
opfibrations, and one that gives symmetric monoidal opfibrations. We recall pseudofunctors in
Appendix A.1, and opfibrations in Appendix A.2; here we simply state the result we need.

Lemma 2.4. For any monoidal category (A,⊗), there is a 2-equivalence between the 2-categories of
monoidal opfibrations U : (X,⊗)→ (A,⊗) and lax monoidal pseudofunctors F : (A,⊗)→ (Cat,×),
and if A cocartesian monoidal, there is a 2-equivalence between these and pseudofunctors from A
into MonCat. If A is symmetric monoidal, there is also a 2-equivalence between the 2-categories of
symmetric monoidal opfibrations U : (X,⊗)→ (A,⊗) and symmetric lax monoidal pseudofunctors
F : (A,⊗) → (Cat,×) , and if A cocartesian monoidal, there is a 2-equivalence between these and
pseudofunctors from A into SymMonCat.
Proof. This was shown by Moeller and the third author [37, Theorems 3.13 & 4.2]. In summary,
for a cocartesian base A we have correspondences

lax monoidal pseudofunctors F : (A,+)→ (Cat,×)
m

monoidal opfibrations U : (X,⊗X)→ (A,+)
m

pseudofunctors F : A→MonCat

The second equivalence was observed earlier by Shulman [43]. Moreover, symmetric lax monoidal
pseudofunctors correspond to symmetric monoidal opfibrations, and those to pseudofunctors into
SymMonCat.

In more detail, if (φ, φ0) is the lax monoidal structure of the pseudofunctor F as recalled in Ap-
pendix A.1, the induced monoidal structure on the Grothendieck category X = ∫F (Definition A.1)
is given by(

a, s ∈ F (a)
)
⊗X

(
b, t ∈ F (b)

)
=
(
a+ b, φa,b(s, t) ∈ F (a+ b)

)
, IX =

(
0A, φ0

)
(2)

If F is a symmetric lax monoidal pseudofunctor, the induced monoidal structure in ∫F is symmetric
via

(βa,b, (ua,b)s,t) : (a+ b, φa,b(s, t)) ∼−→ (b+ a, φb,a(t, s))
where β is the canonical symmetry for A and u is the natural isomorphism of (7).

Moreover, each fiber Xa = F (a) obtains a monoidal structure via

⊗a : F (a)× F (a) φa,a−−−→ F (a+ a) F (∇)−−−→ F (a), Ia : 1 φ0−→ F (0) F (!a)−−−→ F (a) (3)
where ∇ is the fold map, which is symmetric when F is, again via the components of ua,a. Also,
each reindexing functor f! = F (f) obtains a strong monoidal structure with

F (a)× F (a) F (a+ a) F (a)

F (b)× F (b) F (b+ b) F (b)

φa,a

F (f)×F (f)
φf,f∼=
(6)

F (∇)

F (f+f) ∼= F (f)

φb,b F (∇)

Accepted in Compositionality on 2022-02-14. Click on the title to verify. 7
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These 2-equivalences further restrict to the case when the Grothendieck category (X,⊗X) is
specifically cocartesian monoidal itself, with coproducts built up from (2). In that case, opfibra-
tions (X,+)→ (A,+) that strictly preserve coproducts and initial object bijectively correspond to
pseudofunctors into the 2-category of cocartesian categories. For more details, see [37, Corollary
4.7] and the related discussion.

Now we are ready to use Shulman’s result to prove Theorems 2.1 and 2.2. An F -decorated
cospan from a to b is a cospan a → m ← b in A together with an object s ∈ F (m). This can be
seen as a pair (e → m, s ∈ F (m)) such that e equals a + b. But (m, s ∈ F (m)) is precisely an
object of the Grothendieck category ∫F , and the opfibration U : ∫F → A sends this object to m.
Thus, (e→ m, s ∈ F (m)) can be seen as an object of the comma category A/U . Let Φ: A/U → A
be the functor with

Φ(e→ m, s ∈ F (m)) = e.

Then an F -decorated cospan from a to b amounts to an object c ∈ A/U such that Φ(c) = a + b.
With this choice of Φ, Shulman’s 2.3 gives the double category of F -decorated cospans.

Proof of Theorem 2.1. Let U : ∫F → A be the monoidal opfibration associated to the lax monoidal
pseudofunctor F : (A,+) → (Cat,×) via Lemma 2.4. To obtain the desired double category we
apply Lemma 2.3 to the functor Φ: A/U → A, which we now describe in more detail. In the comma
category A/U :

• an object is a pair (a i−→ b, s) consisting of a morphism in A and an object s ∈ F (b);

• a morphism from (a i−→ b, s) to (a′ i
′

−→ b′, s′) is a triple (f, g, h) where f : a→ a′ and g : b→ b′

are morphisms in A such that this square commutes:

a a′

b b′

f

i i′

g

and h : F (g)(s)→ s′ is a morphism in F (b′).

As in any comma category we have a functor Φ: A/U → A given on objects by Φ(a i−→ b, s) = a
and on morphisms by Φ(f, g, h) = f .

To apply Lemma 2.3 it suffices to prove that Φ is a Beck–Chevalley monoidal opfibration. First,
there is a monoidal structure on A/U coming from the monoidality of U . On objects this is given
by

(a i−→ b, s)⊗ (a′ i
′

−→ b′, s′) = (a+ a′
i+i′−−→ b+ b′, φb,b′(s, s′))

where φ is the laxator for F . The monoidal unit is (0A
!−→ 0A, 0) where 0 ∈ F (0A) is the object

given by φ0 : 1→ F (0A). With this monoidal structure on A/U , it is easy to see that Φ is a strict
monoidal functor.

Next, one can check that Φ is a fibration. Given a morphism f : a → a′ in A and an object
(a′ i

′

−→ b′, s′) ∈ A/U over a′, one can show that a cartesian lifting of f to this object is given by

(f, 1, 1) : (a i′f−−→ b′, s′) → (a′ i
′

−→ b′, s′).

Denoting the cartesian lifting of f to an object z ∈ A/U by Cart(f, z), the tensor product of A/U
preserves such cartesian liftings, in fact strictly, in the sense that Cart(f1, z1) ⊗ Cart(f2, z2) =
Cart(f1 + f2, z1 ⊗ z2).

One can also check that Φ is an opfibration. Given a morphism f : a→ a′ in A and an object
(a i−→ b, s) ∈ A/U over a, one can show that a cocartesian lifting of f is given by

(f, g, 1) : (a i−→ b, s) → (a′ i
′

−→ b+a a
′, F (g)(s)).

Accepted in Compositionality on 2022-02-14. Click on the title to verify. 8
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where g, i′ and b+a a
′ arise from this pushout square in A:

a a′

b b+a a
′p

f

i i′

g

To show that (f, g, 1) is a cocartesian lifting of f , suppose we are given a morphism

(f ′′, g′′, h′′) : (a i−→ b, s) → (a′′ i
′′

−→ b′′, s′′)

in A/U and a morphism k : a′ → a′′ in A such that Φ(f ′′, g′′, h′′) = kf . We need to show there
exists a unique morphism

(f̃ , g̃, h̃) : (a′ i
′

−→ b+a a
′, F (g)(s)) → (a′′ i

′′

−→ b′′, s′′)

such that Φ(f̃ , g̃, h̃) = k and
(f̃ , g̃, h̃) ◦ (f, g, 1) = (f ′′, g′′, h′′).

To achieve this we choose f̃ = k, h̃ = h′′, and define g̃ using the universal property of the pushout:

a a′

b b+a a
′

b′′

p

f

i i′

g

g′′

i′′k

∃! g̃

after noting that g′′i = i′f ′′ = i′′kf by the commuting square condition obeyed by morphisms
in A/U . One can check that with these choices, (f̃ , g̃, h̃) obeys the desired conditions and is the
unique morphism to do so.

It follows that Φ is a bifibration. Denoting the cocartesian lifting of a morphism f to an object
z ∈ A/U by Cocart(f, z), we have that Cocart(f1, z1)⊗Cocart(f2, z2) ∼= Cocart(f1 +f2, z1⊗z2) by
the universal map between two colimits of the same diagram. Thus, Φ is a monoidal bifibration.

Lastly, we need to check that Φ satisfies the Beck–Chevalley condition. Merely from the fact
that Φ is a bifibration, for any commutative square in A:

a b

c d

h

k g

f

there is a natural transformation

(A/U)a (A/U)b

(A/U)c (A/U)d

⇓θ

h∗

k! g!

f∗

defined in (8). We need to prove that when the square in A is a pushout, θ is a natural isomorphism.
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We start by describing θ more concretely. Let (b i−→ e, s) be an object of (A/U)b. Going left,
we precompose with h : a → b to obtain the object (a ih−→ e, s) of (A/U)a. Then going down, we
push forward along k:

a e

c c+a e
p

ih

k

ψ

to obtain the object (c ψ−→ c +a e, F (ψ)(s)) of (A/U)c. For the other route, first going down, we
push the object (b i−→ e, s) forward along g : b→ d by taking the following pushout:

b e

d d+b e
p

i

g

φ

which yields the object (d φ−→ d +b e, F (φ)(s)) of (A/U)d. Then going left, we precompose with
f : c→ d to obtain the object (c φf−−→ d+b e, F (φ)(s)) of (A/U)c.

The natural transformation θ gives a morphism

θ : (c ψ−→ c+a e, F (ψ)(s)) → (c φf−−→ d+b e, F (φ)(s))

in (A/U)c. Concretely, this arises from the universal property of the pushout:

b e

d d+b e

a

c

c+a e

p
k

h

f

i

g

φ

ψ

∃! ζ

Namely, we have θ = (1, ζ, 1). But when the original square in A (at upper left above) is a pushout,
its pasting with the other pushout gives a pushout, so ζ and hence θ is an isomorphism.

This shows that Φ obeys the Beck–Chevalley condition. Having checked all the hypotheses of
Lemma 2.3, we can define FCsp to be Fr(Φ) and conclude the proof of Theorem 2.1.

Proof of Theorem 2.2. When the lax monoidal pseudofunctor F : (A,+) → (Cat,×) of Theo-
rem 2.1 is symmetric, the monoidal bifibration Φ: A/U → A is symmetric, so Lemma 2.3 implies
that the double category FCsp = Fr(Φ) is symmetric monoidal as described.

The decorated cospan formalism gives not only double categories, but also maps between these.
Suppose we have two categories A,A′ with finite colimits and two lax monoidal pseudofunctors
F : A → Cat and F ′ : A′ → Cat. Then we can obtain a map between their decorated cospan
double categories, namely a double functor H : FCsp→ F ′Csp, from:

• a functor H : A→ A′ that preserves finite colimits,

• a lax monoidal pseudofunctor (E, φ, φ0) : Cat→ Cat,
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• a natural transformation θ : EF ⇒ F ′H:

A Cat

A′ Cat.

⇓θ

F

H E

F ′

The intuition behind this square is that while the pseudofunctors F and F ′ serve to assign categories
of possible decorations to the objects of A and A′, respectively, the functor H lets us turn objects
of A into objects of A′, and the pseudofunctor E lets us change decorations as prescribed by F
into those as prescribed by F ′, up to the transformation θ. In applications E and H are often
identities.

The double functor H : FCsp→ F ′Csp is defined as follows:

• The image of an object a ∈ FCsp0 = A is the object H(a) ∈ F ′Csp0 = A′.

• The image of a vertical 1-morphism f : a→ b is the vertical 1-morphism H(f) : H(a)→ H(b).
In other words, the object component H0 of the double functor H is the functor H.

• The image of an F -decorated cospan

M = (a i−→ m
o←− b, s ∈ F (m))

is the following F ′-decorated cospan:

H(M) = (H(a) H(i)−−−→ H(m) H(o)←−−− H(b), s̄ ∈ F ′(H(m)))

where

s̄ := 1 φ0−→ E(1) E(s)−−−→ E(F (m)) θm−−→ F ′(H(m)).

• The image of a map of decorated cospans in FCsp

a

a′

m b

b′n

s ∈ F (m)

s′ ∈ F (n)

τ : F (h)(s)→ s′

i o

f g

i′ o′

h

is the following map of F ′-decorated cospans in F ′Csp:

H(a)

H(a′)

H(m) H(b)

H(b′)H(n)

s ∈ F ′(H(m))

s′ ∈ F ′(H(n))

H(τ) : F ′(H(h))(s)→ s′

H(i) H(o)

H(f) H(g)

H(i′) H(o′)

H(h)

where the decoration morphism H(τ) is defined as follows. Treating τ as a natural transfor-
mation as in (1), H(τ) is given by

1 E(1)

E(F (m))

E(F (n))

⇓E(τ)

F ′(H(m))

F ′(H(n)).

φ0

θm

θn

F ′(H(h))

E(s)

E(s′)

E(F ((h))

The square at right commutes strictly because θ is a natural transformation.

Accepted in Compositionality on 2022-02-14. Click on the title to verify. 11



Volume 4 Issue 3 ISSN 2631-4444

Theorem 2.5. Given categories A and A′ with finite colimits, lax monoidal pseudofunctors F : (A,+)→
(Cat,×) and F ′ : (A′,+) → (Cat,×), a finite colimit preserving functor H : A → A′, a lax mo-
noidal pseudofunctor E : (Cat,×)→ (Cat,×) and a monoidal natural transformation θ as in the
following diagram:

A Cat

A′ Cat

⇓θ

F

H E

F ′

we obtain a double functor H : FCsp → F ′Csp defined as above. If F, F ′ and E are symmetric,
then H : FCsp→ F ′Csp is a symmetric monoidal double functor.

Proof. From the lax monoidal pseudofunctors F and F ′ we obtain Beck–Chevalley monoidal bi-
fibrations Φ: A/U → A and Φ′ : A′/U ′ → A′ as in Theorem 2.1. In what follows we construct a
strong monoidal functor G : A/U → A′/U ′ that makes this square commute:

A/U A′/U ′

A A′

G

Φ Φ′

H

Such a commuting square is a morphism in Shulman’s 2-category of Beck–Chevalley monoidal
bifibrations. Applying Shulman’s 2-functor Fr to this morphism [43, Theorem 14.11], we obtain
the desired double functor

H : FCsp→ F ′Csp.

We described A/U and its monoidal structure in the proof of Theorem 2.1, and of course the
case of A′/U ′ is analogous. We define G : A/U → A′/U ′ as follows. On objects G is given by

G(a i−→ b, s) = (H(a) H(i)−−−→ H(b), s),

where to define s we treat s ∈ F (b) as a functor s : 1→ F (b) and let s ∈ F ′(H(b)) be the composite
functor

1 φ0−→ E(1) E(s)−−−→ E(F (b)) θb−−→ F ′(H(b)).

On morphisms (f, g, h) : (a i−→ b, s) → (a′ i
′

−→ b′, s′), G is given by

G(f, g, h) = (H(f), H(g), h)

where to define h we treat h : F (g)(s)→ s′ as a natural transformation

1

F (b)

F (b′)

⇓h

s

s′

F (g)

and let h : F ′(H(g))(s)→ s′ be this natural transformation:

1 E(1)

E(F (b))

E(F (b′))

⇓E(h)

F ′(H(b))

F ′(H(b′)).

φ0

θb

θb′

F ′(H(g))

E(s)

E(s′)

E(F (g))
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One can check that with these definitions G is a functor.
To make G into a monoidal functor, we need to equip it with a laxator

γ : G(a i−→ b, s)⊗G(a′ i
′

−→ b′, s′) → G((a i−→ b, s)⊗ (a′ i
′

−→ b′, s′)).

Note that

G(a i−→ b, s)⊗G(a′ i
′

−→ b′, s′) =
(
H(a) +H(a′) H(i)+H(i′)−−−−−−−→ H(b) +H(b′), φ′H(b),H(b′)(s, s′)

)
where φ′ is the laxator for F ′, while

G((a i−→ b, s)⊗ (a′ i
′

−→ b′, s′)) =
(
H(a+ a′) H(i+i′)−−−−−→ H(b+ b′), φb,b′(s, s′)

)
where φ is the laxator for F . Since H preserves finite colimits, the laxator γ is obvious except
for the morphism from φ′H(b),H(b′)(s, s′) to φb,b′(s, s′). This is given by the following natural
transformation:

E
s,s′
∼=

λ
∼=

1×E(1)

E(1)

1×1

1

E(1)×E(1)

E(1×1)

E(F (b))×E(F (b′))

E(F (b)×F (b′))

F ′(H(b))×F ′(H(b′)) F ′(H(b)+H(b′))

E(F (b+b′)) F ′(H(b+b′))

λ

1× E0

E0

F ′(Hb,b′ ).

θb × θb′ φ′
H(b),H(b′)

E(φb,b′ ) θb+b′

E(s)× E(s′)

E(s× s′)

EF (b),F (b′)

E0 × 1

λ

E(λ−1)

E1,1

We also need a natural transformation expressing lax preservation of the unit object by G, which
is defined similarly. One can show that this laxator and unit morphism satisfy the coherence laws
of a lax monoidal functor, and they are invertible, so G is strong monoidal functor. If furthermore
F, F ′ and E are symmetric, one can check that G is symmetric monoidal, and that H is a symmetric
monoidal double functor.

3 Structured cospans
Structured cospans are an alternative approach to equipping the apex of a cospan with extra
data [3]. Here we recall this formalism and give a new construction of the double category of
structured cospans that clarifies their relation to decorated cospans. This new construction again
uses Shulman’s Lemma 2.3. For concrete examples of this formalism, see Section 6.

Theorem 3.1. Given categories A and X with finite colimits and L : A→ X a functor preserving
finite colimits, there is a symmetric monoidal double category LCsp(X) in which

• an object is an object of A,

• a vertical 1-morphism is a morphism of A,

• a horizontal 1-cell from a to b is an L-structured cospan, that is, a diagram in X of the
form

L(a) x L(b),i o

• a 2-morphism is a map of L-structured cospans, that is, a commutative diagram in X of
the form

L(a) x L(b)

L(a′) x′ L(b′).

i o

i′ o′

L(f) α L(g)
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Vertical composition is done using composition in A, while horizontal composition is done using
pushouts in X. The tensor product of two horizontal 1-cells is

x x′ x+ x′

⊗ =

L(a) L(b) L(a′) L(b′) L(a+ a′) L(b+ b′)

i o i′ o′ i+i′ o+o′

where i + i′ and o + o′ are defined using the fact that L preserves binary coproducts, and tensor
product of two 2-morphisms is given by:

L(a1) L(b1)x1

L(a2) L(b2)x2

L(a′1) L(b′1)x′1

L(a′2) L(b′2)x′2

⊗

L(a1 + a′1) L(b1 + b′1)x1 + x′1

L(a2 + a′2) L(b2 + b′2).x2 + x′2

=

o1

L(f) L(g)α

i1

i2 o2

o′1

L(f ′) L(g′)α′

i′1

i′2 o′2

o1 + o′1

L(f + f ′) L(g + g′)α+ α′

i1 + i′1

i2 + i′2 o2 + o′2

Proof. This was proved in [3, Theorems 2.3 & 3.9], where all the structures are specified in detail.
In fact, the double category structure only requires that X have pushouts, whereas the symmetric
monoidal structure also requires that X and A have finite coproducts and that L preserve these
[16, Theorem 3.2.3].

Our new proof is analogous to that of Theorem 2.1 in that we apply Lemma 2.3 to a Beck–
Chevalley symmetric monoidal bifibration Ψ: L/X → A, and define LCsp(X) to be Fr(Ψ). First,
note that in the comma category L/X:

• an object is a pair (a, L(a) −→ x) consisting of an object a ∈ A and a morphism L(a) i−→ x in
X;

• a morphism from (a, L(a) i−→ x) to (a′, L(a′) i′−→ x′) is a pair (f, g) of morphisms f : a → a′

and g : x→ x′ such that this square commutes:

L(a) L(a′)

x x′.

L(f)

i i′

g

Next, we define the functor Ψ: L/X→ A on objects by Ψ(a, L(a) i−→ x) = a and on morphisms by
Ψ(f, g) = f .

The comma category L/X has finite colimits because A and X have finite colimits and L pre-
serves them. It thus becomes symmetric monoidal with the chosen finite coproducts providing the
monoidal structure. The tensor product of two objects (a, L(a) i−→ x) and (a, L(a) i′−→ x′) is given
by

(a, L(a) i−→ x) + (a′, L(a′) i′−→ x′) = (a+ a′, L(a+ a′) ∼−→ L(a) + L(a′) i+i′−−→ x+ x′).

The monoidal unit is (0A, L(0A) !−→ 0X). It is clear that Ψ: (L/X,+)→ (A,+) is a strict monoidal
functor.
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The functor Ψ is both a fibration and an opfibration. Suppose we are given a morphism
f : a→ b in A. For any object (b, L(b) i−→ x) ∈ L/X over b, a cartesian lifting of f is given by

(f, 1x) : (a, L(a) iL(f)−−−→ x) → (b, L(b) i−→ x).

For any object (a, L(a) i−→ x) in L/X over a, a cocartesian lifting of f is given by

(f, κ) : (a, L(a) i−→ x)→ (b, L(b) θ−→ x+L(a) L(b))

where κ and θ arise from the pushout in this diagram:

L(a) L(c)

L(b)

x y

x+L(a) L(b)

κ ∃!ψ

g′

i

θ

L(f ′)

L(p)L(f)

This diagram also gives the proof that (f, κ) is a cocartesian lifting of f . Both cartesian and co-
cartesian liftings are clearly preserved by the tensor product of L/X, so Ψ is a monoidal bifibration.

Lastly, we show that Ψ: L/X → A satisfies the Beck–Chevalley condition. For this, given a
pushout square in A:

a b

c d

h

k g

f

we need to show that the natural transformation

(L/X)a (L/X)b

(L/X)c (L/X)d

⇓θ

h∗

k! g!

f∗

defined in (8) is an isomorphism. Let (b, L(b) i−→ x) be an object of (L/X)b. Going left, we
precompose with L(h) : L(a)→ L(b) to obtain the object (a, L(a) iL(h)−−−→ x) in (L/X)a. Then going
down, we push forward along L(k) : L(a)→ L(c):

L(a) x

L(c) L(c) +L(a) x
p

iL(h)

L(k)

ψ

to obtain the object (c, L(c) ψ−→ L(c) +L(a) x) of (L/X)c. For the other route, first going down, we
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push the object (b, L(b) i−→ x) forward along L(g) : L(b)→ L(d) by taking the following pushout:

L(b) x

L(d) L(d) +L(b) x
p

i

L(g)

φ

which yields the object (d, L(d) φ−→ L(d) +L(b) x) of (L/X)d. Then going left, we precompose with
L(f) : L(c)→ L(d) to obtain the object (c, L(c) φL(f)−−−−→ L(d) +L(b) x) of (L/X)c.

The natural transformation θ gives a morphism

θ : (c, L(c) ψ−→ L(c) +L(a) x) → (c, L(c) φL(f)−−−−→ L(d) +L(b) x)

in (L/X)c. As in the proof of Theorem 2.1, this arises from the universal property of the pushout:

L(b) x

L(d) L(d) +L(b) x

L(a)

L(c)

L(c) +L(a) x

p
L(k)

L(h)

L(f)

i

L(g)

φ

ψ

∃! ζ

Namely, we have θ = (1, ζ). But when the original square in A is a pushout, the square at left
above is also a pushout, since L preserves finite colimits. Since the pasting of pushout squares is
a pushout, ζ and hence θ is an isomorphism, so Ψ satisfies the Beck–Chevalley condition.

4 Structured versus decorated cospans
We now compare structured and decorated cospans. In Theorem 2.1 we built a double category of
decorated cospans from a bifibration Φ: A/U → A. In Theorem 3.1, we built a double category of
structured cospans from a bifibration Ψ: L/X→ A in a very similar way. We now show that under
certain conditions L is left adjoint to U . Whenever this happens, A/U is isomorphic to L/X, by
a simple and general fact about arrow categories. The bifibrations Φ and Ψ are also isomorphic.
Because Shulman’s construction in Lemma 2.3 is actually functorial, it follows that the double
category of decorated cospans is isomorphic to the double category of structured cospans.

The key issue is thus to determine when L is left adjoint to U . For this, let Rex be the 2-category
of categories with finite colimits, functors preserving finite colimits, and natural transformations.
Also let SymMonCat be the 2-category of symmetric monoidal categories, symmetric strong
monoidal functors and natural transformations. Recall that for us a category C ∈ Rex comes
with a choice of finite colimits, so it gives a specific cocartesian monoidal category (C,+), and this
induces a 2-functor Rex→ SymMonCat.

Our main result is this:

Theorem 4.1. Suppose A has finite colimits and F : (A,+) → (Cat,×) is a symmetric lax mo-
noidal pseudofunctor. If the corresponding pseudofunctor F : A→ SymMonCat from Lemma 2.4
factors through the above 2-functor Rex → SymMonCat, then the symmetric monoidal double
categories FCsp of decorated cospans and LCsp(∫F ) of structured cospans are isomorphic, where
L : A→ ∫F is a left adjoint of the induced Grothendieck opfibration U : ∫F → A.

The hypothesis of this theorem is essentially a way of asking that the fibers of the induced
opfibration U : ∫F → A have finite colimits which are preserved by the reindexing functors, and
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that the induced fiberwise monoidal structure is cocartesian. Expanding on this a bit: the fibers
of U are the same as the categories F (a) for all a ∈ A. The lax monoidal pseudofunctor structure
of F gives rise to a specific symmetric monoidal structure on each category F (a), as in (3). The
hypothesis of the theorem asks that the resulting pseudofunctor F : A → SymMonCat factors
through Rex. This implies that the symmetric monoidal structure on each category F (a) is
cocartesian.

It will be important to know that under the hypotheses of Theorem 4.1 the opfibration U
preserves all finite colimits. For this we need the following lemma.

Lemma 4.2 (Hermida). Suppose J is a small category and U : X → A is an opfibration where
the base A has J-colimits. Then the following are equivalent:

1. all fibers have J-colimits, and the reindexing functors preserve them;

2. the total category X has J-colimits, and U preserves them.

Moreover, if X has J-colimits and U preserves them, for any choice of J-colimits in A, they can be
chosen in X in such a way that U strictly preserves them.

Proof. See [29, Corollary 4.9], and for the final statement [29, Remark 4.11].

The first part of this lemma asserts the existence of colimits locally in each fiber, and if we let
J range over all finite categories it says that the corresponding pseudofunctor F : A → Cat lands
in the sub-2-category Rex. The second part formulates the existence of colimits globally in the
total category ∫F , and if we let J range over all finite categories it says that X has finite colimits
and U preserves all finite colimits.

Corollary 4.3. Suppose A has finite colimits and F : (A,+) → (Cat,×) is a symmetric lax
monoidal pseudofunctor for which the corresponding pseudofunctor F : A → SymMonCat from
Lemma 2.4 factors through Rex→ SymMonCat. Then ∫F has all finite colimits and the induced
opfibration U : ∫F → A preserves them. Moreover we can choose finite colimits in ∫F so that U
preserves them strictly.

In what follows we also need a left adjoint L to the opfibration U . The following result provides
sufficient conditions for that. Following Gray [26], we say a functor has a ‘left adjoint right inverse’
or lari if it has a left adjoint where the unit of the adjunction is the identity.

Lemma 4.4 (Gray). Let U : X→ A be an opfibration. Then U has a lari if its fibers have initial
objects that are preserved by the reindexing functors.

Proof. This is [26, Proposition 4.4]. Suppose each fiber Xa of the opfibration U has an initial
object ⊥a and these objects are preserved (up to isomorphism) by the reindexing functors. Define
L : A → X on objects a ∈ A by L(a) = ⊥a. Given a morphism f : a → a′ in A, define L(f) to be
the composite

⊥a
Cocart(f,⊥a)−−−−−−−−→ f!(⊥a) χa−−→ ⊥a′

where Cocart(f,⊥a) is the cocartesian lifting of f to ⊥a and χa is the unique isomorphism between
two initial objects in the fiber above a′. The functor L then becomes left adjoint to U with unit
ιa : a→ U(L(a)) being the identity, using the fact that U(L(a)) = U(⊥a) = a.

We now have all the necessary background to construct an isomorphism between the double
category of decorated cospans and the double category of structured cospans, starting from a
symmetric lax monoidal pseudofunctor F : (A,+)→ (Cat,×) whose corresponding pseudofunctor
F : A→ SymMonCat factors through Rex.

Proof of Theorem 4.1. Since we are assuming the pseudofunctor F : A → SymMonCat factors
through Rex, Corollary 4.3 implies that the Grothendieck construction gives rise to a category
∫F with finite colimits, and we can choose these in such a way that the corresponding opfibration
U : ∫F → A strictly preserves them. We do this in what follows.
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By Lemma 4.4, U has a left adjoint L : A→ ∫F with UL = 1A. Diagrammatically,

F : A→ Cat 7→
∫F

A
U

7→ A ∫F
L

⊥
U

describes the construction of the adjunction from the original F . Explicitly, the left adjoint maps
each object a ∈ A to the initial object in its fiber Xa, namely L(a) = (a, Ia), where Ia is defined as
in (3).

As a left adjoint, L preserves all colimits that exist between the categories A and ∫F , which
have finite colimits. Thus, we can construct the symmetric monoidal double category of structured
cospans LCsp(∫F ) as in Theorem 3.1. To show that this is isomorphic to the symmetric monoidal
double category of decorated cospans FCsp given by Theorem 2.2, we use a result of Shulman [44,
Theorem 14.11]. Namely, the Fr construction of Lemma 2.3 extends to a 2-functor

Fr : BCMF→ FDbl

where BCMF is the 2-category consisting of

• Beck–Chevalley monoidal bifibrations,

• strong monoidal morphisms of bifibrations, and

• monoidal transformations of bifibrations

while FDbl is the 2-category of

• fibrant double categories,

• double functors, and

• double transformations.

Given two monoidal bifibrations Φ: A → B and Φ′ : A′ → B′, a ‘strong monoidal morphism of
bifibrations’ from Φ to Φ′ consists of a pair of strong monoidal functors F1 and F2 making the
following square commute

A A′

B B′

F1

Φ Φ′

F2

not just as functors but as strong monoidal functors. In our case the two monoidal bifibrations
are the functors Φ and Ψ of Theorems 2.2 and 3.1, respectively. These share A as a common base,
so we only need a single strong monoidal functor F : A/U → L/X making this diagram of strong
monoidal functors commute:

A/U L/X

A.

F

Φ Ψ

There is an isomorphism F : A/U → L/X arising from the fact that U is right adjoint to L. It is
clear that F is strong monoidal via componentwise binary coproducts which are preserved by both
L and U , and that ΨF = Φ as strong monoidal functors. As F is an isomorphism, we obtain an
isomorphism

Fr(F ) : Fr(Φ)→ Fr(Ψ)
between the two monoidal double categories Fr(Φ) = FCsp and Fr(Ψ) = LCsp(∫F ) of Theorems
2.2 and 3.1, respectively. One can check by hand that this isomorphism is symmetric monoidal.
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Given the hypothesis of Theorem 4.1, the isomorphism Fr(F ) between decorated and structured
cospans works concretely as follows. First recall that X = ∫F , so that an object of X is a pair (a, s)
with a ∈ A and s ∈ F (a). The functor U : X→ A maps (a, s) to a. Its left adjoint L : A→ X maps
a ∈ A to (a, Ia), where Ia ∈ F (a) is the trivial decoration given by the composite

1 φ0−→ F (0) F (!a)−−−→ F (a).

The object L(a) = (a, Ia) is the initial object in the fiber of ∫F over a.
The isomorphism Fr(F ) : FCsp→ LCsp(∫F ) is the identity on objects and vertical morphisms,

which are just objects and morphisms of A. It maps the decorated cospan

a m b, s ∈ F (m)i o

to the structured cospan

(a, Ia) (m, s) (b, Ib).
(i, !) (o, !)

where ! : F (i)(Ia) → s is the unique morphism with this domain and codomain (recall that F (i)
preserves initial objects), and similarly for ! : F (o)(Ib)→ s. Finally, Fr(Φ) sends a map of decorated
cospans:

a

a′

m b

b′m′

s ∈ F (m)

s′ ∈ F (m′)

τ : F (h)(s)→ s′

i o

f g

i′ o′

h

to this map of structured cospans:

(a, Ia)

(a′, Ia′)

(m, s) (b, Ib)

(b′, Ib′).(m′, s′)

(i, !) (o, !)

L(f) L(g)

(i′, !) (o′, !)

(h, τ)

5 Bicategorical and categorical aspects
While double categories are a natural context for studying cospans, bicategories are more familiar—
and of course, categories are even more so! Luckily, all our results phrased in the language of double
categories have analogues for bicategories and categories. We explain those here.

As discussed for example by Shulman [44], any double category D has a horizontal bicategory,
denoted D, in which:

• objects are objects of D,

• morphisms are horizontal 1-cells of D,

• 2-morphisms are globular 2-morphisms of D, meaning 2-morphisms whose source and target
vertical 1-morphisms are identities,

• composition of morphisms is given by composition of horizontal 1-cells in D,

• vertical and horizontal composition of 2-morphisms are given by vertical and horizontal
composition of 2-morphisms in D.

The bicategory D has a decategorification, a category D in which:

• objects are objects of D,
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• morphisms are isomorphism classes of morphisms of D.

Thus, the double category FCsp of structured cospans constructed in Theorem 2.1 automatically
gives rise to a bicategory FCsp, and a category FCsp. In Theorem 2.2 we gave conditions under
which the double category FCsp becomes symmetric monoidal. We would like the bicategory
FCsp and the category FCsp to become symmetric monoidal under the same conditions, and
indeed this is true.

A double category is ‘fibrant’ if every vertical 1-morphism has a ‘companion’ and a ‘conjoint’—
concepts explained in Definition A.10. Shulman (Theorem A.12) proved that when a double
category D is fibrant, any symmetrical monoidal structure on D gives one on D. We can apply
this to decorated cospans as follows:

Lemma 5.1. Given a category A with finite colimits and a lax monoidal pseudofunctor (F, φ, φ0) : (A,+)→
(Cat,×), the double category FCsp is fibrant.

Proof. We show that any vertical 1-morphism f : a→ b in FCsp has a companion and a conjoint.
First, we can make this horizontal 1-cell f̂ :

a b b Ib ∈ F (b),
f 1

where Ib is the trivial decoration given by

1 φ0−→ F (0A) F (!b)−−−→ F (b),

into a companion of f using the following 2-morphisms:

a

b

b b

bb

Ib ∈ F (b)

Ib ∈ F (b)

a a a

a b b

Ia ∈ F (a)

Ib ∈ F (b)

τ1b = 1Ib τf : F (f)(Ia)→ Ib

f 1

f 1

1 1

1

1

1 f

f

1

f

1

where the decoration morphism τf is the isomorphism given by pseudofunctoriality of F :

1 F (0)

F (a)

F (b)

∼=
φ0

F (!a)

F (!b)

F (f)

These 2-morphisms satisfy the equations (9) required of a companion, involving vertical and hori-
zontal composition of 2-morphisms in this double category:

a a aIa ∈ F (a)

a

b

b b

bb

Ib ∈ F (b)

Ib ∈ F (b)

a a a

b b b

Ia ∈ F (a)

Ib ∈ F (b)

τf : F (f)(Ia)→ Ib

τ1b = 1Ib

τf : F (f)(Ia)→ Ib

=

1 1

1 f f

f 1

f 1

1 1

1

1

f f

1

1

f

1
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a

b

a

a

a

b

b b

bb

Ib∈F (b)

Ib∈F (b)

τb=1Ib

Ia∈F (a)

Ib∈F (b)

τf : F (f)(Ia)→Ib

=

a

b

b b

b

Ib∈F (b)Ia∈F (a)

Ib∈F (b)
τρ
f̂

: (Ib�Ia)→Ib
a b b

Ib∈F (b)
τλ
f̂

: (Ib�Ib)→Ib

aa

a

1

1

f

1

1 1 1

f 1

f 1

f 1

1

f 1

f 1

1 1

1

1

f

1f

1

1

Note that the right hand side of the first equation is Uf , while the second equation involves the
left and right unitors for �: these are maps from a horizontal composite of two decorated cospans
to a single decorated cospan. The conjoint of f is given by this horizontal 1-cell f̌ , which is just
the opposite of the companion above:

b b a Ib ∈ F (b).1 f

Just as f̂ obeys the equations required of a companion, f̌ obeys the equations required of a conjoint
with similar structure 2-morphisms to those of a companion above.

Theorem 5.2. Let A be a category with finite colimits and F : (A,+)→ (Cat,×) a symmetric lax
monoidal pseudofunctor. Then there exists a symmetric monoidal bicategory FCsp in which:

1. objects are those of A,

2. morphisms are F -decorated cospans:

a m b s ∈ F (m),i o

3. a 2-morphism is a map of cospans in A

a

m

b

m′

s ∈ F (m)

s′ ∈ F (m′)

i o

i′

h

o′

together with a morphism τ : F (h)(s)→ s′ in F (m′).

Proof. This follows by applying Theorem A.12 to the fibrant symmetric monoidal double category
FCsp.

This symmetric monoidal bicategory FCsp generalizes one constructed by the second author
[15]. We can decategorify FCsp to obtain a symmetric monoidal category of decorated cospans
generalizing those considered by Fong [19]:

Corollary 5.3. Let A be a category with finite colimits and F : (A,+) → (Cat,×) a symmetric
lax monoidal pseudofunctor. Then there exists a symmetric monoidal category FCsp in which:

1. objects are those of A
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2. morphisms are isomorphism classes of F -decorated cospans of A, where two F -decorated
cospans

a m b s ∈ F (m)i o

a m′ b s′ ∈ F (m′)
i′ o′

are isomorphic if and only if there exists an isomorphism f : m→ m′ in A such that following
diagram commutes:

a

m

m′

b

i′ o′

i o

f

and there exists an isomorphism τ : F (f)(s)→ s′ in F (m′).

In Theorem 4.1 we gave conditions under which the symmetric monoidal double category of
decorated cospans FCsp is isomorphic to the symmetric monoidal double category of structured
cospans LCsp(∫F ). We now show that under the same conditions we get an isomorphism of
symmetric monoidal bicategories, and of categories.

Theorem 5.4. Suppose A has finite colimits and F : (A,+)→ (Cat,×) is a symmetric lax mono-
idal pseudofunctor that factors through Rex as an ordinary pseudofunctor. Define the symmetric
monoidal bicategory LCsp(∫F ) as in Theorem 4.1. Then there is an isomorphism of symmetric
monoidal bicategories

FCsp ∼= LCsp(∫F )

and of symmetric monoidal categories

FCsp ∼= LCsp(∫F ).

Proof. Hansen and Shulman [28] showed that the passage from symmetric monoidal double cate-
gories to symmetric monoidal bicategories is functorial in a suitable sense. This implies that an
isomorphism of symmetric monoidal double categories D ∼= D′ gives an isomorphism of symmetric
monoidal bicategories D ∼= D′. Since the process of decategorifying a bicategory merely discards
2-morphisms and takes isomorphism classes of 1-morphisms, the isomorphism of symmetric monoi-
dal bicategories D ∼= D′ in turn induces an isomorphism of symmetric monoidal categories D ∼= D′.
Thus, the theorem follows from Theorem 4.1.

6 Applications
Thinking about systems and processes categorically dates back to early works by Lawvere [35],
Bunge–Fiore [13], Joyal–Nielsen–Winskel [31], Katis–Sabadini–Walters [32] and others. Spivak
and others have used wiring diagrams and sheaves to capture compositional features of dynamical
systems [10, 42, 46]. Another approach uses signal flow diagrams and other string diagrams [5, 11,
21] to understand systems behaviorally, following ideas of Willems [48].

Decorated cospans were introduced by Fong [19, 20] to describe open systems as cospans
equipped with extra data. They were then applied to open electrical circuits [6], Markov pro-
cesses [7], and chemical reaction networks [9]. Unfortunately, some of these applications were
marred by technical flaws, which were later fixed using structured cospans [3]. Here we explain
how they can also be fixed using our new decorated cospans. We compare the two approaches in
applications to graphs, electrical circuits, Petri nets, reaction networks and dynamical systems.

In some cases, Theorem 4.1 shows that the structured and decorated cospan approaches are
equivalent: Sections 6.1 to 6.3 illustrate this. However, in some cases decorated cospans appear to
be necessary, and in Section 6.4 we explain why Theorem 4.1 does not apply to open dynamical
systems.
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6.1 Graphs
One of the simplest kinds of network is a graph. For us a graph will be a pair of functions
s, t : E → N where E and N are finite sets. We call elements of E edges and elements of N
nodes. There is a category Graph where the objects are graphs and a morphism from the graph
s, t : E → N to the graph s′, t′ : E′ → N ′ is a pair of functions f : N → N ′, g : E → E′ such that
these diagrams commute:

E

E′

N

N ′

s

s′

g f

E

E′

N

N ′.

t

t′

g f

We can easily build a double category with ‘open graphs’ as horizontal 1-cells using the ma-
chinery of structured cospans [3, Section 5]. Let L : FinSet → Graph be the functor that assigns
to a finite set N the discrete graph on N : the graph with no edges and N as its set of vertices.
Both FinSet and Graph have finite colimits, and the functor L : FinSet → Graph is left adjoint to
the forgetful functor R : Graph → FinSet that assigns to a graph G its underlying set of vertices
R(G). Thus, using structured cospans and appealing to Theorem 3.1, we get a symmetric monoidal
double category LCsp(Graph) in which:

• objects are finite sets,

• a vertical 1-morphism from X to Y is a function f : X → Y ,

• a horizontal 1-cell from X to Y is an open graph from X to Y , meaning a cospan in Graph
of this form:

L(X) G L(Y ),i o

• a 2-morphism is a commuting diagram in Graph of this form:

L(X) G L(Y )

L(X ′) G′ L(Y ′).

i o

i′ o′

L(f) α L(g)

Here is an example of an open graph:

•
n1

•
n2

•
n3

•
n4

e1

e2

e3

e4

e51 2

X Y

We can also build a double category with open graphs as horizontal 1-cells using decorated
cospans. For any finite set N , there is a category F (N) where:

• an object is a graph structure on N : that is, a graph s, t : E → N ,

• a morphism from s, t : E → N to s′, t′ : E′ → N is a morphism of graphs that is the identity
on N : that is, a function g : E → E′ such that these diagrams commute:

E

E′

N

s

s′

g

E

E′

N .

t

t′

g
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In general, decorated cospans involve a pseudofunctor to Cat, but in this example there is
actually an honest functor F : Set→ Cat that assigns to a set N the above category F (N). Given
a function f : M → N , we define F (f) : F (M) → F (N) as the functor that maps any graph
structure s, t : E →M to the graph structure fs, ft : E → N .

We can make F into a symmetric lax monoidal pseudofunctor F : (FinSet,+) → (Cat,×) by
equipping it with suitable functors

φN,N ′ : F (N)× F (N ′)→ F (N +N ′), φ0 : 1→ F (∅).

The functor φ0 is uniquely determined since F (∅) is the terminal category. More interesting is
φN,N ′ . This functor maps a pair of graph structures s, t : E → N and s′, t′ : E′ → N ′ to the graph
structure s + s′, t + t′ : E + E′ → N + N ′. In other words, it sends a pair of graph structures to
their ‘disjoint union’. Surprisingly, though F is a functor, this choice of φN,N ′ does not make F
into a symmetric lax monoidal functor, but only a symmetric lax monoidal pseudofunctor, since it
obeys the required laws only up to natural isomorphism, as in (5). See [3, Section 5] for a proof
that these laws fail to hold on the nose. This fact is what necessitated a generalization of Fong’s
original approach to decorated cospans.

It is well known, and easy to check, that the Grothendieck category ∫F is isomorphic to the
category Graph. The other side of this observation is that the opfibration U : ∫F → FinSet is
isomorphic to the forgetful functor R : Graph→ FinSet. In fact one can check that U : ∫F → FinSet
and R : Graph→ FinSet are isomorphic as symmetric monoidal opfibrations, where all the categories
involved are given cocartesian monoidal structures.

Starting from the symmetric lax monoidal pseudofunctor F : (FinSet,+) → (Cat,×), Theo-
rem 2.2 gives us a symmetric monoidal double category FCsp in which:

• objects are finite sets,

• a vertical 1-morphism from X to X ′ is a function f : X → X ′,

• a horizontal 1-cell from X to Y is a pair

X N Y G ∈ F (N)i o

which can also be thought of as an open graph from X to Y ,

• a 2-morphism

X N Y

X ′ Y ′N ′

G ∈ F (N)

G′ ∈ F (N ′)

i o

f g

o′i′

h

is a commuting diagram in FinSet together with a morphism τ : F (h)(G)→ G′ in F (N ′).

We thus have two symmetric monoidal double categories: LCsp(Graph) obtained from struc-
tured cospans and FCsp obtained from decorated cospans. Each of these double categories has
FinSet as its category of objects, open graphs as horizontal 1-cells, and maps of open graphs as
2-morphisms. This suggests that LCsp(Graph) and FCsp are isomorphic as symmetric monoidal
double categories—and indeed this follows from Theorem 4.1.

6.2 Circuits
Structured and decorated cospans are a powerful tool for studying categories where the morphisms
are electrical circuits—see [3, Section 6.1] and [4, 6]. The key idea is to use open graphs with
labeled edges to describe circuits, where the labels can stand for resistors with any chosen resistance,
capacitors with any chosen capacitance, or other circuit elements. The whole theory of open graphs
discussed in the previous section can be recapitulated for labeled graphs. Since the abstract
formalism works the same way, we can be brief. Concrete applications of this formalism are
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discussed in the above references, and in [7] a class of Markov processes were also handled using
this formalism, by reducing them to circuits of resistors.

Fix a set L to serve as edge labels. Define an L-graph to be a graph s, t : E → N equipped
with a function ` : E → L. There is a category GraphL where the objects are L-graphs and a
morphism from the L-graph

L E
s //

t
//

`oo N

to the L-graph

L E′
s′ //

t′
//

`′oo N ′

is a pair of functions f : N → N ′, g : E → E′ such that these diagrams commute:

E

E′

N

N ′

s

s′

g f

E

E′

N

N ′

t

t′

g f L

E

E′.

`

g

`′

There is a functor U : GraphL → FinSet that takes an L-graph to its underlying set of nodes. This
has a left adjoint L : FinSet → GraphL sending any set to the L-graph with that set of nodes and
no edges. Both FinSet and GraphL have colimits, and L preserves them.

This sets the stage for structured cospans: Theorem 3.1 gives us a symmetric monoidal double
category LCsp(GraphL) where a horizontal 1-cell is an open L-graph, also called an L-circuit:
that is, a cospan in GraphL of this form:

L(X) G L(Y ).i o

For example, here is a L-circuit with L = (0,∞):

•

•

•

•

•

2.53

0.71

9.6

1.02

12.4 6.3

X Y

The edges here represent wires, with the positive real numbers labeling them serving to describe
the resistance of resistors on the wires. The elements of the sets X and Y represent ‘terminals’:
that is, points where we allow ourselves to attach a wire from another circuit.

We can now also describe L-circuits using our new approach to decorated cospans. There is a
symmetric lax monoidal pseudofunctor F : (FinSet,+) → (Cat,×) such that for any finite set N ,
the category F (N) has:

• objects being L-graph structures on N : that is, L-graphs where the set of nodes is N ,

• morphisms being morphisms of L-graphs that are the identity on the set of nodes.

This gives a symmetric monoidal double category FCsp, and using Theorem 4.1 we can show that
this is isomorphic, as a symmetric monoidal double category, to LCsp(GraphL).
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6.3 Petri nets
Petri nets are widely used as models of systems in engineering and computer science [22, 39].
Structured cospans have been used to define a symmetric monoidal double category of ‘open Petri
nets’ [8], which lets us build large Petri nets out of smaller pieces. We can also use decorated
cospans to create a double category of open Petri nets. Again this example is very similar to the
example of open graphs.

A Petri net is a pair of finite sets S and T and functions s, t : T → N[S]. Here S is the set of
places, T is the set of transitions, and N[S] is the underlying set of the free commutative monoid
on S. Each transition thus has a formal sum of places as its source and target as prescribed by
the functions s and t, respectively. Here is an example:

H

O

α H2O

This Petri net has a single transition α with 2H + O as its source and H2O as its target.
There is a category Petri with Petri nets as objects, where a morphism from the Petri net

s, t : T → N[S] to the Petri net s′, t′ : T ′ → N[S′] is a pair of functions f : S → S′, g : T → T ′ such
that the following diagrams commute:

T

g

��

s // N[S]

N[f ]
��

T ′
s′
// N[S′]

T

g

��

t // N[S]

N[f ]
��

T ′
t′
// N[S′].

There is a functor R : Petri→ FinSet sending any Petri net to its set of places, and this has a left
adjoint L : FinSet→ Petri sending any finite set S to the Petri net with S as its set of places and no
transitions [8, Lemma 11]. Since both FinSet and Petri have finite colimits and L preserves them,
Theorem 3.1 yields a symmetric monoidal double category LCsp(Petri) in which:

• objects are finite sets,

• vertical 1-morphisms are functions,

• horizontal 1-cells are open Petri nets, which are cospans in Petri of the form:

L(X) P L(Y )i o

• 2-morphisms are diagrams in Petri of the form:

L(X) L(Y )P

L(X ′) L(Y ′).P ′

o

L(f) L(g)α

i

i′ o′

We can equivalently describe open Petri nets using decorated cospans. This works very much
like the previous examples. There is a symmetric lax monoidal pseudofunctor F : (FinSet,+) →
(Cat,×) such that for any finite set S, the category F (S) has:

• objects given by Petri nets whose set of places is S,
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• morphisms given by morphisms of Petri nets that are the identity on the set of places.

This gives a symmetric monoidal double category FCsp, and using Theorem 4.1 we can show that
this is isomorphic, as a symmetric monoidal double category, to LCsp(Petri).

The machinery of structured cospans has been used to provide a semantics for open Petri nets
[8]: a symmetric monoidal double functor from LCsp(Petri) to a symmetric monoidal double cate-
gory of ‘open commutative monoidal categories’. Presumably this double functor can equivalently
be obtained using the machinery of decorated cospans, with the help of Theorem 2.5. However, it
should be clear by now that so far, in cases where either structured or decorated cospans can be
used, structured cospans are simpler. We next turn to an example where decorated cospans are
necessary.

6.4 Petri nets with rates
In chemistry, population biology, epidemiology and other fields, modelers use ‘Petri nets with rates’,
where the transitions are labeled with nonnegative real numbers called ‘rate constants’ [27, 34, 47].
From any Petri net with rates one can systematically construct a dynamical system. Mathematical
chemists have proved deep theorems relating the topology of Petri nets with rates to the qualitative
behavior of their dynamical systems [17].

Pollard and the first author showed how to construct an open dynamical system from any
open Petri net with rates, thus defining a functor from a category with open Petri nets with rates
as morphisms to one with open dynamical systems as morphisms [9]. They used Fong’s original
decorated cospans to do this. Here we show we show how to promote these categories to double
categories using our new approach to decorated cospans.

First, to briefly illustrate these ideas, here is an open Petri net with rates:

S

I
R

r1

r2

i1

i2

i3

o1

X Y

It is an open Petri net where the transitions are labeled with rate constants r1, r2 ≥ 0. Here is the
corresponding open dynamical system:

dS(t)
dt

= −r1 S(t)I(t) + I1(t) + I2(t)

dI(t)
dt

= r1 S(t)I(t)− r2 I(t) + I3(t)

dR(t)
dt

= r2 I(t)−O1(t).

(4)

Here I1(t), I2(t), I3(t) and O1(t) are arbitrary smooth functions of time, which describe inflows and
outflows at the points i1, i2, i3 ∈ X and o1 ∈ Y . If we drop these inflow and outflow terms, we obtain
a dynamical system: an autonomous system of coupled nonlinear first-order ordinary differential
equations. In fact these equations are a famous model of infectious disease, the ‘SIR model’, where
S(t), I(t) and R(t) describe the populations of susceptible, infected and recovered individuals,
respectively. The inflow and outflow terms allow individuals to enter or leave the population. This
in turn lets us couple the SIR model to other models, and build larger models from smaller pieces.
Indeed, a group of researchers has recently used open Petri nets and the mathematics of structured
cospans in their software tool for building and manipulating epidemiological models [1, 2].

Now we turn to the details. A Petri net with rates is a Petri net s, t : T → N[S] together
with a function r : T → [0,∞) assigning to each transition τ ∈ T a nonnegative real number called
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its rate constant. There is a category Petrir whose objects are Petri nets with rates, where a
morphism from

[0,∞) T
roo

t
//

s // N[S]

to

[0,∞) T ′
r′oo

t′
//

s′ // N[S′]

is a morphism of the underlying Petri nets whose map g : T → T ′ obeys

r′(τ ′) =
∑

{τ∈T :g(τ)=τ ′}

r(τ)

for all τ ′ ∈ T ′. This definition was suggested by Sophie Libkind; it agrees with the earlier definition
[9] in the case of isomorphisms, but not in general, and the difference is important here.

We can describe open Petri nets with rates using decorated cospans. There is a symmetric lax
monoidal pseudofunctor F : (FinSet,+) → (Cat,×) such that for any finite set S, the category
F (S) has:

• objects given by Petri nets with rates whose set of places is S,

• morphisms given by morphisms of Petri nets with rates that are the identity on the set of
places.

This gives a symmetric monoidal double category FCsp where the horizontal 1-cells are called
open Petri nets with rates.

There is also a symmetric monoidal double category of open dynamical systems. A dynamical
system is a vector field, thought of as giving a system of first-order ordinary differential equations.
A Petri net with rates gives a special sort of dynamical system: an algebraic vector field on RS
for some finite set S, meaning a vector field whose components are polynomials in the coordinates.
We shall think of such a vector field as a special sort of function v : RS → RS .

Using Fong’s original approach to decorated cospans, Pollard and the first author constructed
a symmetric monoidal category for which the morphisms are open dynamical systems [9, Theorem
17]. This category is constructed from a symmetric lax monoidal functor D : FinSet → Set such
that:

• D maps any finite set S to

D(S) = {v : RS → RS | v is algebraic}.

• D maps any function f : S → S′ between finite sets to the function D(f) : D(S) → D(S′)
given as follows:

D(f)(v) = f∗ ◦ v ◦ f∗

where the pullback f∗ : RS′ → RS is given by

f∗(c)(σ) = c(f(σ))

while the pushforward f∗ : RS → RS′ is given by

f∗(c)(σ′) =
∑

{σ∈S:f(σ)=σ′}

c(σ).

The functorality of D is proved in [9, Lemma 15] while the symmetric lax monoidal stucture is
given in Lemma 16 of that paper.

Since every set gives a discrete category with that set of objects, we can reinterpret D as a
symmetric lax monoidal pseudofunctor D : (FinSet,+)→ (Cat,×) which happens to actually be a
functor. Applying Theorem 2.2 we obtain a symmetric monoidal double category DCsp where:

• objects are finite sets,
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• vertical 1-morphisms are functions,

• a horizontal 1-cell from X to Y is an open dynamical system, that is, a cospan

X S Y
i o

in FinSet together with an algebraic vector field v ∈ D(S),

• a 2-morphism from

X S Y, v ∈ D(S)i o

to

X ′ S′ Y ′ v′ ∈ D(S′)i′ o′

is a diagram

X YS

X ′ Y ′S′

o

f gh

i

i′ o′

in FinSet such that D(h)(v) = v′.

Next, we can define a symmetric monoidal double functor

� : FCsp→ DCsp

sending any open Petri net with rates to its corresponding open dynamical system. This was
already defined at the level of categories by Pollard and the first author [9, Section 7], who called
it ‘gray-boxing’. To boost this result to the double category level we use Theorem 2.5, taking the
square in that theorem to be

FinSet Cat

FinSet Cat.

⇓ θ

F

1 1

D

Here θ is given as follows. For any finite set S, θS : F (S)→ D(S) maps any Petri net with rates

[0,∞) T
roo

t
//

s // N[S]

to an algebraic vector field on RS , say v. This vector field is defined using a standard prescription
taken from chemistry, called ‘the law of mass action’. Namely, for any c ∈ Rs, we set

v(c) =
∑
τ∈T

r(τ) (t(τ)− s(τ))cs(τ)

where
cs(τ) =

∏
i∈S

ci
s(τ)i

and we think of t(τ), s(τ) ∈ N[S] as vectors in RS . This formula is explained in the paper with
Pollard [9]. Using the new definition of morphisms in F (S), one can check that θ extends to a
monoidal natural transformation between the functors F,D : (FinSet,+) → (Cat,×). Thus, it
defines a symmetric monoidal double functor � : FCsp→ DCsp.

In applications, this double functor lets us turn an open Petri net with rates into an open
dynamical system as follows. Given a Petri net with rates and defining v as above, we obtain

Accepted in Compositionality on 2022-02-14. Click on the title to verify. 29



Volume 4 Issue 3 ISSN 2631-4444

a system of first-order ordinary differential equations for a function c : R → RS called the rate
equation:

d

dt
c(t) = v(c(t)).

More generally, given an open Petri net with rates

X S Y, P ∈ F (S)i o

we get an equation called the open rate equation:

d

dt
c(t) = v(c(t)) + i∗(I(t))− o∗(O(t))

where v is defined as above and I : R → RX and O : R → RY are arbitrary smooth functions
describing inflows and outflows, respectively. Applying this prescription to the open Petri net
with rates shown at the start of this section one gets the differential equations (4). Other examples
are worked out in [9].

We now show that the decorated cospan double category DCsp of open dynamical systems
is not isomorphic to a structured cospan double category via Theorem 4.1. Recall that in this
theorem we start with the data required to build a decorated cospan category, namely a symmetric
lax monoidal pseudofunctor F : (A,+) → (Cat,×), and show that if the resulting pseudofunctor
F : A → SymMonCat factors through Rex, then the opfibration U : X = ∫F → A has a left
adjoint L : A → X. We then obtain an isomorphism between decorated and structured cospan
double categories, FCsp ∼= LCsp(X). We now show that in the case at hand, where F = D is the
functor sending each finite set S to the set of dynamical systems on RS , the opfibration U does
not have a left adjoint. Thus, the conditions of Theorem 4.1 cannot hold in this case: F does not
factor through Rex.

Taking D as above, it is easy to see that in the category ∫D

• an object is a pair (S, v) where S is a finite set and v is an algebraic vector field v : RS → RS ,

• a morphism from (S, v) to (S′, v′) is a function f : S → S′ such that v′ = f∗ ◦ v ◦ f∗

with the usual composition of functions. The forgetful functor U : ∫D → FinSet acts as follows:

• on objects, D(S, v) = S,

• on morphisms, D(f) = f .

To show that U does not have a left adjoint, we use a known result [41, Lemma 4.6.1]:

Lemma 6.1. A functor U : A→ X admits a left adjoint if and only if for every x ∈ X, the comma
category x ↓ U has an initial object.

Because the empty set is initial in FinSet, the comma category ∅ ↓ U is just ∫D. This contains
an object (∅, v∅), where v∅ is the only possible vector field on R∅, namely, the zero vector field.
The only object in ∫D with any morphisms to (∅, v∅) is (∅, v∅) itself, so no other object can be
initial. However (∅, v∅) is not initial either, because it has no morphisms to an object (S, v) unless
v is the zero vector field on RS . Thus by Lemma 6.1, U does not have a left adjoint.

7 Conclusions
We have given conditions under which a decorated cospan double category is isomorphic to a
structured cospan double category, in Theorem 4.1. The converse question is also interesting:
is every structured cospan double category isomorphic to a decorated cospan double category?
The answer is similar to the previous one: yes, under certain conditions that let us pass from an
appropriate functor L : A→ X to an appropriate pseudofunctor F : A→ Cat.

Let us now sketch the story; details will appear in a forthcoming paper [14]. Suppose the condi-
tions hold for constructing the double category of structured cospans LCsp(X) as in Theorem 3.1.
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That is, suppose A and X have finite colimits and L : A→ X preserves them. If L also has a right
adjoint ‘left inverse’ (meaning the unit is the identity) U : X→ A, which moreover strictly preserves
the chosen pushouts, it can be shown that U is an opfibration. Consequently, U corresponds to a
pseudofunctor F : A→ Cat by the inverse Grothendieck construction, as in the first part of The-
orem A.2. Furthermore, if U preserves finite coproducts, F acquires the structure of a symmetric
lax monoidal pseudofunctor F : (A,+)→ (Cat,×) by the special case of the cocartesian monoidal
Grothendieck construction discussed under Lemma 2.4. As a result, F now has enough structure
to induce a double category of decorated cospans FCsp as in Theorem 2.2. Finally, it can be
shown that the structured and decorated cospan double categories are isomorphic as symmetric
monoidal double categories: LCsp(X) ∼= FCsp.

To give a better sense of how the pseudofunctor F : A → Cat is constructed: for each object
a ∈ A, F (a) is defined to be the fiber of U over a, namely the category of all objects in x ∈ X such
that U(x) = a and morphisms k : x→ y such that U(k) = 1a. Given a morphism f : a→ b, there
is a functor F (f) : F (a)→ F (b) that maps x ∈ F (a) to the following pushout:

La Lb

x x+La Lb in X

a b in A

Lf

εx p

f

where εx : LU(x) = L(a) → x is the counit of the adjunction L a U . The fact that U strictly
preserves pushouts is necessary to show that the pushout is mapped, via U , directly down to b.

Even though for both Theorem 4.1 and the above result the conditions stated are only sufficient,
they suggest that with work we could establish this functorial picture:

Lax monoidal pseudofunctors
(A,+)→ (Cat,×)

Symmetric monoidal
double categories

Special opfibrations

Special laris

Finite colimit preserving
functors A→ X

'

F 7→ FCsp

L 7→
L
Csp(X)

with a natural isomorphism in the middle. The connection between opfibrations and laris goes
back to Gray’s Lemma 4.4, but we need to specialize it to a class suitable for both the structured
and decorated cospan constructions. This would imply that starting from an appropriate middle
ground, these two constructions are essentially the same. We leave such considerations for future
work.

Finally, it is worth mentioning a structured cospan double category to which the argument
sketched above does not apply. For any functor φ : C→ D between small categories, precomposition
with φ gives a functor R : D̂ → Ĉ between presheaf categories which has a left adjoint L : Ĉ →
D̂. Since presheaf categories have all small colimits and L preserves them, the conditions of
Theorem 3.1 apply and we obtain a symmetric monoidal double category of structured cospans,

LCsp(D̂). However, the right adjoint R is not always an opfibration—and when it is not, the above

arguments cannot be used to show that LCsp(D̂) is a decorated cospan double category. A simple
example where R is not an opfibration was provided to us by Morgan Rogers. Take φ : 1 + 1→ 1
to be the unique functor where 1 is the terminal category. Then R : Set → Set2 is the diagonal,
and the morphism (0, 0) → (0, 1) in Set2 admits no lift at all to 0 ∈ Set. It will be interesting to

find conditions on φ : C→ D that guarantee LCsp(D̂) is isomorphic to a decorated double cospan
category.
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Appendix

A Definitions
In this appendix, we gather some well-known concepts required to make the material self-contained,
as well as references to more detailed expositions.

A.1 Bicategories
For standard 2-categorical material, we refer the reader to [33]. For monoidal 2-categories see
[18], and for detailed definitions concerning monoidal bicategories see [23, 36, 45]. Briefly, a
monoidal bicategory A comes with a pseudofunctor ⊗ : A×A→ A and a unit object I that are
associative and unital up to coherent equivalence. A braided monoidal bicategory also comes with
a pseudonatural equivalence βa,b : a⊗ b→ b⊗ a and appropriate invertible modifications obeying
certain equations; it is sylleptic if there is an invertible modification 1a⊗b V βb,a ◦ βa,b obeying
its own equation, and symmetric if one further axiom holds.

A lax monoidal pseudofunctor (called weak monoidal homomorphism in some earlier refer-
ences) between monoidal bicategories F : A→ B is a pseudofunctor equipped with pseudonatural
transformations with components φa,b : Fa⊗Fb→ F (a⊗ b) and φ0 : I → FI along with invertible
modifications for associativity and unitality with components

(Fa⊗ Fb)⊗ Fc F (a⊗ b)⊗ Fc

Fa⊗ (Fb⊗ Fc) F ((a⊗ b)⊗ c)

Fa⊗ F (b⊗ c) F (a⊗ (b⊗ c))

∼=

φa,b⊗1

∼
φa⊗b,c

1⊗φb,c

∼

φa,b⊗c

(5)

Fa Fa⊗ I Fa⊗ FI

F (a⊗ I)

∼

∼

1⊗φ0

∼= φa,I

Fa I ⊗ Fa FI ⊗ Fa

F (I ⊗ a)

∼

∼

φ0⊗1

∼= φI,a

subject to coherence conditions listed in [18, Definition 2]. In particular, pseudonaturality of the
monoidal structure means that it comes with isomorphisms of this form:

Fa⊗ Fb Fa′ ⊗ Fb′

F (a⊗ b) F (a′ ⊗ b′)

Ff⊗Fg

φa,b
φf,g∼= φa′,b′

F (f⊗g)

(6)

natural in f and g. A braided lax monoidal pseudofunctor between braided monoidal bicate-
gories comes with an invertible modification with components

Fa⊗ Fb F (a⊗ b)

Fb⊗ Fa F (b⊗ a)

φa,b

βFa,Fb
ua,b∼= F (βa,b)

φb,a

(7)

subject to two axioms found e.g. in [18, Definition 14]. A sylleptic lax monoidal pseudofunctor
satisfies one extra condition and a symmetric lax monoidal pseudofunctor between symmetric
monoidal bicategories is just a sylleptic one.
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A.2 Fibrations and opfibrations
Basic material regarding the theory of fibrations can be found, for example, in [12, 26]. Recall that
a functor U : X → A is an opfibration if for every x ∈ X with U(x) = a and f : a → b in A, there
exists a cocartesian lifting of f to x, namely a morphism β in X with domain x with U(β) = f and
the following universal property: for any g : b → b′ in A and γ : x → y′ in X above the composite
g ◦ f , there exists a unique δ : y → y′ such that U(δ) = g and γ = δ ◦ β as shown below.

y′

��

in X

x
β

//

��

γ
22

y

��

∃!δ

55

b′

a
f=U(β)

//

g◦f=U(γ) 22

b
g

55

in A

The category X is called the total category and A is called the base category of the opfibration.
For any a ∈ A, the fiber above a is the category Xa consisting of all objects that map to a and
vertical morphisms between them, i.e., morphisms mapping to 1a.

Assuming the axiom of choice, we may select a cocartesian lifting of each morphism f : a→ b in
A to each x ∈ Xa, denoted by Cocart(f, x) : x→ f!(x), rendering U a so-called cloven opfibration.
This choice induces reindexing functors f! : Xa → Xb between the fibers, which by the lifting’s
universal property come equipped with natural isomorphisms (1a)! ∼= 1Xa and (f ◦ g)! ∼= f! ◦ g!.
With the help of these, any cloven opfibration U : X → A gives a pseudofunctor F : A → Cat,
where A is viewed as a 2-category with trivial 2-morphisms, F (a) = Xa for each object a ∈ A, and
F (f) = f! for each morphism f in A.

In fact, there is a 2-equivalence between opfibrations and pseudofunctors induced by the so-
called ‘Grothendieck construction’, or more specifically the ‘covariant’ Grothendieck construction,
since there is also a version of this construction for fibrations. Let OpFib(A) denote the 2-
subcategory of the slice 2-category Cat/A of opfibrations over A, functors that preserve cocartesian
liftings, and natural transformations with vertical components.

Definition A.1. For any pseudofunctor F : A→ Cat where A is a category viewed as a 2-category
with trivial 2-morphisms, the Grothendieck category ∫F has

• objects pairs (a, s ∈ F (a)) and

• a morphism from (a, s ∈ F (a)) to (b, t ∈ F (b)) is a pair (f : a→ b, k : F (f)(s)→ t).

The identity morphism of (a, s ∈ F (a)) is (1a : a → a, F (1a)(s) ∼−→ s) and the composite of
(f, k) : (a, s)→ (b, t) and (g, `) : (b, t)→ (c, u) is(

a
f−→ b

g−→ c, F (g ◦ f)(x) ∼−→ (Fg)((Ff)(s)) (Fg)(k)−−−−−→ (Fg)(t) `−→ u

)
This is an opfibered category over A via the obvious forgetful functor, with fibers (∫F )a = F (a) and
reindexing functors f! = F (f).

The constructions sketched so far—the Grothendieck construction and the construction of a
pseudofunctor into Cat from a cloven opfibration—are the two halves of the following equivalence.

Theorem A.2.

1. Every opfibration X→ A gives rise to a pseudofunctor A→ Cat.

2. Every pseudofunctor A→ Cat gives rise to an opfibration ∫F → A.

3. The above correspondences yield an equivalence of 2-categories

[A,Cat]ps ' OpFib(A)

where [A,Cat]ps is the 2-category of pseudofunctors from A to Cat, pseudonatural transfor-
mations, and modifications.
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Proof. The idea goes back to Grothendieck; a proof can be found in, for example, [30, Section
1.10].

All the above concepts and results have analogues for fibrations. A functor Φ: X → A a
fibration if and only if Φop : Xop → Aop is an opfibration. Equivalently, Φ is a fibration if and
only if for every y ∈ X with U(y) = b and f : a → b in A there exists a cartesian lifting of f to y,
where this concept is defined dually to cocartesian lifting. Furthermore, if Φ is a fibration there is
a contravariant reindexing functor

f∗ : Xb → Xa
for each morphism f : a → b. Moreover, Φ: X → A is a bifibration if it is both a fibration and
opfibration.

If X and A are (symmetric) monoidal categories, a (symmetric) monoidal fibration Φ: X→
A is a fibration that is also a (symmetric) strict monoidal functor, such that the tensor product pre-
serves cartesian liftings. Similarly, a (symmetric) monoidal opfibration is an opfibration that
is also a (symmetric) strict monoidal functor, such that the tensor product preserves cocartesian
liftings. Finally, a (symmetric) monoidal bifibration is a bifibration that is also a (symmet-
ric) strict monoidal functor such that the tensor product preserves both cartesian and cocartesian
liftings.

In a bifibration we have both covariant and contravariant reindexing functors, and in fact f! is
left adjoint to f∗ [43, Proposition 3.9]. Using this, one can easily show that for any commutative
square in A

a b

c d

h

k g

f

the following square commutes up to a specified natural transformation:

Xa Xb

Xc Xd

⇓θ

h∗

k! g!

f∗

where θ is built as a composite involving the unit of the adjunction between g! and g∗ and the
counit of the adjunction between k! and k∗:

k!h
∗ ⇒ k!h

∗g∗g! ∼= k!k
∗f∗g! ⇒ f∗g!. (8)

If θ is a natural isomorphism whenever the original square in A is a pushout, we say that the
bifibration Φ is Beck–Chevalley. (Shulman uses the term ‘strongly co-BC’ [43, Definition 13.21].)

A.3 Double categories
For double categories we follow the notation of our paper on structured cospans [3], which in turn
follows that of Hansen and Shulman [28, 44]. Our double categories are always ‘pseudo’ double
categories, where composition of horizontal 1-cells is unital and associative only up to coherent
isomorphism [24, 25, 43].

Definition A.3. A double category D consists of a category of objects D0, a category of
arrows D1, functors

S, T : D1 → D0, U : D0 → D1, and � : D1 ×D0 D1 → D1

called the source and target, unit and composition functors, respectively, such that

S(UA) = A = T (UA), S(M �N) = S(N), T (M �N) = T (M),
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and natural isomorphisms called the associator

αL,M,N : (L�M)�N → L� (M �N)

and left and right unitors

λN : UT (N) �N → N, ρN : N � US(N) → N

such that S(α), S(λ), S(ρ), T (α), T (λ) and T (ρ) are all identities, such that the standard coherence
laws hold: the pentagon identity for the associator and the triangle identity for the left and right
unitor.

Objects of D0 are called objects and morphisms of D0 are called vertical 1-morphisms.
Objects of D1 are called horizontal 1-cells and morphisms of D1 are called 2-morphisms. We
can draw a 2-morphism a : M → N with S(a) = f, T (a) = g as follows:

A B

C D

M

f ⇓α g

N

We call M and N the horizontal source and target of a respectively, and call f and g its
vertical source and target. A 2-morphism where f and g are identities is called globular. For
example, the associator and unitors in a double category are globular 2-morphisms.

Definition A.4. Given double categories D and E, a double functor F : D→ E consists of:

• functors F0 : D0 → E0 and F1 : D1 → E1 such that SF1 = F0S and TF1 = F0T , and

• for every composable pair of horizontal 1-cells M and N in D, a natural transformation
F� : F(N) � F(M) → F(N �M) called the composite comparison and for every object
a in D, a natural transformation FU : UF0(a) → F1(Ua) called the unit comparison. The
components of each of these natural transformations are globular isomorphisms that must
obey coherence laws analogous to those of a monoidal functor.

Definition A.5. Given double functors F,G : D → E, a double natural transformation
α : F⇒ G consists of natural transformations α0 : F0 ⇒ G0 and α1 : F1 ⇒ G1 such that:

• S(αM ) = αS(M) and T (αM ) = αT (M) for all horizontal 1-cells M of D,

• α ◦ F� = G� ◦ (αM � αN ) for all composable pairs M and N of horizontal 1-cells in D, and

• α ◦ FU = GU ◦ α for all objects a of D.

The double natural transformation α is a double natural isomorphism if both α0 and α1 are
natural isomorphisms.

Let Dbl denote the 2-category of double categories, double functors and double transformations.
One can check that Dbl has finite products, and in any 2-category with finite products we can define
a ‘pseudomonoid’, which is a categorified analogue of a monoid [18]. For example, a pseudomonoid
in Cat is a monoidal category. We can also define symmetric pseudomonoids, which in Cat are
symmetric monoidal categories.

Definition A.6. A monoidal double category is a pseudomonoid in Dbl, namely it is equipped
with double functors ⊗ : D×D→ D, I : 1→ D and invertible double transformations ⊗◦ (1×⊗) ∼=
⊗ ◦ (⊗× 1), ⊗ ◦ (1× I) ∼= 1 ∼= ⊗ ◦ (I × 1) satisfying standard axioms.

Explicitly, a monoidal double category is a double category D with:

• monoidal structures on both D0 and D1 (each with tensor product denoted ⊗, associator a,
left unitor ` and right unitor r and unit object I), such that U : D0 → D1 strictly preserves
the unit objects and S, T : D1 → D0 are strict monoidal,

Accepted in Compositionality on 2022-02-14. Click on the title to verify. 35



Volume 4 Issue 3 ISSN 2631-4444

• the structure of a double functor on ⊗: that is, invertible globular 2-morphisms

χ : (M2 ⊗N2)� (M1 ⊗N1) ∼−→ (M2 �M1)⊗ (N2 �N1)

µ : UA⊗B ∼−→ UA ⊗ UB
obeying a list of equations that can be found after [28, Definition 2.10] and also [3, Definition
A.5].

Definition A.7. A symmetric monoidal double category is a symmetric pseudomonoid in
Dbl.

Explicitly, a symmetric monoidal double category is a monoidal double category D such that:

• D0 and D1 are symmetric monoidal categories, with braidings both denoted β.

• The functors S and T are symmetric strict monoidal functors.

• The following diagrams commute, expressing that the braiding is a transformation of double
categories:

(M2 ⊗ N2) � (M1 ⊗ N1)

(M2 � M1) ⊗ (N2 � N1)

(N2 ⊗ M2) � (N1 ⊗ M1)

(N2 � N1) ⊗ (M2 � M1)

χ

β � β

χ

β

UA ⊗ UB

UB ⊗ UA

UA⊗B

UB⊗A

β

µ

Uβ

µ

Definition A.8. Given symmetric monoidal double categories D and E, a symmetric mono-
idal double functor F : D → E is a double functor F together with invertible transformations
F⊗ : ⊗ ◦ (F,F) → F ◦ ⊗ and IE → F ◦ ID that satisfy the usual coherence axioms for a symmetric
monoidal functor.

Explicitly, a symmetric monoidal double functor is a double functor F : D→ E such that:

• F0 and F1 are symmetric monoidal functors,

• we have equalities F0SD = SEF1 and F0TD = TEF1 of monoidal functors, and

• the following diagrams commute, expressing that φ is a transformation of double categories:

(F(M2) ⊗ F(N2)) � (F(M1) ⊗ F(N1))

(F(M2) � F(M1)) ⊗ (F(N2) � F(N1))

F(M2 ⊗ N2) � F(M1 ⊗ N1)

F((M2 ⊗ N2) � (M1 ⊗ N1))

F(M2 � M1) ⊗ F(N2 � N1) F((M2 � M1) ⊗ (N2 � N1))

χ

F⊗ � F⊗

F�

F� ⊗ F� F(χ)

F⊗

UF(a)⊗F(b)

UF(a) ⊗ UF(b)

UF(a⊗b)

F(Ua⊗b)

F(Ua) ⊗ F(Ub) F(Ua ⊗ Ub)

µ

FU ⊗ FU F(µ)

UF⊗

FU

F⊗

Definition A.9. An isomorphism of symmetric monoidal double categories is a symmetric mo-
noidal double functor F : D→ E that has an inverse.

A symmetric monoidal double functor is an isomorphism if it is bijective on objects, vertical
1-morphisms, horizontal 1-cells and 2-morphisms.

Definition A.10. Let D be a double category and f : A→ B a vertical 1-morphism. A companion
of f is a horizontal 1-cell f̂ : A→ B together with 2-morphisms

A B

B B

f̂

f 1

UB

⇓ and
A A

A B

UA

1 f

f̂

⇓
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such that the following equations hold.

A A

A B

B B

1

f

f

1

UA

UB

⇓

⇓

f̂ =
A A

B B

f f

UA

UB

⇓ Uf and

A

A

A

B

B

B

A B

1 f 1

UA f̂

f̂

1 1

⇓ ⇓

⇓ λf̂

f̂ UB =
A A B

A B

UA f̂

1 1

f̂

⇓ ρf̂
(9)

A conjoint of f , denoted f̌ : B → A, is a companion of f in the double category obtained by
reversing the horizontal 1-cells, but not the vertical 1-morphisms, of D.

Definition A.11. We say that a double category is fibrant if every vertical 1-morphism has both
a companion and a conjoint.

Theorem A.12. [28, Theorem 1.1] If D is a fibrant monoidal double category, then its horizontal
bicategory D is a monoidal bicategory. If D is braided or symmetric, then so is D.
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