Adjunctions between Fibrations \& Enrichment

Christina Vasilakopoulou
University of Cambridge
\section*{Department of Computer Science, University of Oxford}

(1) Motivation: monoids and modules in monoidal categories
(2) 2-categories of fibrations
(3) Fibred adjunctions
(0) Enrichment of modules in comodules

Universal measuring comonoid

Generalization of Sweedler's universal measuring coalgebras
$\operatorname{Alg}_{k}\left(A, \operatorname{Hom}_{k}(C, B)\right) \cong\{C \otimes A \xrightarrow{\sigma} B$ measures $\} \cong \operatorname{Coalg}_{k}(C, P(A, B))$
Suppose \mathcal{V} is a symmetric monoidal closed category. The internal hom functor $[-,-]: \mathcal{V}^{\mathrm{op}} \times \mathcal{V} \rightarrow \mathcal{V}$ is lax monoidal, thus induces

$$
\operatorname{Mon}[-,-]=H: \operatorname{Comon}(\mathcal{V})^{\mathrm{op}} \times \operatorname{Mon}(\mathcal{V}) \rightarrow \operatorname{Mon}(\mathcal{V})
$$

Proposition

If \mathcal{V} is also locally presentable, $\operatorname{Comon}(\mathcal{V}) \xrightarrow{H(-, B)^{\mathrm{op}}} \operatorname{Mon}(\mathcal{V})^{\mathrm{op}}$ has a right adjoint $P(-, B)$ with a natural isomorphism
$\operatorname{Mon}(\mathcal{V})(A,[C, B]) \cong \operatorname{Comon}(\mathcal{V})(C, P(A, B))$.
$\operatorname{Comon}(\mathcal{V})$ inherits local presentability (cocomplete, co-wellpowered with generator) and $H(-, B)^{\mathrm{op}}$ is cocontinuous.

Enrichment

The category of monoids $\operatorname{Mon}(\mathcal{V})$ is enriched in the category of comonoids $\operatorname{Comon}(\mathcal{V})$, with enriched hom-functor

$$
P: \operatorname{Mon}(\mathcal{V})^{\mathrm{op}} \times \operatorname{Mon}(\mathcal{V}) \longrightarrow \operatorname{Comon}(\mathcal{V}) .
$$

Proof employs theory of actions of monoidal categories: functor $*: \mathcal{V} \times \mathcal{A} \rightarrow \mathcal{A}$ with coherent isos $(X \otimes Y) * A \cong X *(Y * A)$, $I * A \cong A$ (pseudomodule). Since functors H and

$$
H^{\mathrm{op}}: \operatorname{Comon}(\mathcal{V}) \times \operatorname{Mon}(\mathcal{V})^{\mathrm{op}} \rightarrow \operatorname{Mon}(\mathcal{V})^{\mathrm{op}}
$$

are actions, it follows from

Theorem (Janelidze, Kelly)

If each $-* A$ has a right adjoint $F(A,-)$, we can enrich \mathcal{A} in \mathcal{V} with hom-objects $F(A, B)$.

Modules and Comodules

For fixed monoid A and comonoid C, have categories $\operatorname{Mod}_{\mathcal{V}}(A)$ and $\operatorname{Comod}_{\mathcal{V}}(C)$. The global category of modules Mod has

- objects modules M_{A} for an arbitrary monoid A;
- morphisms $M_{A} \rightarrow N_{B}$ consist of a monoid arrow $f: A \rightarrow B$ and $k: M \rightarrow N$ satisfying $A \otimes M \longrightarrow M$

Dually, global category of comodules Comod.
Mod/Comod are Grothendieck categories for functors mapping monoids/comonoids to the category of their modules/comodules.

Aim: enrichment of modules in comodules

fibration \downarrow $\operatorname{Mon}(\mathcal{V}) \stackrel{\text { enrichment }}{ } \stackrel{\operatorname{Comon}(\mathcal{V})}{ }$

Fibrations and Opfibrations

A functor $P: \mathcal{A} \rightarrow \mathbb{X}$ is a fibration iff \exists cartesian morphisms ϕ

for all B and f. The fibre \mathcal{A}_{X} is $P^{-1} X$ with vertical arrows (mapped to 1_{X}). A choice $\phi \equiv \operatorname{Cart}(f, B): f^{*} B \rightarrow B$ of cartesian liftings (unique up to vertical iso) is called cleavage, and induces a reindexing functor between the fibres

$$
f^{*}: \mathcal{A}_{Y} \longrightarrow \mathcal{A}_{X} .
$$

Dually, for an opfibration $U: \mathcal{C} \rightarrow \mathbb{X}$ with chosen cocartesian liftings, have functors $f_{!}: \mathcal{C}_{X} \longrightarrow \mathcal{C}_{Y}$.

- A fibred 1-cell $(S, F): P \rightarrow Q$ between fibrations is a commutative square $\mathcal{A} \xrightarrow{S} \mathcal{B}$ where S preserves cartesian

arrows. In particular (over same base), fibred functor $\left(S, 1_{\mathbb{X}}\right)$.
- A fibred 2-cell $(S, F) \Rightarrow(T, G)$ is a pair of natural
transformations
 with $Q \alpha=\beta_{P}$. In particular,
fibred natural transformation $\left(\alpha, 1_{1_{\mathbb{X}}}\right)$.
- Obtain 2-categories Fib and Fib(X). Dually opfibrations, opfibred 1-cells (functors) and opfibred 2-cells (nat. transf.) form OpFib and $\mathbf{O p F i b}(\mathbb{X})$.

Any fibred 1-cell determines a collection of functors between the fibres:

$$
S_{X}: \mathcal{A}_{X} \xrightarrow{S_{X}} \mathcal{B}_{F X} .
$$

Lemma

Suppose $(S, F): P \rightarrow Q$ is a fibred 1 -cell. The reindexing functors commute up to iso with the fibrewise S_{X} 's, i.e.

$$
\begin{aligned}
& \mathcal{A}_{Y} \xrightarrow{S_{Y}} \mathcal{B}_{F Y} \\
& f^{*} \\
& \downarrow \stackrel{\tau^{f}}{\cong} \|^{\vee}(F f)^{*} \\
& \mathcal{A}_{X} \xrightarrow{s_{X}}
\end{aligned} \mathcal{B}_{F X} .
$$

The image of a cartesian lifting under S is required to be cartesian:

Adjunctions in Fib and $\operatorname{Fib}(\mathbb{X})$

A general fibred adjunction $(L, F) \dashv(R, G): Q \rightarrow P$ (in particular, fibred adjunction $L \dashv R$) is displayed as

Proposition "Existence of adjoint in $\operatorname{Fib}(\mathbb{X})$ " (Borceux...)

The fibred functor $S: Q \rightarrow P$ has a fibred left adjoint L iff $L_{X} \dashv S_{X}$ for all X and the Beck-Chevalley condition holds for all τ^{f}, i.e.

$$
L_{X} \circ f^{*} \cong f^{*} \circ L_{Y}
$$

" \Leftarrow " The fibrewise L_{X} 's assemble into a fibred 'total' left adjoint L employing the invertible mates of τ^{f}.

Question: analogue for general fibred adjunctions?

Theorem (Existence of adjoint in Fib)

For a fibred 1-cell (S, G), if there is an adjunction between the bases
and the functor $\mathcal{B}_{F X} \xrightarrow{S_{F X}} \mathcal{A}_{G F X} \xrightarrow{\eta^{*}} \mathcal{A}_{X}$ has a left adjoint L_{X}, then S has a left adjoint L s.t. $(L, F) \dashv(S, G)$ in Cat 2. If also the mates $L_{X} \circ f^{*} \Rightarrow(F f)^{*} \circ L_{Y}$ are isos, obtain general fibred adjunction.

Establish a natural bijective correspondence

$$
\mathcal{B}\left(L_{X} A, B\right) \cong \mathcal{A}(A, S B)
$$

by employing the fibrewise adjoints L_{X} and base adjunction $F \dashv G$.

Universal Measuring Comodule

Back to global categories of modules and comodules, for \mathcal{V} I.p. symmetric monoidal closed. Application (of dual result) to:

$$
\begin{gathered}
\operatorname{Comod} \xrightarrow{\bar{H}\left(-, N_{B}\right)^{\mathrm{op}}} \longrightarrow \operatorname{Mod}^{\mathrm{op}} \\
\downarrow \\
\operatorname{Comon}(\mathcal{V}) \xrightarrow{\stackrel{H(-, B)^{\mathrm{op}}}{\stackrel{\perp}{P(-, B)}}} \operatorname{Mon}(\mathcal{V})^{\mathrm{op}}
\end{gathered}
$$

- functor $\bar{H}:$ Comod $^{\mathrm{op}} \times$ Mod \rightarrow Mod also induced from internal hom functor $[-,-]$, moreover preserves cocartesian liftings, i.e. (\bar{H}, H) opfibred 1-cell.
- base adjunction gives universal measuring comonoid.
- Comod ${ }_{\mathcal{V}} P(A, B) \xrightarrow{\tilde{H}\left(-, N_{B}\right)^{\mathrm{op}}} \operatorname{Mod}_{\mathcal{V}}^{\mathrm{op}}[P(A, B), B] \xrightarrow{\left(\varepsilon_{A}\right)!}$ Mod $_{\mathcal{V}}^{\mathrm{op}} A$ has a right adjoint $Q_{A}(-, N)$.

There is an adjunction between the global categories

$$
\operatorname{Comod} \underset{Q\left(-, N_{B}\right)}{\stackrel{\bar{H}\left(-, N_{B}\right)^{\mathrm{op}}}{\underset{~}{\perp}}} \text { Mod }^{\mathrm{op}} .
$$

The $P(A, B)$-comodule $Q\left(M_{A}, N_{B}\right)$ is called universal measuring comodule.

- Functors (\bar{H} and) $\bar{H}^{\text {op }}$ are also actions, with parametrized adjoint $Q:$ Mod $^{\mathrm{op}} \times$ Mod \rightarrow Comod.

Theorem

Mod is enriched in Comod with enriched hom-functor Q, and

is a general opfibred adjunction.

Thank you for your attention!

