Enriched Fibration

Christina Vasilakopoulou

University of Cambridge

CT2014 - University of Cambridge, UK

- Motivation
- 2 Enrichment via actions
- Fibred context
- Applications

Co-monoids and co-modules in monoidal categories

For any monoidal $(\mathcal{V}, \otimes, I)$, there are categories **Mon** (\mathcal{V}) and **Comon** (\mathcal{V}) with objects (A, m, η) and (C, δ, ϵ) respectively. * If \mathcal{V} symmetric, they inherit (symmetric) monoidal structure:

 $A \otimes B \otimes A \otimes B \xrightarrow{\cong} A \otimes A \otimes B \otimes B \xrightarrow{m \otimes m} A \otimes B, \ I \cong I \otimes I \xrightarrow{\eta \otimes \eta} A \otimes B$

For fixed A and C, have categories $Mod_{\mathcal{V}}(A)$ and $Comod_{\mathcal{V}}(C)$ of A-modules (M, μ) and C-comodules (X, δ) . There exist functors

• The Grothendieck construction gives *global categories* of modules and comodules: **Mod** \xrightarrow{fibr} **Mon**(\mathcal{V}), **Comod** \xrightarrow{opfibr} **Comon**(\mathcal{V}).

Suppose $\ensuremath{\mathcal{V}}$ is a symmetric monoidal closed , locally presentable category.

 $Mon(\mathcal{V})^{\mathrm{op}}$ and $Mon(\mathcal{V})$ are enriched in the symmetric monoidal $Comon(\mathcal{V})$.

 $\textit{Proof:} \quad \text{Internal hom functor } [-,-]: \mathcal{V}^{\mathrm{op}} \times \mathcal{V} \to \mathcal{V} \text{ induces}$

$$H: \operatorname{Comon}(\mathcal{V})^{\operatorname{op}} \times \operatorname{Mon}(\mathcal{V}) \longrightarrow \operatorname{Mon}(\mathcal{V})$$
$$(C, B) \longmapsto [C, B]$$

(local presentability lifts to $\textbf{Comon}(\mathcal{V})) \rightsquigarrow \mathcal{H}^{\mathrm{op}}$ has a parametrized adjoint

$$P: \mathsf{Mon}(\mathcal{V})^{\mathrm{op}} imes \mathsf{Mon}(\mathcal{V}) \longrightarrow \mathsf{Comon}(\mathcal{V})$$

which gives the hom-objects of the enrichment.

* P(A, B) generalizes Sweedler's universal measuring coalgebra $\operatorname{Alg}_k(A, \operatorname{Hom}_k(C, B)) \cong \operatorname{Coalg}_k(C, P(A, B)).$ Global categories of modules and comodules also inherit symmetric monoidal structure from $\mathcal{V}{:}$

$$X_C \otimes Y_D \xrightarrow{\delta \otimes \delta} X \otimes C \otimes Y \otimes D \xrightarrow{\cong} X \otimes Y \otimes C \otimes D.$$

 $\mathbf{Mod}^{\mathrm{op}}$ and \mathbf{Mod} are enriched in the symmetric monoidal $\mathbf{Comod}.$

Proof: Internal hom functor lifts to global categories

$$\bar{H}: \operatorname{\mathbf{Comod}}^{\operatorname{op}} \times \operatorname{\mathbf{Mod}} \longrightarrow \operatorname{\mathbf{Mod}} \\
(X_C, N_B) \longmapsto [X, N]_{[C, B]}$$

(general fibred adjunctions theory) $\rightsquigarrow \bar{H}^{\rm op}$ has a parametrized adjoint

$$Q: \operatorname{\mathsf{Mod}^{\operatorname{op}}} imes \operatorname{\mathsf{Mod}} \longrightarrow \operatorname{\mathsf{Comod}}$$

which is the enriched hom-functor.

* Q(M, N) generalizes Batchelor's universal measuring comodule $Mod_A(M, Hom_k(X, N)) \cong Comod_C(X, Q(M, N)).$ An *action* of a monoidal category \mathcal{V} on an ordinary category \mathcal{D} is given by a functor $*: \mathcal{V} \times \mathcal{D} \to \mathcal{D}$ with coherent isomorphisms

$$\tau_{XYA}: (X \otimes Y) * A \xrightarrow{\sim} X * (Y * A), \quad \nu_A: I * A \xrightarrow{\sim} A.$$

Theorem

To give a category D with an action * of a monoidal closed V with a parametrized adjoint is to give a tensored V-enriched category:

 $\mathcal{V}\text{-}\mathsf{Rep}_{\mathrm{cl}}\simeq\mathcal{V}\text{-}\mathsf{Cat}_{\otimes}.$

If - $* D \dashv F(D, -)$ for all $D \in D$, there is a V-category A with $A_0 = D$ and $F(D, D') \in V$ the hom-objects.

* E.g. *H* and \overline{H} are actions with adjoints *P* and *Q*.

• A monoidal \mathcal{V} is a pseudomonoid in the cartesian monoidal 2-category (**Cat**, \times , **1**).

· A \mathcal{V} -representation ($\mathcal{D},*$) is a \mathcal{V} -pseudomodule in (**Cat**, $\times,$ **1**).

Idea: move from $(Cat, \times, 1)$ to $(Fib, \times, 1_1)!$

- 0-cells are fibrations;
- 1-cells are commutative squares

where S preserves cartesian arrows;

• 2-cells are pairs of natural transformations

with $Q\alpha = \beta_P$.

• (pseudomonoid) A monoidal fibration $T : \mathcal{V} \to \mathbb{W}$ is a strict monoidal functor between monoidal categories , such that $\otimes_{\mathcal{V}}$ preserves cartesian arrows.

• (pseudomodule) A *T*-representation is a fibration $P : \mathcal{A} \to \mathbb{X}$ where \mathcal{V} acts on \mathcal{A} , \mathbb{W} acts on \mathbb{X} , $*_{\mathcal{A}}$ is cartesian and P strictly preserves the action constraints.

• (parametrized adjunction) For a fibred 1-cell 'of two variables'

a fibred parametrized adjoint is a functor in Cat^2

$$\begin{array}{ccc} \mathcal{B}^{\mathrm{op}} \times \mathcal{C} & \xrightarrow{R} \mathcal{A} \\ J^{\mathrm{op}} \times \mathcal{K} & & \downarrow \mathcal{H} \\ \mathbb{Y}^{\mathrm{op}} \times \mathbb{Z} & \xrightarrow{S} \mathbb{X} \end{array}$$

s.t. $F(-, B) \dashv R(B, -)$, $G(-, Y) \dashv S(Y, -)$ and R(B, -) cartesian.

- The fibration P is *enriched* in the monoidal fibration T when
 - $\cdot \ \mathcal{A}$ is $\mathcal{V}\text{-enriched}, \ \mathbb{X}$ is $\mathbb{W}\text{-enriched}$ and

- composition and identities of enrichments are compatible, i.e. $TM_{A,B,C}^{\mathcal{A}} = M_{PA,PB,PC}^{\mathbb{X}}$ and $Tj_{A}^{\mathcal{A}} = j_{PA}^{\mathbb{X}}$; • $\mathcal{A}(A, -)$ is cartesian.
- * When P is enriched in T, it is also a \mathbb{W} -enriched functor between $T_{\bullet}A$ (via change of base) and \mathbb{X} .

Theorem

Suppose a monoidal fibration T acts on P. If the action has a fibred parametrized adjoint, then we can enrich P in T.

Back to (co)monoids and (co)modules. Consider the opfibrations Mod^{op} Comod \downarrow & \downarrow : $Mon(\mathcal{V})^{op}$ Comon(\mathcal{V})

- $V : \textbf{Comod} \rightarrow \textbf{Comon}(\mathcal{V})$ is a monoidal opfibration;
- \bullet $Mod^{\rm op}$ is enriched in Comod, $Mon(\mathcal{V})^{\rm op}$ in $Comon(\mathcal{V})$ and

$$\mathsf{Mod}^{\mathrm{op}} \times \mathsf{Mod} \xrightarrow{Q} \mathsf{Comod} \\ \downarrow & & \downarrow \\ \mathsf{Mon}(\mathcal{V})^{\mathrm{op}} \times \mathsf{Mon}(\mathcal{V}) \xrightarrow{P} \mathsf{Comon}(\mathcal{V});$$

- composition laws and identities are compatible;
- $Q(-, N_B)$ preserves cartesian liftings (...)

The opfibration $Mod^{\mathrm{op}} \to Mon(\mathcal{V})^{\mathrm{op}}$ is enriched in the monoidal opfibration $Comod \to Comon(\mathcal{V})$.

Further steps: context of \mathcal{V} -categories and \mathcal{V} -modules, \mathcal{V} -operads and modules, enriched fibred theory

Thank you for your attention!

G. Janelidze and G. M. Kelly.

A note on actions of a monoidal category. Theory Appl. Categ., 9:61–91, 2001/02. CT2000 Conference (Como).

Hans-E. Porst.

On categories of monoids, comonoids, and bimonoids. Quaest. Math., 31(2):127–139, 2008.