Categorical Semantics of Cyber-Physical Systems

Christina Vasilakopoulou

University of Patras, Greece

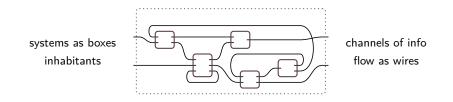
TallCat seminar, Tallinn University of Technology

5 November 2020

Machines

Systems Theory and Design

Idea: provide categorical framework for modeling and analysis of systems



Analyse the composite system using the analyses of the particular system components and their specific wired interconnection.

▶ System architecture and behavior in single model...

Machines

Outline

- 1. The monoidal category of labelled boxes and wiring diagrams
- 2. Systems as algebras for wiring diagrams
- 3. Interval sheaves
- 4. Abstract machines

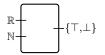
Labelled boxes and wiring diagrams

There is a category **WD** that consists of the following:

• objects are pairs of sets $X = (X_{in}, X_{out})$

 $X_{\text{in}} - X_{\text{out}} - X_{\text{out}}$ think of X as a placeholder for systems, with input&output info values in $X_{\text{in}}, X_{\text{out}}$

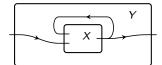
Example: an object $(\mathbb{R} \times \mathbb{N}, \{\top, \bot\})$ is an empty box



A process that can later populate the box is a function

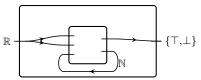
$$f(r,n) = \begin{cases} \top & \text{if } r = n \\ \bot & \text{if } r \neq n \end{cases}$$

• morphisms $(X_{\text{in}}, X_{\text{out}}) \rightarrow (Y_{\text{in}}, Y_{\text{out}})$ are pairs of 'special' functions $(X_{\text{out}} \times Y_{\text{in}} \xrightarrow{\phi_{\text{in}}} X_{\text{in}}, X_{\text{out}} \xrightarrow{\phi_{\text{out}}} Y_{\text{out}})$



think of $\phi_{\rm in/out}$ expressing the flow of info through the ports

Example: the morphism $(\mathbb{R}^2\times\mathbb{N},\{\top,\bot\}\times\mathbb{N})\to(\mathbb{R},\{\top,\bot\})$ as in



is described by the two functions

$$\begin{cases} \phi_{\mathrm{in}} \colon \overbrace{\{\top, \bot\} \times \mathbb{N}}^{X_{\mathrm{out}}} \times \overbrace{\mathbb{R}}^{Y_{\mathrm{in}}} \to \overbrace{\mathbb{R}}^{X_{\mathrm{in}}} & \text{by } \phi_{\mathrm{in}}(x, n, r) = (r, r, n) \\ \phi_{\mathrm{out}} \colon \underbrace{\{\top, \bot\} \times \mathbb{N}}_{X_{\mathrm{out}}} \to \underbrace{\{\top, \bot\}}_{Y_{\mathrm{out}}} & \text{by } \phi_{\mathrm{out}}(x, n) = x \end{cases}$$

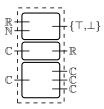
Machines

Monoidal structure

• tensor product $X \otimes Y = (X_{\mathrm{in}} imes Y_{\mathrm{in}}, X_{\mathrm{out}} imes Y_{\mathrm{out}})$

think of parallel execution of processes

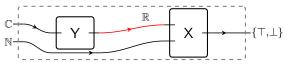
Example: for three boxes $(\mathbb{R} \times \mathbb{N}, \{\top, \bot\})$, (\mathbb{C}, \mathbb{R}) and $(\mathbb{C}, \mathbb{C}^3)$, their tensor is $(\mathbb{R} \times \mathbb{N} \times \mathbb{C}^2, \{\top, \bot\} \times \mathbb{R} \times \mathbb{C}^3)$



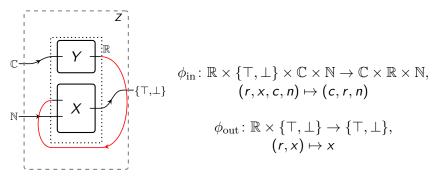
With appropriate composition law and identities, all axioms hold.

The category **WD** of labeled boxes and wiring diagrams is a monoidal category.

Any wiring interconnection can be expressed as a morphism in WD!



can be equivalently rearranged into



All functions are made up from projections, duplications and switches: **Set** could be replaced by *any* typing category C with finite products.

The operad of wiring diagrams

Before, first 'aligned' all boxes to form their tensor and then computed the wiring; this relates to the *underlying operad* of any monoidal category.

A colored operad or multicategory ${\mathcal P}$ consists of

- a set of objects (colors)
- for each (n + 1)-tuple of objects, a set of n-ary operations
 \$\mathcal{P}(c_1, \ldots, c_n; c)\$
- an identity operation $\mathrm{id}_c \in \mathcal{P}(c; c)$
- a composition formula for nesting of operations

subject to associativity and unitality axioms.

▶ Every monoidal category \mathcal{V} gives rise to an operad $\mathcal{O}(\mathcal{V})$ with same objects and *n*-ary operations $\mathcal{O}(\mathcal{V})(c_1, \ldots, c_n; c) := \mathcal{V}(c_1 \otimes \ldots \otimes c_n, c)$.

* Pictures are nicer in the operad $\mathcal{O}(WD)$ than WD!

Lax monoidal functors $F : (\mathcal{V}, \otimes, I) \rightarrow (\mathbf{Cat}, \times, \mathbf{1})$ are called \mathcal{V} -algebras.

Fully faithful underlying operad functor $SMonCat_{\ell} \xrightarrow{\mathcal{O}} SOpd$ induces

 \mathcal{V} -Alg \cong SOpd(\mathcal{OV} , \mathcal{O} Cat) =: (\mathcal{OV})-Alg.

$$\begin{array}{c} F: \mathbf{WD} \longrightarrow \mathbf{Cat} \\ X = (X_{\mathrm{in}}, X_{\mathrm{out}}) \longmapsto FX \\ \phi \downarrow \qquad \qquad \downarrow F\phi \\ Y = (Y_{\mathrm{in}}, Y_{\mathrm{out}}) \longmapsto FY \end{array}$$

subsystems category

composite system functor

gives *semantics* to boxes, *composite operation* to wiring diagrams and *parallelizing operation* to subsystems via $FX \times FY \rightarrow F(X \otimes Y)$

Machines

Algebra of contracts

There is a lax monoidal functor $\mathsf{Cntr}\colon \mathbf{WD}\to\mathbf{Cat}$ that

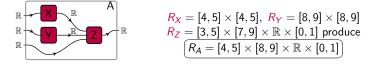
• to each box X_{in} $X \to X_{out}$ assigns category of *contracts*, i.e. relations

$$R \subseteq X_{\mathrm{in}} \times X_{\mathrm{out}}$$

• to each wiring diagram $X_{\text{in}} \times X_{\text{out}}$ assigns formula $\int_{1 \times X_{\text{out}}} \int_{1 \times X_{\text{out}}} X_{\text{in}} \times X_{\text{out}}$

that, given contracts on subsystems, produces contract on composite. • For each $R_X \subseteq X_{in} \times X_{out}$ and $R_Y \subseteq Y_{in} \times Y_{out}$ assigns contract

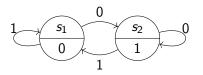
$$R_X imes R_Y \subseteq X_{ ext{in}} imes X_{ ext{out}} imes Y_{ ext{in}} imes Y_{ ext{out}} \cong X_{ ext{in}} imes Y_{ ext{in}} imes X_{ ext{out}} imes Y_{ ext{out}}$$



Machines

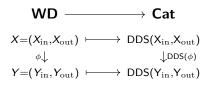
Algebra of discrete dynamical systems

Fix two sets X_{in}, X_{out} . A DDS (or *Moore machine*) consists of a set of states *S* along with two functions, upd: $X_{in} \times S \rightarrow S$ that updates the state given some input, and rdt: $S \rightarrow X_{out}$ that readouts an output value.



 $(S = \{s_1, s_2\}, upd, rdt)$ is the NOT machine

Model discrete systems as a **WD**-algebra:



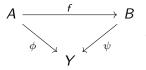
via $(S, f^{upd}, f^{rdt}) \mapsto (S, g^{upd}, g^{rdt}),$ $g^{upd}(y, s) = f^{upd}(\phi_{in}(y, f^{rdt}(s)), s)$ $g^{rdt}(s) = \phi_{out}(f^{rdt}(s))$

Systems theory in categorical terms

▶ The contracts algebra corresponds to the *requirements* part of systems analysis and design, which is fundamental for safety and control.

▶ Other **WD**-algebras, like the discrete or continuous dynamical systems, correspond to the *behavior* part, i.e. the physical specification of the process that inhabits the boxes.

▶ The categorical syntax of labeled boxes and wirings corresponds to the *architecture* part. Importantly, choosing subcomponents X_1, \ldots, X_n of a system Y as well as the way they are wired together (share information) is choosing a morphism $\phi: X_1 \otimes \ldots \otimes X_n \rightarrow Y$ in **WD**, i.e. an object in the *slice category* **WD**/Y

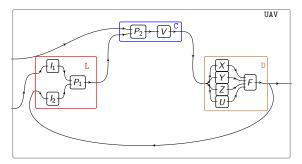


architectural choices and their relation

Machines

Case study: UAV

 \star Using the sub-algebra of *linear time-invariant* systems, can analyze the behavior of an unmanned aerial vehicle and also decompose it to a system architecture and constraint it via contracts.

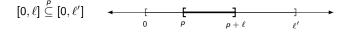


 $I_{1} \otimes I_{2} \otimes P_{1} \otimes P_{2} \otimes V \otimes X \otimes Y \otimes Z \otimes U \otimes F \xrightarrow{f \otimes g \otimes h} L \otimes C \otimes D \xrightarrow{k} UAV$

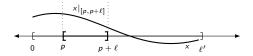
Modeling Time: Categories of intervals

 $\mathbb{R}_{\geq 0}$ positive reals, $\mathsf{Tr}_p : \mathbb{R}_{\geq 0} \to \mathbb{R}_{\geq 0}$ translation-by-*p*.

▶ Category Int of *continuous intervals* has objects $\mathbb{R}_{\geq 0}$, morphisms Int $(\ell, \ell') = \{ \mathsf{Tr}_p | p \in \mathbb{R}_{\geq 0} \text{ and } p \leq \ell' - \ell \}$; equivalently via image



▶ Category Int_N of *discrete intervals*, $ob = \mathbb{N}$, $n \xrightarrow{\mathsf{Tr}_p} n'$ by $p \in \mathbb{N}$. * Int-presheaves: for A: $Int^{op} \to Set$, view section $x \in A(\ell')$ & restriction $A(\mathsf{Tr}_p)(x)$



Sheaves on intervals

For $\ell \in Int$ and $0 \le p \le \ell$, the pairs $p \xrightarrow{[0,p]} \ell$, $(\ell - p) \xrightarrow{[p,\ell]} \ell$ form a cover for ℓ . These generate a coverage for Int; similarly for Int_N.

* Int and Int_N are the toposes of *continuous* and *discrete interval* sheaves, i.e. $Int_{(N)}$ -presheaves whose compatible sections glue.

Idea: $Int_{(N)}$ -labeled boxes have ports carrying very general time-based signals, expressed as sheaves of 'all possible behaviors'.

Examples

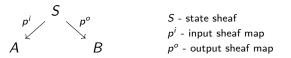
- $\widetilde{Int}_N \simeq \mathbf{Grph}$, so every graph gives a discrete interval sheaf
- L: Set $\rightarrow \widetilde{\operatorname{Int}}_N$ by $L(X)(n) = X^{n+1}$, non-empty X-lists sheaf
- **F**: Set \rightarrow Int by **F**(X)(ℓ) = {f: [0, ℓ] \rightarrow X}, sheaf of functions
- $\mathsf{Ext}_{\epsilon} \colon \widetilde{\mathsf{Int}} \to \widetilde{\mathsf{Int}}$ by $\mathsf{Ext}_{\epsilon}(A)(\ell) = A(\ell + \epsilon)$, ϵ -extension sheaf

Machines

Abstract machines

Purpose: define abstract systems in terms of **Int**-sheaves; perceive known dynamical systems as special cases; coherently interconnect arbitrary systems and study their behavior on common ground.

▶ A continuous machine with input & output $A \& B \in \widetilde{Int}$ is

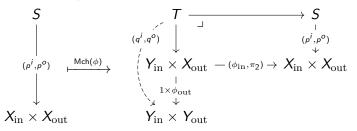


 $Mch(A, B) = Int/_{A \times B}$ the topos of continuous (A, B)-machines.

▶ For $A, B \in \widetilde{Int}_N$, discrete machines $Mch_N(A, B) = \widetilde{Int}_N / A \times B$.

Continuous machines form a WD_{Int} -algebra

 $\mathsf{Functor}\ \mathsf{Mch}\colon \mathbf{WD}_{\widetilde{\mathsf{Int}}}\to \mathbf{Cat}\ \mathsf{by}\ (X_{\mathrm{in}},X_{\mathrm{out}})\mapsto \mathsf{Mch}(\widetilde{\mathsf{X}_{\mathrm{in}}},\mathsf{X}_{\mathrm{out}})\ \mathsf{and}$



In fact, for any $\ensuremath{\mathcal{C}}$ with pullbacks, this process is

$$\mathcal{C}/X_{\mathrm{in}} \times X_{\mathrm{out}} \xrightarrow{(\phi_{\mathrm{in}}, \pi_2)^*} \mathcal{C}/Y_{\mathrm{in}} \times X_{\mathrm{out}} \xrightarrow{(1 \times \phi_{\mathrm{out}})_!} \mathcal{C}/Y_{\mathrm{in}} \times Y_{\mathrm{out}}.$$

Finally, lax monoidal structure by taking products of spans:

$$(S \xrightarrow{(\rho^i, \rho^o)} X_{\mathrm{in}} \times X_{\mathrm{out}}, T \xrightarrow{(q^i, q^o)} Z_{\mathrm{in}} \times Z_{\mathrm{out}}) \mapsto (p^i \times q^i, p^o \times q^o)$$

Machines

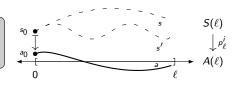
Total and deterministic machines

Characteristics of interest: for initial state and input, the machine

- uniquely evolves or 'stays idle' view determinism
- always evolves ~~> totality

Continuous machines A + S + B are neither in general:

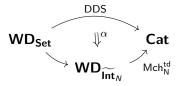
Starting in state germ s_0 , for input *a* over ℓ -interval, there may or may not be s_0 -extension



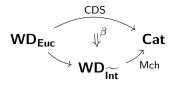
* A *total* machine would have at least one extension, whereas a *deterministic* machine would have maximum one extension.

* There exist subalgebras of $Mch_{(N)}$: $WD_{int} \rightarrow Cat$ of total and deterministic machines, by imposing conditions on p^i and q^i .

► There are algebra maps from discrete dynamical systems



and from continuous dynamical systems



Algebra maps 'translate' between various processes; can then interconnect arbitrary systems & study them on common ground.

Thank you for your attention!

- *Bakirtzis, Fleming, Vasilakopoulou,* "Categorical Semantics of Cyber-Physical Systems Modeling", arXiv:2010.08003, 2020
- *Schultz, Spivak, Vasilakopoulou*, "Dynamical Systems and Sheaves", Applied Categorical Structures, 2020
- Vagner, Spivak, Lerman, "Algebras of open dynamical systems on the operad of wiring diagrams", Theory and Applications of Categories, 2015