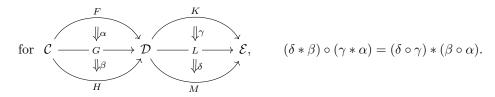
CATEGORY THEORY EXAMPLES 1

- 1. Let C be a category and $I \in C_0$ an object. Show that C/I as defined in Example 1.2.5 indeed forms a category, the *category of arrows over I* or *slice category*.
- 2. Prove the interchange law for categories, functors and natural transformations:



- 3. A morphism $e: A \to A$ in a category C is called *idempotent* if $e \circ e = e$. Denote by dome = code the domain and codomain of e.
 - (i) Suppose $F: \mathcal{C} \to \mathcal{D}, G: \mathcal{D} \to \mathcal{C}$ are functors, and $\alpha: 1_{\mathcal{C}} \Rightarrow G \circ F, \beta: F \circ G \Rightarrow 1_{\mathcal{D}}$ are natural transformations such that $G\beta \circ \alpha_G: G \Rightarrow GFG \Rightarrow G$ is the identity. Show that $\beta_F \circ F\alpha: F \Rightarrow F$ is an idempotent in the category Fun $(\mathcal{C}, \mathcal{D})$, for \mathcal{C} small.
 - (ii) If \mathcal{E} is a class of idempotents in a category \mathcal{C} , show that there exists a category $\mathcal{C}[\check{\mathcal{E}}]$ whose objects are members of \mathcal{E} , whose morphisms $e \to d$ are those morphisms $f: \operatorname{dom} e \to \operatorname{cod} d$ in \mathcal{C} for which $d \circ f \circ e = f$, and whose composition coincides with composition in \mathcal{C} (hint: the identity is not the same as in \mathcal{C} !)
- 4. Use Yoneda to prove that $\alpha \colon F \Rightarrow G$ is a monomorphism in Fun $(\mathcal{C}, \mathbf{Set})$ if and only if its components $\alpha_A \colon FA \to GA$ are injective functions.
- 5. (i) Viewing a group G as an one-object category, show that natural transformations $1_G \Rightarrow 1_G$ correspond to elements in the centre of the group.
 - (ii) Deduce Cayley's embedding theorem using the Yoneda embedding theorem.
- 6. Show that there exist functors ob, mor: $Cat \rightarrow Set$ picking the set of objects and morphisms of categories. Are they full? Are they faithful?
- 7. Prove the following:
 - (i) any retraction is an epimorphism, and faithful functors reflect them;
 - (ii) an isomorphism is a mono and an epi, and the converse is not always true;
 - (iii) (two-out-of-three property) for $A \xrightarrow{f} B \xrightarrow{g} C$, if two out of $f, g, g \circ f$ are isos then so is the third;
 - (iv) all functors preserve isos and fully faithful functors reflect them.
- 8. Show that any functor $F: \mathcal{C} \to \mathcal{D}$ can be factorized as

$$\mathcal{C} \xrightarrow{L} \mathcal{E} \xrightarrow{R} \mathcal{D}$$

where L is bijective-on-objects and R is fully faithful. Also, show that for any commutative square

where L is b.o.b. and R is ff, there exists a unique functor $H: \mathcal{C} \to \mathcal{D}$ such that $H \circ L = F$ and $R \circ H = G$.

- 9. By an *automorphism* of a small category C we mean an endofunctor $F: C \to C$ which has a (2-sided) inverse. We say an automorphism is *inner* if it is naturally isomorphic to the identity functor.
 - (i) Show that inner *C*-automorphisms form a normal subgroup of all *C*-automorphisms, viewed as a group with composition as multiplication.
 - (ii) If F is a C-automorphism and 1 is a terminal object in C, show that F(1) is also a terminal object in C (hence isomorphic to 1).
- 10. (i) Express the universal property of a coproduct of a family of objects $(FZ)_{Z \in \mathcal{Z}}$, for a functor $F: \mathcal{Z} \to \mathcal{C}$ from a discrete category \mathcal{Z} .
 - (ii) (Exercise 3.2.3) Consider a poset (P, \leq) . Let $(x_i)_{i \in I}$ be a family of elements in P, what is the product and coproduct of $(x_i)_{i \in I}$ considered as a family of objects in the poset category?
- 11. (Proposition 3.2.10) Consider the pullback

$$\begin{array}{ccc} P \xrightarrow{p_B} B \\ \downarrow^{p_A} & \downarrow^{g_A} \\ A \xrightarrow{f} C \end{array}$$

Then if g is a monomorphism (respectively, isomorphism), then p_A is a monomorphism (respectively, isomorphism) as well.

12. Consider the following commutative squares:

$$\begin{array}{ccc} A & \stackrel{f}{\longrightarrow} & B & \stackrel{g}{\longrightarrow} & C \\ \downarrow & & \downarrow m & \downarrow p \\ V & \stackrel{h}{\longrightarrow} & U & \stackrel{h}{\longrightarrow} & W \end{array}$$

Prove the following statements:

- (i) if both small rectangles are pullbacks, then so is the large one;
- (ii) if the large rectangle and the small right one are pullbacks, then so is the left one.
- 13. (Theorem 3.3.5) For a category C, the following are equivalent:
 - (i) C is finitely complete;
 - (ii) C has a terminal object, binary products and equalizers;
 - (iii) C has a terminal object and pullbacks.
- 14. We say that a functor $G: \mathcal{C} \to \mathcal{D}$ creates limits of shape \mathcal{Z} if, given $F: \mathcal{Z} \to \mathcal{C}$ and a limit (M, μ_Z) for $G \circ F$, there exist a cone (L, λ_Z) over F in \mathcal{C} whose image is isomorphic to (M, μ_Z) ; and any such cone is a limit in \mathcal{C} .
 - (i) If \mathcal{D} has and G creates limits of shape \mathcal{Z} , then \mathcal{C} has and G preserves them.
 - (ii) If G creates limits of shape \mathcal{Z} , then G reflects them.