CATEGORY THEORY EXAMPLES 2

1. Prove that there is an adjunction $-\times B \dashv(-)^{B}$ of endofunctors on Set.
2. Let $\mathcal{C} \underset{R}{\stackrel{L}{\longleftrightarrow}} \mathcal{D}$ be an adunction with unit η and counit ϵ. Show that the following conditions are equivalent:
(i) $L \eta_{A}$ is an isomorphism, for all $A \in \mathrm{obC}$;
(ii) $\epsilon_{L A}$ is an isomorphism, for all $A \in \mathrm{obC}$;
(iii) $R \epsilon_{L A}$ is an isomorphism, for all $A \in \mathrm{obC}$;
(iv) $R L \eta_{A}=\eta_{R L A}$ for all $A \in \mathrm{obC}$;
(v) $R L \eta_{R B}=\eta_{R L R B}$ for all $B \in \mathrm{obD}$;
(vi) - (x) duals of (i)-(v).

Such an adjunction is called idempotent. (Hint: choose the cyclic order of implications as given!)
3. Find an equivalent definition of adjoint functors involving only a unit (and no counit). (Hint: each $\eta_{C}: C \rightarrow R L C$ is universal from C to $\left.R\right)$.
4. Re-prove the equivance between the unit-counit definition of adjoint functors and the Hom-bijection definition of adjoint functors by means of the Yoneda Lemma.
5. For any adjunction $L \dashv R$, we have a full subcategory $\operatorname{FIX}(R L) \subseteq \mathcal{C}$ of objects A such that η_{A} is an isomorphism and similarly $\operatorname{FIX}(L R) \subseteq \mathcal{D}$ of objects with invertible counit.
(i) If $L \dashv R$ is idempotent, show that $\operatorname{FIX}(R L)$ is a reflective and $\operatorname{FIX}(L R)$ is a coreflective subcategory (i.e. the inclusions have a left and right adjoint respectively).
(ii) If $L \dashv R$ is idempotent, show that L and R restrict to an equivalence between $\operatorname{FIX}(R L)$ and $\operatorname{FIX}(L R)$.
(iii) Deduce that an adjunction is idempotent if and only if it can be factored as a reflection followed by a coreflection.
6. For any categories \mathcal{Z}, \mathcal{D}, there is a 'discrete diagram' functor $\Delta: \mathcal{C} \rightarrow \operatorname{Fun}(\mathcal{Z}, \mathcal{C})$ given by $C \mapsto \Delta_{C}$ which maps all objects of \mathcal{Z} to C and all morphisms of \mathcal{Z} to 1_{C}. Prove that it has a right (respectively left) adjoint if and only if \mathcal{C} has limits (respectively colimits) of shape \mathcal{Z}.
7. Suppose $F: \mathcal{C} \simeq \mathcal{D}: G$ via natural isomorphisms $\alpha: \mathbf{1}_{\mathcal{C}} \xrightarrow{\sim} G F$ and $\beta: F G \xrightarrow{\sim} \mathbf{1}_{\mathcal{D}}$. Show that there exists an adjunction $F \dashv G$ with unit α and counit $\beta^{\prime}:=\beta \circ\left(F \alpha_{G}\right)^{-1} \circ \beta_{F G}^{-1}$.
8. Fix a field k. Let Mat be the category with objects natural numbers and hom-sets Mat $(n, m)=$ $\{n \times m$ matrices over $k\}$. After showing that this is indeed a category, prove that it is equivalent to fdVect_{k}, the category of finite-dimensional vector spaces over k and linear maps between them.
9. Given a functor $F: \mathcal{C} \rightarrow \mathcal{D}$ and a category \mathcal{A}, first define a functor $F^{*}: \operatorname{Fun}(\mathcal{D}, \mathcal{A}) \rightarrow \operatorname{Fun}(\mathcal{C}, \mathcal{A})$ defined on objects by $H \mapsto H \circ F$, and then show that any adjunction $F \dashv G$ gives rise to an adjunction $G^{*} \dashv F^{*}$ (hint: use the unit/counit formulation).
10. Let \mathbf{n} denote an n-element ordered set, viewed as a category.
(i) Describe the functor category $\operatorname{Fun}(\mathbf{n}, \boldsymbol{S e t})$.
(ii) Show that there exist functors $F_{0}, \ldots, F_{n+1}: \operatorname{Fun}(\mathbf{n}$, Set $) \rightarrow \operatorname{Fun}(\mathbf{n}+\mathbf{1}$, Set $)$ and G_{0}, \ldots, G_{n} : $\operatorname{Fun}(\mathbf{n}+\mathbf{1}, \operatorname{Set}) \rightarrow \operatorname{Fun}(\mathbf{n}$, Set $)$ which form an adjoint string

$$
\left(F_{0} \dashv G_{0} \dashv F_{1} \dashv \ldots \dashv G_{n} \dashv F_{n+1}\right) .
$$

(iii) Show that this string is maximal, i.e. F_{0} has no left adjoint and F_{n+1} has no right adjoint. (Hint: do they preserve the terminal and initial object respectively?)

