
Categorical Semantics of Cyber-Physical
Systems

Christina Vasilakopoulou

University of Patras, Greece

TallCat seminar, Tallinn University of Technology

5 November 2020



Wiring diagrams Systems as algebras Interval sheaves Machines

Systems Theory and Design

Idea: provide categorical framework for modeling and analysis of systems

channels of info
flow as wires

systems as boxes
inhabitants

Analyse the composite system using the analyses of the particular system
components and their specific wired interconnection.

I System architecture and behavior in single model. . .



Wiring diagrams Systems as algebras Interval sheaves Machines

Outline

1. The monoidal category of labelled boxes and wiring diagrams
2. Systems as algebras for wiring diagrams
3. Interval sheaves
4. Abstract machines
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Labelled boxes and wiring diagrams
There is a category WD that consists of the following:
• objects are pairs of sets X = (Xin,Xout)

XXin Xout
think of X as a placeholder for systems,
with input&output info values in Xin,Xout

Example: an object (R× N, {>,⊥}) is an empty box

R
N

{>,⊥}

A process that can later populate the box is a function

f (r , n) =
{
> if r = n
⊥ if r 6= n
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• morphisms (Xin,Xout)→ (Yin,Yout) are pairs of ‘special’ functions
(Xout × Yin

φin−−→ Xin,Xout
φout−−→ Yout)

Y

X
think of φin/out expressing the
flow of info through the ports

Example: the morphism (R2 × N, {>,⊥} × N)→ (R, {>,⊥}) as in

R

N

{>,⊥}

is described by the two functions
φin :

Xout︷ ︸︸ ︷
{>,⊥} × N×

Yin︷︸︸︷
R →

Xin︷ ︸︸ ︷
R2 × N by φin(x , n, r) = (r , r , n)

φout : {>,⊥} × N︸ ︷︷ ︸
Xout

→ {>,⊥}︸ ︷︷ ︸
Yout

by φout(x , n) = x
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Monoidal structure
• tensor product X ⊗ Y = (Xin × Yin,Xout × Yout)

X

Y
think of parallel execution of processes

Example: for three boxes (R× N, {>,⊥}), (C,R) and (C,C3), their
tensor is (R× N× C2, {>,⊥} × R× C3)

R
N

C

C

{>,⊥}

R

C
C
C

With appropriate composition law and identities, all axioms hold.

The category WD of labeled boxes and
wiring diagrams is a monoidal category.
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Any wiring interconnection can be expressed as a morphism in WD!

Y X
RC

N
{>,⊥}

can be equivalently rearranged into

Y

X

R
C

Z

N

{>,⊥}
φin : R× {>,⊥} × C× N→ C× R× N,

(r , x , c, n) 7→ (c, r , n)

φout : R× {>,⊥} → {>,⊥},
(r , x) 7→ x

�



�
	All functions are made up from projections, duplications and switches:

Set could be replaced by any typing category C with finite products.
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The operad of wiring diagrams
Before, first ‘aligned’ all boxes to form their tensor and then computed
the wiring; this relates to the underlying operad of any monoidal category.

A colored operad or multicategory P consists of
• a set of objects (colors)
• for each (n + 1)-tuple of objects, a set of n-ary operations
P(c1, . . . , cn; c)
• an identity operation idc ∈ P(c; c)
• a composition formula for nesting of operations

subject to associativity and unitality axioms.

I Every monoidal category V gives rise to an operad O(V) with same
objects and n-ary operations O(V)(c1, . . . , cn; c) := V(c1 ⊗ . . .⊗ cn, c).

? Pictures are nicer in the operad O(WD) than WD!
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Lax monoidal functors F : (V,⊗, I)→ (Cat,×, 1) are called V-algebras.

Fully faithful underlying operad functor SMonCat`
O−→ SOpd induces

V-Alg ∼= SOpd(OV,OCat) =: (OV)-Alg.

F : WD Cat
X=(Xin,Xout) FX subsystems category

Y =(Yin,Yout) FY
φ Fφ composite system functor

gives semantics to boxes, composite operation to wiring diagrams and
parallelizing operation to subsystems via FX × FY → F (X ⊗ Y )

X

Y

Z

A
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Algebra of contracts
There is a lax monoidal functor Cntr : WD→ Cat that

• to each box XXin Xout assigns category of contracts, i.e. relations

R ⊆ Xin × Xout

• to each wiring diagram X
Y assigns formula

P R

S Yin × Xout Xin × Xout

Yin × Yout

y

(φin,π2)
1×φout

that, given contracts on subsystems, produces contract on composite.
• For each RX ⊆ Xin × Xout and RY ⊆ Yin × Yout assigns contract

RX × RY ⊆ Xin × Xout × Yin × Yout ∼= Xin × Yin × Xout × Yout

X

Y Z
R

R
A

R R

R

R
RX = [4, 5]× [4, 5], RY = [8, 9]× [8, 9]
RZ = [3, 5]× [7, 9]× R× [0, 1] produce�� ��RA = [4, 5]× [8, 9]× R× [0, 1]
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Algebra of discrete dynamical systems
Fix two sets Xin,Xout. A DDS (or Moore machine) consists of a set of
states S along with two functions, upd : Xin × S → S that updates the
state given some input, and rdt : S → Xout that readouts an output value.

s1

0
s2

1

0

1

1 0 (S = {s1, s2},upd, rdt)
is the NOT machine

Model discrete systems as a WD-algebra:

WD Cat
X=(Xin,Xout) DDS(Xin,Xout)

Y =(Yin,Yout) DDS(Yin,Yout)
φ DDS(φ)

via (S,f upd,f rdt)7→(S,gupd,grdt),

gupd(y ,s)=f upd(φin(y ,f rdt(s)),s)

grdt(s)=φout(f rdt(s))
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Systems theory in categorical terms
I The contracts algebra corresponds to the requirements part of systems
analysis and design, which is fundamental for safety and control.

I Other WD-algebras, like the discrete or continuous dynamical systems,
correspond to the behavior part, i.e. the physical specification of the
process that inhabits the boxes.

I The categorical syntax of labeled boxes and wirings corresponds to the
architecture part. Importantly, choosing subcomponents X1, . . . ,Xn of a
system Y as well as the way they are wired together (share information)
is choosing a morphism φ : X1 ⊗ . . .⊗ Xn → Y in WD , i.e. an object in
the slice category WD/Y

A B

Y

f

φ ψ
architectural choices and their relation
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Case study: UAV
? Using the sub-algebra of linear time-invariant systems, can analyze the
behavior of an unmanned aerial vehicle and also decompose it to a system
architecture and constraint it via contracts.

P1

I1

I2

P2 V

X
Y
Z
U

F

C
UAV

L D

I1⊗I2⊗P1⊗P2⊗V⊗X⊗Y⊗Z⊗U⊗F f⊗g⊗h−−−−→ L⊗C⊗D k−→ UAV
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Modeling Time: Categories of intervals
R≥0 positive reals, Trp : R≥0 → R≥0 translation-by-p.

I Category Int of continuous intervals has objects R≥0, morphisms
Int(`, `′) = {Trp|p ∈ R≥0 and p ≤ `′ − `}; equivalently via image

[0, `]
p
⊆ [0, `′]

0 p p + ` `′

I Category IntN of discrete intervals, ob = N, n Trp−−→ n′ by p ∈ N.

? Int-presheaves: for A : Intop → Set , view section x ∈ A(`′) &
restriction A(Trp)(x)

0 `′p p + ` x

x|[p,p+`]
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Sheaves on intervals
For ` ∈ Int and 0 ≤ p ≤ `, the pairs p [0,p]−−→ `, (`-p) [p,`]−−→ ` form a cover
for `. These generate a coverage for Int; similarly for IntN .

? Ĩnt and ˜IntN are the toposes of continuous and discrete interval
sheaves, i.e. Int(N)-presheaves whose compatible sections glue.

Idea: Ĩnt(N)-labeled boxes have ports carrying very general time-based
signals, expressed as sheaves of ‘all possible behaviors’.

Examples
• ˜IntN ' Grph, so every graph gives a discrete interval sheaf
• L : Set→ ˜IntN by L(X )(n) = Xn+1, non-empty X -lists sheaf
• F : Set→ Ĩnt by F(X )(`) = {f : [0, `]→ X}, sheaf of functions
• Extε : Ĩnt→ Ĩnt by Extε(A)(`) = A(`+ ε), ε-extension sheaf
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Abstract machines

Purpose: define abstract systems in terms of Int-sheaves; perceive known
dynamical systems as special cases; coherently interconnect arbitrary

systems and study their behavior on common ground.

I A continuous machine with input & output A & B ∈ Ĩnt is

S

A B

pi po S - state sheaf
pi - input sheaf map
po - output sheaf map

Mch(A,B) = Ĩnt/A×B the topos of continuous (A,B)-machines.

I For A,B ∈ ĨntN , discrete machines MchN(A,B) = ĨntN/A×B.
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Continuous machines form a WDĨnt-algebra
Functor Mch : WDĨnt → Cat by (Xin,Xout) 7→ Mch(Xin,Xout) and

S T S

Yin × Xout Xin × Xout

Xin × Xout Yin × Yout

(pi ,po ) Mch(φ)7−−−−→

y
(qi ,qo ) (pi ,po )

(φin,π2)

1×φout

In fact, for any C with pullbacks, this process is

C/Xin × Xout
(φin,π2)∗−−−−−→ C/Yin × Xout

(1×φout)!−−−−−−→ C/Yin × Yout.

Finally, lax monoidal structure by taking products of spans:

(S (pi ,po )−−−→ Xin × Xout,T
(qi ,qo )−−−→ Zin × Zout) 7→ (pi×qi ,po×qo)
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Total and deterministic machines

Characteristics of interest: for initial state and input, the machine
• uniquely evolves or ‘stays idle’ determinism
• always evolves totality

I Continuous machines SA B are neither in general:

0 `

•s0

•a0
s′

s

a A(`)

S(`)
pi
`

Starting in state germ s0, for
input a over `-interval, there

may or may not be s0-extension

? A total machine would have at least one extension, whereas a
deterministic machine would have maximum one extension.
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? There exist subalgebras of Mch(N) : WDĨnt → Cat of total and
deterministic machines, by imposing conditions on pi and qi .

I There are algebra maps from discrete dynamical systems

WDSet Cat

WDĨntN

DDS

Mchtd
N

α

and from continuous dynamical systems

WDEuc Cat

WDĨnt

CDS

Mch

β

Algebra maps ‘translate’ between various processes; can then interconnect
arbitrary systems & study them on common ground.



Thank you for your attention!
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