Enrichment of Categories of Algebras and Modules

Christina Vasilakopoulou

University of Cambridge

PSSL 94 - University of Sheffield

- Oniversal Measuring Comonoid and enrichment of monoids in comonoids
- **③** Global Categories of Comodules and Modules
- Universal Measuring Comodule and enrichment of modules in comodules

Measuring Coalgebras

• (*Sweedler, 1969*) *A*,*B* algebras, *C* coalgebra. When is the linear map $\rho : A \to \text{Hom}(C, B)$, corresponding to $\sigma : A \otimes C \to B$, an algebra map? \Longrightarrow Measuring coalgebras (σ , *C*) Universal measuring coalgebra (terminal object) *P*(*A*, *B*)

$$\operatorname{Alg}_k(A, \operatorname{Hom}_k(C, B)) \cong \operatorname{Coalg}_k(C, P(A, B)).$$

• (*Wraith, 1970s*) P(A, B) provides an enrichment of algebras in coalgebras...

• (*Batchelor, 1990s*) Measuring coalgebras as sets of generalized maps between algebras, applications (non-commutative geometry).

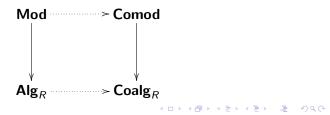
Measuring Comodules and Enriched Fibration

• (*Batchelor, 1998*) Definition of measuring comodules, terminal object *universal measuring comodule* Q(M, N), applications (loop algebras, bundles, representations)

 $\mathbf{Comod}_{\mathcal{C}}(X, \mathcal{Q}(M, N)) \cong \mathbf{Mod}_{\mathcal{A}}(M, \mathrm{Hom}(X, N))$

• Underlying idea: There is no evident notion of fibration in the enriched context!

Well-known fibration **Mod** over \mathbf{Alg}_R + opfibration **Comod** over **Coalg**_{*R*} + enrichment



- Oniversal Measuring Comonoid and enrichment of monoids in comonoids
- In Global Categories of Comodules and Modules
- Universal Measuring Comodule and enrichment of modules in comodules

Aim: generalization of existence of Sweedler's measuring coalgebra

 $Mon(\mathcal{V})(A, [C, B]) \cong Comon(\mathcal{V})(C, P(A, B))$

for a monoidal category \mathcal{V} . (properties?)

Internal hom functor in a symmetric monoidal closed category

 $[-,-]:\mathcal{V}^{\mathrm{op}}\times\mathcal{V}\to\mathcal{V}$

is a lax monoidal functor, so it induces

$$\mathsf{Mon}[-,-] = H : \mathsf{Comon}(\mathcal{V})^{\mathrm{op}} \times \mathsf{Mon}(\mathcal{V}) \to \mathsf{Mon}(\mathcal{V})$$

Concretely: [C, B] obtains the structure of a monoid, for C a comonoid and B a monoid (e.g. convolution structure).

• Existence of a right adjoint P(-, B) for the functor

 $H(-,B)^{\mathrm{op}}: \mathbf{Comon}(\mathcal{V}) \to \mathbf{Mon}(\mathcal{V})^{\mathrm{op}}$

Theorem (*Kelly*)

If the cocomplete $\mathcal C$ has a small dense subcategory, then every cocontinuous $\mathcal K:\mathcal C\to\mathcal D$ has a right adjoint.

• (*Porst, 2008*) If \mathcal{V} is a symmetric monoidal closed category which is locally presentable, then **Comon**(\mathcal{V}) is comonadic over \mathcal{V} and locally presentable itself (small dense subcategory).

• The functor $H(-,B)^{\text{op}}$ is cocontinuous:

$$\begin{array}{c} \mathsf{Comon}(\mathcal{V}) \xrightarrow{H(-,B)^{\mathrm{op}}} \mathsf{Mon}(\mathcal{V})^{\mathrm{op}} \\ \downarrow & \downarrow \\ \psi & \downarrow \\ \mathcal{V} \xrightarrow{[-,VB]^{\mathrm{op}}} \mathcal{V}^{\mathrm{op}} \end{array}$$

so there exists P(-, B) for all B, and H^{op} has a parametrised adjoint

$$P: \mathsf{Mon}(\mathcal{V})^{\mathrm{op}} imes \mathsf{Mon}(\mathcal{V}) o \mathsf{Comon}(\mathcal{V})$$

and P(A, B) is the universal measuring comonoid.

An *action* of a monoidal category \mathcal{V} on \mathcal{A} is given by a functor $*: \mathcal{V} \times \mathcal{A} \to \mathcal{A}$ with coherent isomorphisms

$$\alpha_{XYA}: (X \otimes Y) * A \xrightarrow{\sim} X * (Y * A), \quad \lambda_A: I * A \xrightarrow{\sim} A.$$

Theorem (Janelidze, Kelly)

If each - * A has a right adjoint F(A, -) with

$$\mathcal{A}(X * A, B) \cong \mathcal{V}(X, F(A, B)),$$

then we can enrich \mathcal{A} in \mathcal{V} , with hom-object functor F.

(*H* and) *H*^{op} : Comon(*V*) × Mon(*V*)^{op} → Mon(*V*)^{op} is an action of the monoidal category Comon(*V*) on Mon(*V*)^{op}.

• Each
$$H(-,B)^{\text{op}}$$
 has a right adjoint, $P(-,B)$.

 $(Mon(\mathcal{V})^{op} \text{ and so}) Mon(\mathcal{V})$ is enriched in $Comon(\mathcal{V})$, with hom-objects P(A, B).

- Oniversal Measuring Comonoid and enrichment of monoids in comonoids
- **③** Global Categories of Comodules and Modules
- Universal Measuring Comodule and enrichment of modules in comodules

Each comonoid arrow $C \xrightarrow{f} D$ induces the *corestriction of scalars*

$$f_*: \mathbf{Comod}_{\mathcal{V}}(C) \longrightarrow \mathbf{Comod}_{\mathcal{V}}(D)$$
$$(X, \delta) \longmapsto (X, (1 \otimes f) \circ \delta)$$

The Global category of comodules **Comod** has \rightarrow objects X_C , where C is a comonoid and X a C-comodule \rightarrow arrows $X_C \xrightarrow{(k,f)} Y_D$ where $\begin{cases} f_*X \xrightarrow{k} Y & \text{in } \mathbf{Comod}_{\mathcal{V}}(D) \\ C \xrightarrow{f} D & \text{in } \mathbf{Comon}(\mathcal{V}) \end{cases}$

 \rightarrow appropriate composition and identities

Comod is the Grothendieck category for the functor which sends each comonoid C to the category of its comodules **Comod**_{\mathcal{V}}(C)

• **Comod** is comonadic over $\mathcal{V} \times \text{Comon}(\mathcal{V})$.

(**Mod** is the Grothendieck category for the functor which sends each monoid A to the category of its modules $Mod_{\mathcal{V}}(A)$

- Oniversal Measuring Comonoid and enrichment of monoids in comonoids
- Global Categories of Comodules and Modules
- Universal Measuring Comodule and enrichment of modules in comodules

The functor H = Mon[-, -] induces

$$\bar{H} : \mathbf{Comod}_{\mathcal{V}}(C)^{\mathrm{op}} \times \mathbf{Mod}_{\mathcal{V}}(B) \longrightarrow \mathbf{Mod}_{\mathcal{V}}([C, B])$$
$$(X, N) \longmapsto [X, N]$$

Furthemore, between the global categories

 $\begin{array}{l} \operatorname{Hom}: \operatorname{\textbf{Comod}}^{\operatorname{op}} \times \operatorname{\textbf{Mod}} & \longrightarrow \operatorname{\textbf{Mod}} \\ (X_C \ , \ N_B \) \longmapsto & [X, N]_{[C, B]} \end{array}$

Theorem

Suppose \mathcal{V} is a locally presentable, symmetric monoidal closed category. Then the functor $\operatorname{Hom}(-, N_B)^{\operatorname{op}}$ has a right adjoint $Q(-, N_B)$, with a natural isomorphism

 $Mod(M_A, [X, N]_{[C,B]}) \cong Comod(X_C, Q(M, N)_{P(A,B)}).$

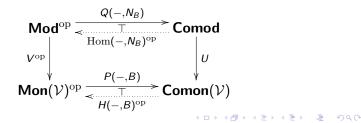
The object Q(M, N) is called the *universal measuring comodule*.

The functor (Hom and) Hom^{op}: Comod × Mod^{op} → Mod^{op} is an action of the monoidal category Comod on Mod^{op}.
Hom(-, N_B)^{op} ⊢ Q(-, N_B) for each N_B ∈ Mod.

(Mod^{op} and so) Mod is enriched in Comod, with hom-objects $Q(M, N)_{P(A,B)}$.

Enriched Fibration?

- The (op) forgetful $V^{\mathrm{op}}: \mathbf{Mod}^{\mathrm{op}} \to \mathbf{Mon}(\mathcal{V})^{\mathrm{op}}$ is an opfibration.
- The forgetful U: **Comod** \rightarrow **Comon**(\mathcal{V}) is an opfibration.
- $Q(-, N_B)$ and P(-, B) are the hom-functors of the enriched categories.



Thank you for your attention!

arXiv:1205.6450v1 [math.CT] - Vasilakopoulou Christina, Enrichment of Categories of Algebras and Modules