▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Adjunctions between Fibrations & Enrichment

Christina Vasilakopoulou

University of Cambridge

Department of Computer Science, University of Oxford

13 May 2014

(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)

- Motivation: monoids and modules in monoidal categories
- 2-categories of fibrations
- Fibred adjunctions
- Enrichment of modules in comodules

Universal measuring comonoid

Generalization of Sweedler's universal measuring coalgebras

$$\mathsf{Alg}_k(A, \operatorname{Hom}_k(C, B)) \cong \{ C \otimes A \xrightarrow{\sigma} B_{\operatorname{measures}} \} \cong \mathsf{Coalg}_k(C, P(A, B))$$

Suppose $\mathcal V$ is a symmetric monoidal closed category. The internal hom functor $[-,-]:\mathcal V^{\mathrm{op}}\times\mathcal V\to\mathcal V$ is lax monoidal, thus induces

 $Mon[-,-] = H: Comon(\mathcal{V})^{\mathrm{op}} \times Mon(\mathcal{V}) \to Mon(\mathcal{V}).$

Proposition

If \mathcal{V} is also locally presentable, $\operatorname{\mathbf{Comon}}(\mathcal{V}) \xrightarrow{H(-,B)^{\operatorname{op}}} \operatorname{\mathbf{Mon}}(\mathcal{V})^{\operatorname{op}}$ has a right adjoint P(-,B) with a natural isomorphism

 $Mon(\mathcal{V})(A, [C, B]) \cong Comon(\mathcal{V})(C, P(A, B)).$

Comon(\mathcal{V}) inherits local presentability (cocomplete, co-well-powered with generator) and $H(-, B)^{\text{op}}$ is cocontinuous.

Enrichment

The category of monoids $Mon(\mathcal{V})$ is enriched in the category of comonoids $Comon(\mathcal{V})$, with enriched hom-functor

```
P: \mathsf{Mon}(\mathcal{V})^{\mathrm{op}} \times \mathsf{Mon}(\mathcal{V}) \longrightarrow \mathsf{Comon}(\mathcal{V}).
```

Proof employs theory of *actions* of monoidal categories: functor $* : \mathcal{V} \times \mathcal{A} \to \mathcal{A}$ with coherent isos $(X \otimes Y) * A \cong X * (Y * A)$, $I * A \cong A$ (pseudomodule). Since functors H and

```
H^{\mathrm{op}}: \operatorname{\mathsf{Comon}}(\mathcal{V}) 	imes \operatorname{\mathsf{Mon}}(\mathcal{V})^{\mathrm{op}} 	o \operatorname{\mathsf{Mon}}(\mathcal{V})^{\mathrm{op}}
```

are actions, it follows from

Theorem (Janelidze, Kelly)

If each - *A has a right adjoint F(A, -), we can enrich A in V with hom-objects F(A, B).

Modules and Comodules

For fixed monoid A and comonoid C, have categories $Mod_{\mathcal{V}}(A)$ and $Comod_{\mathcal{V}}(C)$. The global category of modules Mod has

- \cdot objects modules M_A for an arbitrary monoid A;
- \cdot morphisms $M_A
 ightarrow N_B$ consist of a monoid arrow f: A
 ightarrow B and

$$\begin{array}{ccc} k: M \to N \text{ satisfying} & A \otimes M & \xrightarrow{\mu} & M \\ & 1 \otimes k & \downarrow & & \downarrow k \\ & A \otimes N & \xrightarrow{f \otimes 1} & B \otimes N & \xrightarrow{\mu'} & N. \end{array}$$

Dually, global category of comodules Comod.

Mod/Comod are Grothendieck categories for functors mapping monoids/comonoids to the category of their modules/comodules.

Aim: enrichment of modules in comodules

$$\begin{array}{c} \mathsf{Mod} & \xrightarrow{?} \mathsf{Comod} \\ \mathrm{fibration} & & & & & \\ \mathsf{Mon}(\mathcal{V}) & \xrightarrow{\mathrm{enrichment}} \mathsf{Comon}(\mathcal{V}) \\ \end{array}$$

Fibrations and Opfibrations

A functor $P: \mathcal{A} \to \mathbb{X}$ is a *fibration* iff \exists cartesian morphisms ϕ

for all B and f. The fibre A_X is $P^{-1}X$ with vertical arrows (mapped to 1_X). A choice $\phi \equiv \operatorname{Cart}(f, B) : f^*B \to B$ of cartesian liftings (unique up to vertical iso) is called *cleavage*, and induces a reindexing functor between the fibres

$$f^*: \mathcal{A}_Y \longrightarrow \mathcal{A}_X.$$

Dually, for an *opfibration* $U : C \to \mathbb{X}$ with chosen cocartesian liftings, have functors $f_{1} : C_{X} \longrightarrow C_{Y}$.

• A fibred 1-cell $(S, F) : P \to Q$ between fibrations is a

commutative square $\mathcal{A} \xrightarrow{S} \mathcal{B}$ where S preserves cartesian $\begin{array}{c} P \\ \downarrow \\ W \\ \hline \end{array} \begin{array}{c} F \\ F \\ \hline \end{array} \begin{array}{c} Q \\ V \\ \hline \end{array} \end{array}$

arrows. In particular (over same base), fibred functor $(S, 1_X)$.

• A fibred 2-cell $(S, F) \Rightarrow (T, G)$ is a pair of natural

transformations

 $\exists \forall \alpha \ \mathbf{J} \mathcal{B}$ with $Q\alpha = \beta_P$. In particular, 0 $\Downarrow \beta$

fibred natural transformation $(\alpha, 1_{1_x})$.

Ρ

 Obtain 2-categories Fib and Fib(X). Dually opfibrations, opfibred 1-cells (functors) and opfibred 2-cells (nat. transf.) form **OpFib** and **OpFib**(\mathbb{X}).

Any fibred 1-cell determines a collection of functors between the fibres:

$$S_X: \mathcal{A}_X \xrightarrow{S|_X} \mathcal{B}_{FX}.$$

Lemma

Suppose $(S, F) : P \to Q$ is a fibred 1-cell. The reindexing functors commute up to iso with the fibrewise S_X 's, i.e.

$$\begin{array}{c|c} \mathcal{A}_{Y} \xrightarrow{S_{Y}} \mathcal{B}_{FY} \\ f^{*} & \stackrel{\tau^{f}}{\cong} & \downarrow (Ff)^{*} \\ \mathcal{A}_{X} \xrightarrow{-S_{X}} \mathcal{B}_{FX}. \end{array}$$

The image of a cartesian lifting under S is required to be cartesian:

Adjunctions in **Fib** and $Fib(\mathbb{X})$

A general fibred adjunction $(L, F) \dashv (R, G) : Q \rightarrow P$ (in particular, fibred adjunction $L \dashv R$) is displayed as

Proposition "Existence of adjoint in Fib(X)" (Borceux...)

The fibred functor $S : Q \to P$ has a fibred left adjoint L iff $L_X \dashv S_X$ for all X and the Beck-Chevalley condition holds for all τ^f , i.e.

$$L_X \circ f^* \cong f^* \circ L_Y.$$

" \Leftarrow " The fibrewise L_X 's assemble into a fibred 'total' left adjoint L employing the invertible mates of τ^f .

・ロト・日本・日本・日本・日本・日本

Question: analogue for general fibred adjunctions?

Theorem (Existence of adjoint in Fib)

For a fibred 1-cell (S, G), if there is an adjunction between the bases

and the functor $\mathcal{B}_{FX} \xrightarrow{S_{FX}} \mathcal{A}_{GFX} \xrightarrow{\eta^*} \mathcal{A}_X$ has a left adjoint L_X , then *S* has a left adjoint *L* s.t. $(L, F) \dashv (S, G)$ in **Cat**². If also the mates $L_X \circ f^* \Rightarrow (Ff)^* \circ L_Y$ are isos, obtain general fibred adjunction.

Establish a natural bijective correspondence

$$\mathcal{B}(L_XA, B) \cong \mathcal{A}(A, SB)$$

by employing the fibrewise adjoints L_X and base adjunction $F \dashv G$.

Universal Measuring Comodule

Back to global categories of modules and comodules, for ${\cal V}$ l.p. symmetric monoidal closed. Application (of dual result) to:

$$\begin{array}{c} \operatorname{\mathsf{Comod}} & \xrightarrow{\overline{H}(-,N_B)^{\operatorname{op}}} & \operatorname{\mathsf{Mod}}^{\operatorname{op}} \\ & & \downarrow \\ & & \downarrow \\ \operatorname{\mathsf{Comon}}(\mathcal{V}) \xrightarrow{H(-,B)^{\operatorname{op}}} & \operatorname{\mathsf{Mon}}(\mathcal{V})^{\operatorname{op}} \end{array}$$

· functor \overline{H} : **Comod**^{op} × **Mod** → **Mod** also induced from internal hom functor [-, -], moreover preserves cocartesian liftings, i.e. (\overline{H}, H) opfibred 1-cell.

 \cdot base adjunction gives universal measuring comonoid.

 $\cdot \operatorname{\mathbf{Comod}}_{\mathcal{V}} P(A, B) \xrightarrow{\overline{H}(-, N_B)^{\operatorname{op}}} \operatorname{\mathbf{Mod}}_{\mathcal{V}}^{\operatorname{op}}[P(A, B), B] \xrightarrow{(\varepsilon_A)_!} \operatorname{\mathbf{Mod}}_{\mathcal{V}}^{\operatorname{op}}A$ has a right adjoint $Q_A(-, N)$.

There is an adjunction between the global categories

$$\mathsf{Comod} \xrightarrow{\bar{H}(-,N_B)^{\mathrm{op}}}_{\overbrace{Q(-,N_B)}} \mathsf{Mod}^{\mathrm{op}}$$

The P(A, B)-comodule $Q(M_A, N_B)$ is called *universal measuring* comodule.

· Functors (\overline{H} and) \overline{H}^{op} are also actions, with parametrized adjoint $Q: \mathbf{Mod}^{\text{op}} \times \mathbf{Mod} \to \mathbf{Comod}.$

Theorem

Mod is enriched in Comod with enriched hom-functor Q, and

is a general opfibred adjunction.

(ロ)、

Thank you for your attention!

