CATEGORY THEORY EXAMPLES 2

- 1. Prove that there is an adjunction $\times B \dashv (-)^B$ of endofunctors on **Set**.
- 2. Let $\mathcal{C} \xrightarrow{L}_{\stackrel{}{\underset{R}{\leftarrow}}} \mathcal{D}$ be an adunction with unit η and counit ϵ . Show that the following conditions are equivalent:
 - (i) $L\eta_A$ is an isomorphism, for all $A \in ob\mathcal{C}$;
 - (ii) ϵ_{LA} is an isomorphism, for all $A \in ob\mathcal{C}$;
 - (iii) $R\epsilon_{LA}$ is an isomorphism, for all $A \in ob\mathcal{C}$;
 - (iv) $RL\eta_A = \eta_{RLA}$ for all $A \in ob\mathcal{C}$;
 - (v) $RL\eta_{RB} = \eta_{RLRB}$ for all $B \in ob\mathcal{D}$;
 - (vi) (x) duals of (i)-(v).

Such an adjunction is called *idempotent*. (Hint: choose the cyclic order of implications as given!)

- 3. Find an equivalent definition of adjoint functors involving only a unit (and no counit). (Hint: each $\eta_C: C \to RLC$ is universal from C to R).
- 4. Re-prove the equivance between the unit-counit definition of adjoint functors and the Hom-bijection definition of adjoint functors by means of the Yoneda Lemma.
- 5. For any adjunction $L \dashv R$, we have a full subcategory $FIX(RL) \subseteq C$ of objects A such that η_A is an isomorphism and similarly $FIX(LR) \subseteq D$ of objects with invertible counit.
 - (i) If $L \dashv R$ is idempotent, show that FIX(RL) is a *reflective* and FIX(LR) is a *coreflective* subcategory (i.e. the inclusions have a left and right adjoint respectively).
 - (ii) If $L \dashv R$ is idempotent, show that L and R restrict to an equivalence between FIX(RL) and FIX(LR).
 - (iii) Deduce that an adjunction is idempotent if and only if it can be factored as a reflection followed by a coreflection.
- 6. For any categories \mathcal{Z}, \mathcal{D} , there is a 'discrete diagram' functor $\Delta : \mathcal{C} \to \operatorname{Fun}(\mathcal{Z}, \mathcal{C})$ given by $C \mapsto \Delta_C$ which maps all objects of \mathcal{Z} to C and all morphisms of \mathcal{Z} to 1_C . Prove that it has a right (respectively left) adjoint if and only if \mathcal{C} has limits (respectively colimits) of shape \mathcal{Z} .
- 7. Suppose $F: \mathcal{C} \simeq \mathcal{D}: G$ via natural isomorphisms $\alpha: \mathbf{1}_{\mathcal{C}} \xrightarrow{\sim} GF$ and $\beta: FG \xrightarrow{\sim} \mathbf{1}_{\mathcal{D}}$. Show that there exists an adjunction $F \dashv G$ with unit α and counit $\beta' := \beta \circ (F\alpha_G)^{-1} \circ \beta_{FG}^{-1}$.
- 8. Fix a field k. Let **Mat** be the category with objects natural numbers and hom-sets $Mat(n,m) = \{n \times m \text{ matrices over } k\}$. After showing that this is indeed a category, prove that it is equivalent to $fdVect_k$, the category of finite-dimensional vector spaces over k and linear maps between them.
- 9. Given a functor F: C → D and a category A, first define a functor F*: Fun(D, A) → Fun(C, A) defined on objects by H → H ∘ F, and then show that any adjunction F ⊢ G gives rise to an adjunction G* ⊢ F* (hint: use the unit/counit formulation).
- 10. Let **n** denote an *n*-element ordered set, viewed as a category.
 - (i) Describe the functor category Fun(**n**, **Set**).
 - (ii) Show that there exist functors F_0, \ldots, F_{n+1} : Fun(\mathbf{n}, \mathbf{Set}) \rightarrow Fun($\mathbf{n} + \mathbf{1}, \mathbf{Set}$) and G_0, \ldots, G_n : Fun($\mathbf{n} + \mathbf{1}, \mathbf{Set}$) \rightarrow Fun(\mathbf{n}, \mathbf{Set}) which form an adjoint string

$$(F_0 \dashv G_0 \dashv F_1 \dashv \ldots \dashv G_n \dashv F_{n+1}).$$

(iii) Show that this string is maximal, i.e. F_0 has no left adjoint and F_{n+1} has no right adjoint. (Hint: do they preserve the terminal and initial object respectively?)