Abstract Systems and Sheaves

Patrick Schultz¹, David Spivak¹, Christina Vasilakopoulou²

¹Massachusetts Institute of Technology

²Université libre de Bruxelles

DPMMS, University of Cambridge

21 February 2017

Goal: categorical framework for modeling and analysis of systems

systems as boxes inhabitants

channels of info flow as wires

- Coherent zoom in/out subsystems, due to *compositionality* [operad algebras]
- Appropriate notions of time for abstract systems [sheaves]

Analyse the behavior of the composite system using analysis of the particular systems components and their wired interconnection.

Machines

Total and deterministic

- 1. The operad of wiring diagrams
- 2. Interval sheaves
- 3. Continuous and discrete machines
- 4. Total and deterministic variations

From monoidal categories to operads

 \star **SMonCat**_{ℓ}: 2-category of symmetric monoidal categories, braided lax monoidal functors, monoidal natural transformations

 \star SMonCat $_{\ell}(\mathcal{V}, Cat)$: category of $\mathcal{V}\text{-}algebras$ and $\mathcal{V}\text{-}algebra$ maps

A symmetric colored operad \mathcal{P} consists of a set $\mathrm{ob}\mathcal{P}$, hom-sets of (permutation-stable) *n*-ary operations $\mathcal{P}(c_1, \ldots, c_n; c)$, identities $\mathrm{id}_c \in \mathcal{P}(c; c)$ and an (associative, unital) composition formula.

* **SOpd**: 2-category with operad functors, operad transformations

The fully faithful *underlying operad functor* **SMonCat**_{ℓ} $\xrightarrow{\mathcal{O}}$ **SOpd** given by $\mathcal{OV}(c_1, \ldots, c_n; c) = \mathcal{V}(c_1 \otimes \ldots \otimes c_n, c)$, induces

 \mathcal{V} -Alg \cong SOpd($\mathcal{OV}, \mathcal{O}$ Cat) =: (\mathcal{OV})-Alg.

Monoidal category of wiring diagrams

A *C*-typed finite set is X together with typing function $X \xrightarrow{\tau} obC$; obtain an arrow category **TFS**_C, cocartesian monoidal.

The monoidal category of wiring diagrams $\mathcal{W}_{\mathcal{C}}$:

• objects are labeled boxes, i.e. $X = (X^{\mathrm{in}}, X^{\mathrm{out}}) \in \mathsf{TFS}^2_\mathcal{C}$

think of $X^{in/out}$ -elements as ports, their types as possible info values

• morphisms are $(X^{\text{in}} \xrightarrow{\phi^{\text{in}}} X^{\text{out}} + Y^{\text{in}}, Y^{\text{out}} \xrightarrow{\phi^{\text{out}}} X^{\text{out}}) \in \mathsf{TFS}^2_{\mathcal{C}}$

think of $\phi^{ m in/out}$ expressing	
which port is fed info by whicl	n

• tensor product is $X_1 \oplus X_2 = (X_1^{\mathrm{in}} + X_2^{\mathrm{in}}, X_1^{\mathrm{out}} + X_2^{\mathrm{out}})$

think of parallel placement of boxes

If \mathcal{C} finitely complete, dependent product $\widehat{X} = \prod_x \tau(x)$ gives strong monoidal (-): **TFS**_{\mathcal{C}}^{\operatorname{op}} \to \mathcal{C} \longrightarrow passage to \mathcal{C} -context.

Aim: model systems as algebras for $W_{\mathcal{C}}$, equivalently for $\mathcal{OW}_{\mathcal{C}}$; monoidal world for formal language, operadic world for visual.

 $F: \mathcal{W}_{\mathcal{C}} \to \mathbf{Cat}$ gives semantics to boxes, composite formula to wiring diagrams $F(X_1) \times \ldots \times F(X_n) \to F(X_1 + \ldots + X_n) \xrightarrow{F\phi} FY$.

Discrete Dynamical Systems

A DDS with input *A*, output *B* is set of states *S*, $A \times S \xrightarrow{f^{\text{upd}}} S$, $S \xrightarrow{f^{\text{rdt}}} B$; objects of category DDS(A, B). Model as \mathcal{W}_{Set} -algebra:

$$\begin{array}{ccc} \mathcal{W}_{\mathsf{Set}} & \longrightarrow \mathsf{Cat} \\ X = (X^{\mathrm{in}}, X^{\mathrm{out}}) & \longmapsto \mathsf{DDS}(\widehat{X^{\mathrm{in}}}, \widehat{X^{\mathrm{out}}}) & & \mathrm{via}\; (S, f^{\mathrm{upd}}, f^{\mathrm{rdt}}) \mapsto (S, g^{\mathrm{upd}}, g^{\mathrm{rdt}}), \\ \phi \downarrow & \downarrow \mathsf{DDS}(\phi) & & g^{\mathrm{upd}}(y, s) = f^{\mathrm{upd}}(\widehat{\phi^{\mathrm{in}}}(y, f^{\mathrm{rdt}}(s)), s) \\ Y = (Y^{\mathrm{in}}, Y^{\mathrm{out}}) & \longmapsto \mathsf{DDS}(\widehat{Y^{\mathrm{in}}}, \widehat{Y^{\mathrm{out}}}) & & g^{\mathrm{rdt}}(s) = \widehat{\phi^{\mathrm{out}}}(f^{\mathrm{rdt}}(s)) \end{array}$$

Categories of intervals

 $\mathbb{R}_{\geq 0}$ non-negative reals poset, $\mathsf{Tr}_{p} : \mathbb{R}_{\geq 0} \to \mathbb{R}_{\geq 0}$ translation-by-p.

▶ Category Int of *continuous intervals* has objects $\mathbb{R}_{\geq 0}$, morphisms Int $(\ell, \ell') = {\text{Tr}_p | p \in \mathbb{R}_{\geq 0} \text{ and } p \leq \ell' - \ell}$; equivalently via image

▶ Category Int_N of *discrete intervals*, $ob = \mathbb{N}$, $n \xrightarrow{\mathsf{Tr}_{p}} n'$ by $p \in \mathbb{N}$.

If A: Int^{op} \rightarrow Set, view section $x \in A(\ell')$ & restriction $A(\operatorname{Tr}_p)(x)$

The *twisted arrow* category C_{tw} has objects C-arrows and maps $(u, v): f \to g$ commuting $\underset{\leftarrow v}{f \downarrow} \underset{\leftarrow v}{\downarrow}_{g}$. If \mathcal{R} , \mathcal{N} are the monoids $\mathbb{R}_{\geq 0}, \mathbb{N}$ viewed as one-object categories, $\mathbf{Int} = \mathcal{R}_{tw} \& \mathbf{Int}_N = \mathcal{N}_{tw}$.

Sheaves on intervals

[Johnstone site for C_{tw} ,1999] For $\ell \in Int$ and $0 \le p \le \ell$, the pairs $[0, p]: p \to \ell$, $[p, \ell]: (\ell - p) \to \ell$ form a cover for ℓ . These generate a coverage for Int; similarly for Int_N.

* Int and Int_N are the toposes of *continuous* and *discrete interval* sheaves, i.e. $Int_{(N)}$ -presheaves whose compatible sections glue.

Idea: $Int_{(N)}$ -labeled boxes have ports carrying very general time-based signals, expressed as sheaves of 'all possible behaviors'.

Examples

- $\widetilde{Int}_N \simeq \mathbf{Grph}$, so every graph gives a discrete interval sheaf
- L: Set $\rightarrow \widetilde{Int_N}$ by L(X)(n) = Xⁿ⁺¹, non-empty X-lists sheaf
- F: Set $\rightarrow \widetilde{Int}$ by $F(X)(\ell) = \{f : [0, \ell] \rightarrow X\}$, sheaf of functions
- $\operatorname{Ext}_{\epsilon} : \operatorname{\widetilde{Int}} \to \operatorname{\widetilde{Int}}$ by $\operatorname{Ext}_{\epsilon}(A)(\ell) = A(\ell + \epsilon)$, ϵ -extension sheaf

Machines

Total and deterministic

Abstract machines

Purpose: define abstract systems in terms of **Int**-sheaves; perceive known dynamical systems as special cases; coherently interconnect arbitrary systems and study their behavior on common ground.

Characteristics of interest: for initial state and input, the machine

- uniquely evolves or 'stays idle' view determinism
- always evolves ~~> totality

A continuous machine with input & output $A \& B \in \widetilde{Int}$ is

 $Mch(A, B) = \widetilde{Int}/_{A \times B} \text{ the topos of continuous } (A, B)\text{-machines.}$ $\blacktriangleright \text{ For } A, B \in \widetilde{Int}_N, \text{ discrete machines } Mch_N(A, B) = \widetilde{Int}_N/_{A \times B}.$ Interval Sheaves

Machines

Neither deterministic nor total: for input *a* over ℓ -interval, there may or may not be *s*₀-extension

Continuous machines form a $\mathcal{W}_{\overline{Int}}$ -algebra Functor Mch: $\mathcal{W}_{\overline{Int}} \rightarrow Cat$ by $(X^{\mathrm{in}}, X^{\mathrm{out}}) \mapsto \mathsf{Mch}(\widehat{X^{\mathrm{in}}}, \widehat{X^{\mathrm{out}}})$ and

Lax monoidal by taking products of spans.

Total, deterministic and inertial maps

Left restriction $(-)|_{[0,\ell]} \colon A(\ell + \epsilon) \to A(\ell)$ gives $\lambda_A \colon \mathsf{Ext}_{\epsilon} \mathsf{A} \to \mathsf{A}$.

▶ An interval sheaf map $p: S \to A$ is *total* (resp. *deterministic*) when the induced h^{ϵ} has surjective (resp. injective) 0-component.

However: machines with total/det input do *not* form W-algebra! An interval sheaf map $q: S \to B$ is ϵ -inertial when it factors as

$$ar{q}_\ell \colon S(\ell) o B(\ell+\epsilon)$$

Current state determines not only current output, but ϵ -more

 $\star Mch^t_{(N)}(A, B)$ are machines with total input and inertial output, $Mch^d_{(N)}(A, B)$ with deterministic input and inertial output.

These form subalgebras of $\mathsf{Mch}_{(\mathsf{N})}\colon \mathcal{W}_{\widetilde{\mathsf{Int}}}\to \mathsf{Cat},$ i.e. they are closed under wiring diagrams composition.

Discrete Dynamical Systems as discrete (tot & det) machines

Realize via algebra map whose components DDS(X) $\xrightarrow{\alpha_x} Mch_N^{td}(LX) map(S, f^{upd}, f^{rdt})$ to machine $T \to L\widehat{X^{in}} \times L\widehat{X^{out}}$ with T(n) := $\{(x_0, \dots, s_n) \in (\widehat{X^{in}} \times S)^n | s_{i+1} = f^{upd}(x_i, s_i)\}.$

Wiring diagram algebra maps allow the translation between the various notions of systems, in a natural and flexible way.

Thank you for your attention!

