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Goal: categorical framework for modeling and analysis of systems

channels of info
flow as wires

systems as boxes
inhabitants

• Coherent zoom in/out subsystems, due to compositionality
[operad algebras]

• Appropriate notions of time for abstract systems [sheaves]

Analyse the behavior of the composite system using analysis of the
particular systems components and their wired interconnection.
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Outline

1. The operad of wiring diagrams
2. Interval sheaves
3. Continuous and discrete machines
4. Total and deterministic variations
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From monoidal categories to operads
? SMonCat`: 2-category of symmetric monoidal categories,
braided lax monoidal functors, monoidal natural transformations

? SMonCat`(V,Cat): category of V-algebras and V-algebra maps

A symmetric colored operad P consists of a set obP, hom-sets of
(permutation-stable) n-ary operations P(c1, . . . , cn; c), identities
idc ∈ P(c; c) and an (associative, unital) composition formula.

? SOpd: 2-category with operad functors, operad transformations

The fully faithful underlying operad functor SMonCat`
O−→ SOpd

given by OV(c1, . . . , cn; c) = V(c1 ⊗ . . .⊗ cn, c), induces

V-Alg ∼= SOpd(OV,OCat) =: (OV)-Alg.
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Monoidal category of wiring diagrams
A C-typed finite set is X together with typing function X τ−→ obC;
obtain an arrow category TFSC , cocartesian monoidal.
The monoidal category of wiring diagrams WC :

• objects are labeled boxes, i.e. X = (X in,X out) ∈ TFS2
C

X
a1
...
am

b1...
bn

think of X in/out-elements as ports,
their types as possible info values

• morphisms are (X in φin
−−→ X out +Y in,Y out φout

−−→ X out) ∈ TFS2
C

Y
X

think of φin/out expressing
which port is fed info by which

• tensor product is X1 ⊕ X2 = (X1
in + X2

in,X1
out + X2

out)

X1

X2
think of parallel placement of boxes
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If C finitely complete, dependent product X̂ =
∏

x τ(x) gives
strong monoidal (̂−) : TFSop

C → C passage to C-context.

Aim: model systems as algebras for WC , equivalently for OWC ;
monoidal world for formal language, operadic world for visual.

F : WC → Cat gives semantics to boxes, composite formula to
wiring diagrams F (X1)× . . .× F (Xn)→ F (X1 + . . .+Xn) Fφ−−→ FY .

Discrete Dynamical Systems

A DDS with input A, output B is set of states S, A× S f upd
−−−→ S,

S f rdt
−−→ B; objects of category DDS(A,B). Model as WSet-algebra:

WSet Cat

X=(X in,Xout) DDS(X̂in,X̂out)

Y =(Y in,Y out) DDS(Ŷin,Ŷout)

φ DDS(φ)

via (S,f upd,f rdt)7→(S,gupd,grdt),

gupd(y ,s)=f upd(φ̂in(y ,f rdt(s)),s)

grdt(s)=φ̂out(f rdt(s))
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Categories of intervals
R≥0 non-negative reals poset, Trp : R≥0 → R≥0 translation-by-p.

I Category Int of continuous intervals has objects R≥0, morphisms
Int(`, `′) = {Trp|p ∈ R≥0 and p ≤ `′ − `}; equivalently via image

[0, `]
p
⊆ [0, `′]

0 p p + ` `′

I Category IntN of discrete intervals, ob = N, n Trp−−→ n′ by p ∈ N.

If A : Intop → Set, view section x ∈ A(`′) & restriction A(Trp)(x)

0 `′p p + ` x

x|[p,p+`]

The twisted arrow category Ctw has objects C-arrows and maps
(u, v) : f → g commuting f

u
g .

v
If R, N are the monoids

R≥0,N viewed as one-object categories, Int=Rtw & IntN =Ntw .
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Sheaves on intervals
[Johnstone site for Ctw ,1999] For ` ∈ Int and 0 ≤ p ≤ `, the pairs
[0, p] : p → `, [p, `] : (`-p)→ ` form a cover for `. These generate
a coverage for Int; similarly for IntN .

? Ĩnt and ˜IntN are the toposes of continuous and discrete interval
sheaves, i.e. Int(N)-presheaves whose compatible sections glue.

Idea: Ĩnt(N)-labeled boxes have ports carrying very general
time-based signals, expressed as sheaves of ‘all possible behaviors’.

Examples
• ˜IntN ' Grph, so every graph gives a discrete interval sheaf
• L: Set→ ˜IntN by L(X)(n) = Xn+1, non-empty X -lists sheaf
• F: Set→ Ĩnt by F(X)(`) = {f : [0, `]→ X}, sheaf of functions
• Extε : Ĩnt→ Ĩnt by Extε(A)(`) = A(`+ ε), ε-extension sheaf
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Abstract machines
Purpose: define abstract systems in terms of Int-sheaves; perceive
known dynamical systems as special cases; coherently interconnect
arbitrary systems and study their behavior on common ground.

Characteristics of interest: for initial state and input, the machine
• uniquely evolves or ‘stays idle’ determinism
• always evolves totality

I A continuous machine with input & output A & B ∈ Ĩnt is

S

A B

pi po S - state sheaf
pi - input sheaf map
po - output sheaf map

Mch(A,B) = Ĩnt/A×B the topos of continuous (A,B)-machines.

I For A,B ∈ ĨntN , discrete machines MchN(A,B) = ĨntN/A×B.
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0 `

•s0

•a0
s′

s

a A(`)

S(`)
pi
`

Neither deterministic nor total:
for input a over `-interval, there
may or may not be s0-extension

Continuous machines form a WĨnt-algebra
Functor Mch: WĨnt → Cat by (X in,X out) 7→ Mch(X̂in, X̂out) and

S T S

Ŷ in × X̂ out X̂ in × X̂ out

X̂ in × X̂ out Ŷ in × Ŷ out

(pi ,po ) Mch(φ)7−−−−→

y
(qi ,qo ) (pi ,po )

(φ̂in,π2)

1×φ̂out

Lax monoidal by taking products of spans.
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Total, deterministic and inertial maps
Left restriction (−)|[0,`] : A(`+ ε)→ A(`) gives λA : ExtεA→ A.
I An interval sheaf map p : S → A is total (resp. deterministic)
when the induced hε has surjective (resp. injective) 0-component.

ExtεS

T S

ExtεA A

λS

Extεp

hε

y p

λA

T (0) = {(a, s0) ∈ A(ε)× S(0)
∣∣p(s0) = a|[0,0]}

If hε0 : Extε(0)→ T(0) is epi, for (a, s0) ∈ T (0)
∃s ∈ S(ε) that extends it: s|[0,0] = s0, p(s) = a

However: machines with total/det input do not form W-algebra!
I An interval sheaf map q : S → B is ε-inertial when it factors as

S
ExtεB

B

q̄

q

λB

q̄` : S(`)→ B(`+ ε)

Current state determines not
only current output, but ε-more
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? Mcht
(N)(A,B) are machines with total input and inertial output,

Mchd
(N)(A,B) with deterministic input and inertial output.

These form subalgebras of Mch(N) : WĨnt → Cat, i.e. they are
closed under wiring diagrams composition.

Discrete Dynamical Systems as discrete (tot & det) machines

WSet Cat

WĨntN

DDS

WL Mchtd
N

α

Realize via algebra map whose components
DDS(X) αx−→ Mchtd

N (LX) map (S, f upd, f rdt)
to machine T → LX̂ in × LX̂ out with T (n) :=
{(x0, . . . , sn) ∈ (X̂ in × S)n|si+1 = f upd(xi , si )}.

Wiring diagram algebra maps allow the translation between the
various notions of systems, in a natural and flexible way.
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Thank you for your attention!
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