Welcome to Math 009B!

Antiderivatives and Indefinite Integrals

Idea: determine a function, if you know its derivative.
An antiderivative of $f(x)$ is a function $F(x)$ such that $F^{\prime}(x)=f(x)$.
The indefinite integral of f is the set of all antiderivatives of f, written

$$
\int f(x) d x
$$

\star There are infinitely many antiderivatives, and they all differ by some constant C.

- \int is the integration symbol, $f(x)$ is the integrand, $d x$ is the differential of x, write $\int f(x) d x=F(x)+C$ for some antiderivative $F(x)$ of f.

Standard antiderivatives and properties

(1) $\int x^{n} d x=\frac{x^{n+1}}{n+1}+C_{(n \neq-1)}$
(6) $\int \frac{1}{x} d x=\ln |x|+C$
(2) $\int e^{x} d x=e^{x}+C$
(0) $\int a^{x} d x=\frac{a^{x}}{\ln a}+C$
(3) $\int \sin (x) d x=-\cos (x)+C$
(1) $\int \cos (x) d x=\sin (x)+C$
(9) $\int \frac{1}{x^{2}+1} d x=\arctan (x)+C$
(8) $\int \sec ^{2}(x) d x=\tan (x)+C$

- $\int(f(x) \pm g(x)) d x=\int f(x) d x+\int g(x) d x$
- $\int(k \cdot f(x)) d x=k \cdot \int f(x) d x$ for a constant number k
- $\int(f(x) \cdot g(x)) d x \neq\left(\int f(x) d x\right) \cdot\left(\int g(x) d x\right)$ NOT TRUE
* Differentiation and antidifferentiation are "inverse operations":

$$
\frac{d}{d x}\left(\int f(x) d x\right)=f(x)!
$$

Initial Value Problems: use an initial condition $f\left(x_{0}\right)=y_{0}$ to determine the constant C, i.e. a specific antiderivative out of them all!

- $f(x)=\int f^{\prime}(x) d x$, but also $f^{\prime}(x)=\int f^{\prime \prime}(x) d x$ and so on \ldots

Work out the following:
(1) $\int 3 x^{5} d x=\frac{x^{6}}{2}+C$
(2) $\int\left(\frac{5}{x}-2\right) d x=5 \ln |x|=2 x+C$
(3) $\int(6 \sin (t)+4 \sqrt[3]{t}) d t=-6 \cos (t)+3 \sqrt[3]{t^{4}}+C$
(9) Find $f(x)$, if $f^{\prime \prime}(x)=5, f^{\prime}(0)=7, f(0)=3$. $f(x)=\frac{5 x^{2}}{2}+7 x+3$

The Definite Integral

Idea: indefinite integrals=antiderivatives, definite integrals=signed areas!
If $y=f(x)$ is defined on a closed interval $[a, b]$, the definite integral of f on $[a, b]$ is the total signed area from $x=a$ to $x=b$ under $f(x)$:

$$
\int_{a}^{b} f(x) d x=[\text { area above } x \text {-axis }]-[\text { area below } x \text {-axis }]=A_{+}-A_{-}
$$

The endpoints a and b are called the bounds of integration.

Properties of the Definite Integral

(1) $\int_{a}^{a} f(x) d x=0$
(2) $\int_{a}^{b} f(x) d x=-\int_{b}^{a} f(x) d x$
(3) $\int_{a}^{b} k f(x) d x=k \int_{a}^{b} f(x) d x$
(9) $\int_{a}^{b}(f(x) \pm g(x)) d x=\int_{a}^{b} f(x) d x \pm \int_{a}^{b} g(x) d x$
(5) $\int_{a}^{b} f(x) d x=\int_{a}^{c} f(x) d x+\int_{\mathbf{c}}^{b} f(x) d x \quad$ for any \mathbf{c}

Approximating areas

What if we cannot use geometry to evaluate areas?
\star Compute an area by dividing in rectangular regions and summing.
A partition P of an interval $[a, b]$ is a collection of subintervals

$$
\left[a, x_{1}\right],\left[x_{1}, x_{2}\right], \ldots,\left[x_{n-1}, b\right]
$$

 he length of k-th subinterval $\left[x_{k-1}, x_{k}\right]$ is written Δx_{k}; if all equal, Δx.

- We can use any point of the subinterval (e.g. left endpoint, midpoint, right endpoint etc.) to form the rectangles.

Work out the following:
(1) Compute $\int_{-1}^{2}(x-1) d x$ by finding the respective area. $-\frac{3}{2}$
(2) Approximate $\int_{1}^{2}(x-1) d x$ using 2 subintervals and right endpoints. $\frac{3}{4}$
(3) Calculate the following antiderivative $\int x\left(1-x^{2}\right) d x \cdot \frac{x^{2}}{2}-\frac{x^{4}}{4}+C$

Riemann Sums

- Tool for summation? Sigma notation!

For any real numbers $a_{1}, a_{2}, \ldots, a_{n}$, we write

$$
\sum_{k=1}^{n} a_{k}=a_{1}+a_{2}+\ldots+a_{n}
$$

Properties of Sums

(1) $\sum_{k=1}^{n} 1=n$
(9) $\sum_{k=1}^{n} k=\frac{n(n+1)}{2}$
(2) $\sum_{k=1}^{n}\left(a_{k}+b_{k}\right)=\sum_{k=1}^{n} a_{k}+\sum_{k=1}^{n} b_{k}$
(6) $\sum_{k=1}^{n} k^{2}=\frac{n(n+1)(2 n+1)}{6}$
(3) $\sum_{k=1}^{n} c \cdot a_{k}=c \cdot \sum_{k=1}^{n} a_{k}$
(0) $\sum_{k=1}^{n} k^{3}=\frac{n^{2}(n+1)^{2}}{4}$
\star The finer the partition, i.e. the larger the number n of subintervals - the shorter their length, the better the area approximation.

What if the number of subintervals approaches infinity?

Definite Integral via Riemann sums

Let $P=\left[a, x_{1}, \ldots, x_{n-1}, b\right]$ partition of $[a, b]$, and $c_{k} \in\left[x_{k-1}, x_{k}\right]$. The definite integral of a function f from a to b is

$$
\int_{a}^{b} f(x) d x=\lim _{n \rightarrow \infty} \sum_{k=1}^{n} \overbrace{\Delta x}^{\text {base height }} \overbrace{f\left(c_{k}\right)}
$$

The Fundamental Theorem of Calculus

Idea: definite integrals are antiderivatives!

Fundamental Theorem of Calculus (FTC), pt. 1

Suppose f is continuous on $[a, b]$. Then the function defined as

$$
F(x)=\int_{a}^{x} f(t) d t, \quad a \leq t \leq b
$$

is differentiable on (a, b), with

$$
\frac{d}{d x}\left(\int_{a}^{x} f(t) d t\right)=\mathrm{F}^{\prime}(\mathrm{x})=\mathrm{f}(\mathrm{x})
$$

Work out the following:
(1) Approximate $\int_{0}^{3}(3 x-5) d x$ using 3 subintervals and midpoints. $-\frac{3}{2}$
(2) Compute $\frac{d}{d x} \int_{-5}^{x}\left(\sin (t)+e^{8 t}\right) d t \sin (x)+e^{8 x}$

Definite integrals and average values

FTC1 says $F(x)=\int_{c}^{x} f(t) d t$ is an antiderivative of $f(x): F^{\prime}(x)=f(x)$.
Fundamental Theorem of Calculus (FTC), pt. 2
If f is continuous on $[a, b]$, then

$$
\int_{a}^{b} f(x) d x=[F(x)]_{a}^{b}=F(b)-F(a)
$$

for $F(x)$ any antiderivative of $f(x)$. Equivalently, $F(b)-F(a)=\int_{a}^{b} F^{\prime}(x) d x$.

* Can use this in many contexts: areas under curves, net change in values of a quantity, ...

Average value of a function

If $f(x)$ is continuous on $[a, b]$, its average value on that interval is

$$
f_{\mathrm{avg}}=\frac{1}{b-a} \int_{a}^{b} f(x) d x
$$

\star In fact, the value $f_{\text {avg }}$ is the output for some input of f !
Mean Value Theorem for Definite Integrals
If f is continuous on $[a, b]$, then there exists some $c \in[a, b]$ such that

$$
f(c)(b-a)=\int_{a}^{b} f(x) d x
$$

Work out the following:
(1) Evaluate $\int_{0}^{\pi}\left(\sin (x)-e^{x}+\cos (x)\right) d x$. $3-e^{\pi}$
(2) What is the average velocity of an object on [0,3], if $v(t)=(t-1)^{2}$ ft / s ? $1 \mathrm{ft} / \mathrm{s}$
(3) For which time(s) is it accomplished? 0s, 2s

Substitution Rule, indefinite integrals

Idea: substitution rule is for integration what chain rule is for derivation!
Chain Rule: if $f(x)$ and $u(x)$ are differentiable, then

$$
(f \circ u)^{\prime}(x)=f^{\prime}(u(x)) \cdot u^{\prime}(x)
$$

Substitution Rule for Indefinite Integrals

$$
\text { If } u=u(x) \text {, then } \int f^{\prime}(u(x)) u^{\prime}(x) d x=\int f^{\prime}(u) d u=f(u)+C
$$

Work out the following: evaluate, using the substitution rule,
(1) $\int \sin (5 x+1) d x$
(2) $\begin{aligned} & \int x\left(1-3 x^{2}\right)^{7} d x \\ & \frac{-\left(1-3 x^{2}\right)^{8}}{48}+C\end{aligned}$
(3) $\begin{aligned} & \int \frac{3 x}{} \frac{3(x+4)}{x+4} d x \\ & 12 \ln |x+4|+C\end{aligned}$

Substitution Rule, definite integrals

Idea: for definite integrals, also substitute limits of integration!

Substitution Rule for Definite Integrals

$$
\int_{a}^{b} f(u(x)) \cdot u^{\prime}(x) d x=\int_{u(a)}^{u(b)} f(u) d u
$$

Work out the following: evaluate, using the substitution rule,
(1) $\int_{1}^{2} \frac{3 x^{2}+1}{\left(x^{3}+x\right)^{2}} d x \frac{2}{5}$
(2) $\int_{0}^{\pi / 2} \cos (x) e^{\sin (x)} d x e-1$
(3) $\int_{4}^{3+e} \frac{x}{3-x} d x-e-2$

Integration by Parts

Idea: integration by parts is what product rule is for derivation!
Recall: if $u=u(x)$ and $v=v(x)$ are differentiable, then

$$
(u v)^{\prime}=u^{\prime} v+u v^{\prime}
$$

Integration by parts rule

For $u(x)$ and $v(x)$ differentiable functions of x,

$$
\int u d v=u v-\int v d u
$$

\star Product: choose u to be the factor whose derivative is 'easier'!

Work out the following: evaluate, using integration by parts,
(1) $\int x \cos (x) d x x \sin x+\cos x+C$
(2) $\int_{1}^{e} 9 \sqrt{x} \ln (x) d x 2 \sqrt[3]{e^{2}}+4$

Integration by parts, techniques

$$
\int u d v=u v-\int v d u
$$

- Same way for definite integrals: $\int_{a}^{b} u d v=[u v]_{a}^{b}-\int_{a}^{b} v d u$
- Sometimes, apply IBP repeatedly: at every step, integral becomes easier
- Multiply by $1(d v=1$ so $v=x)$, if derivative of integrand is easier
- New integral has 'same level of difficulty' with initial? Do one more time and solve for it!
- Very often, first substitute and then integrate by parts

Work out the following: evaluate, using integration by parts,
(1) $\int \frac{e^{x}(\sin (x)-\cos (x))}{2}+C$
(2) $\int_{0}^{1} e^{\sqrt{x}} d x 2$

Trigonometric Integrals

Idea: use $\sin ^{2}(x)+\cos ^{2}(x)=1$ power-reducing identities to antiderive trigonometric combinations.

Integrals of the form $\int \sin ^{m}(x) \cos ^{n}(x) d x$
(1) if both m and n are even, use the 'power-reducing' identities

$$
\cos ^{2}(x)=\frac{1+\cos (2 x)}{2} \quad \sin ^{2}(x)=\frac{1-\cos (2 x)}{2}
$$

(2) if m is odd, then $m=2 k+1$ for some integer k; rewrite

$$
\sin ^{m}(x)=\sin ^{2 k+1}(x)=\overbrace{\sin ^{2 k}(x)}^{\left(\sin ^{2}(x)\right)^{k}} \cdot \sin (x)=\left(1-\cos ^{2}(x)\right)^{k} \sin (x)
$$

and substutite $u=\cos (x), d u=-\sin (x) d x$.
(3) if n is odd, similarly rewrite $\cos ^{n}(x)=\left(1-\sin ^{2}(x)\right)^{k} \cos (x)$ and substitute $u=\sin (x), d u=\cos (x) d x$.
\Rightarrow Also use $1+\tan ^{2}(x)=\sec ^{2}(x)$ for $u=\tan (x), d u=\sec ^{2}(x) d x$.

Trigonometric Substitution

Idea: need to simplify an expression $\sqrt{ \pm N \pm x^{2}}$ inside an integral? Substitute \times by some trig function of an angle θ, to create perfect squares!

$$
\sin ^{2}(\theta)+\cos ^{2}(\theta)=1
$$

$$
1+\tan ^{2}(\theta)=\sec ^{2}(\theta)
$$

Trigonometric Substitution

- whenever $\sqrt{N+x^{2}}$, substitute $x=\sqrt{N} \tan (\theta)$; then $\sqrt{N+N \tan ^{2}(\theta)}=\sqrt{N} \sec (\theta)$.
- whenever $\sqrt{N-x^{2}}$, substitute $x=\sqrt{N} \sin (\theta)$; then $\sqrt{N-N \sin ^{2}(\theta)}=\sqrt{N} \cos (\theta)$.

- whenever $\sqrt{x^{2}-N}$, substitute $x=\sqrt{N} \sec (\theta)$; then $\sqrt{N \sec ^{2}(\theta)-N}=\sqrt{N} \tan (\theta)$.

$$
\sin (2 \theta)=2 \sin (\theta) \cos (\theta) \triangleright \int \sec (\theta) d \theta=\ln |\tan (\theta)+\sec (\theta)|+C
$$

Partial Fraction Decomposition

Idea: break up rational functions $f(x)=\frac{p(x)}{d(x)}$ into simpler fractions!
Method: to decompose $p(x) / d(x)$ where $\operatorname{deg}(d(x))>\operatorname{deg}(p(x))$

1) factor $d(x)$ it into linear factors $(a x+b)^{n}$ and/or irreducible quadratic factors $\left(a x^{2}+b x+c\right)$ [no real zeros]
2a) to each linear factor $(a x+b)^{n}$, assign the sum of partial fractions

$$
\frac{A}{a x+b}+\frac{B}{(a x+b)^{2}}+\ldots+\frac{C}{(a x+b)^{n}}
$$

2 b) to each quadratic factor $\left(a x^{2}+b x+c\right)^{m}$, assign the sum

$$
\frac{A x+B}{a x^{2}+b x+c}+\frac{C x+D}{\left(a x^{2}+b x+c\right)^{2}}+\ldots+\frac{Z x+W}{\left(a x^{2}+b x+c\right)^{n}}
$$

\star After we clear denominators, how to determine A, B, \ldots ?

- plug in appropriate values for x, solve for each A, B, \ldots separately, or
- polynomial equality: if $a_{n} x^{b}+\ldots+a_{1} x+a_{0}=b_{n} x^{n}+\ldots b_{1} x+b_{0}$, solve system of respective coefficient equations! $a_{k}=b_{k} \quad \forall k$

After PFD, new integral parts can be of various forms, indicatively:

- $\int \frac{1}{x+a} d x=\ln |x+a|$ or other combos with u-sub
- $\int \frac{1}{(x+a)^{2}} d x=\frac{-1}{x+a}$ or other combos with u-sub
- $\int \frac{2 x}{x^{2}+b} d x=\ln \left|x^{2}+b\right|$ or other combos with u-sub
- $\int \frac{1}{x^{2}+1} d x=\arctan (x)$ or other combos with trig sub

Work out the following: evaluate
(1) $\int \frac{10 x}{x^{2}-3 x-4} d x 2 \ln (|x+1|)+8 \ln (|x-4|)+C$
(2) $\int \frac{1}{x^{3}+x^{2}} d x-\frac{1}{x}+\ln \left|\frac{x+1}{x}\right|+C$

Hyperbolic Functions

Idea: functions parameterizing hyperbolas, numerous physical applications

Hyperbolic Functions

(1) $\cosh (x)=\frac{e^{x}+e^{-x}}{2}$
(2) $\sinh (x)=\frac{e^{x}-e^{-x}}{2}$

All others like $\tanh (x)$ etc. formed same way as trigonometric functions.

* Very similar properties to trig counterparts, but with a twist.

Useful Properties

- $\cosh ^{2}(x)-\sinh ^{2}(x)=1$
- $\tanh ^{2}(x)+\operatorname{sech}^{2}(x)=1$
- $(\sinh (x))^{\prime}=\cosh (x)$
- $(\cosh (x))^{\prime}=\sinh (x)$
- $(\tanh (x))^{\prime}=\operatorname{sech}^{2}(x)$
- $(\operatorname{sech}(x))^{\prime}=-\operatorname{sech}(x) \tanh (x)$
- Their inverse functions are in terms of logarithms:

$$
\operatorname{arccosh}(x)=\ln \left(x+\sqrt{x^{2}-1}\right), \operatorname{arcsinh}(x)=\ln \left(x+\sqrt{x^{2}+1}\right)
$$

Improper integrals: Unbounded intervals

Idea: use limits to compute integrals whose endpoints are $\pm \infty$.
If $f(x)$ is continuous, we define the following improper integrals

$$
\begin{aligned}
>\int_{a}^{\infty} f(x) d x & =\lim _{t \rightarrow \infty} \int_{a}^{t} f(x) d x>\int_{-\infty}^{b} f(x) d x=\lim _{t \rightarrow-\infty} \int_{t}^{b} f(x) d x \\
& >\int_{-\infty}^{\infty} f(x) d x=\int_{-\infty}^{a} f(x) d x+\int_{a}^{\infty} f(x) d x
\end{aligned}
$$

* The area of an unbounded region may, or may not, approach a number!

An improper integral converges when the corresponding limit exists (has a finite value). Otherwise the improper integral diverges.

Work out the following:
(1) $\int \sinh ^{5}(x) \cosh (x) d x \frac{\sinh ^{6}(x)}{6}$ (2) $\int_{0}^{\infty} \frac{1}{(x+1)^{3}} d x$ Converges, $\frac{1}{2}$

Improper integrals: Unbounded Integrand

What about integrands being undefined on some part of interval?
Let $f(x)$ be continuous on $[a, b]$ except c where $\lim _{x \rightarrow c^{ \pm}} f(x)= \pm \infty$. (VA)

- [Left Endpoint] $\int_{c}^{b} f(x) d x=\lim _{t \rightarrow c^{+}} \int_{t}^{b} f(x) d x$
[Right Endpoint] $\int_{a}^{c} f(x) d x=\lim _{t \rightarrow c^{-}} \int_{a}^{t} f(x) d x$
[Inbetween] $\int_{a}^{b} f(x) d x=\int_{a}^{c} f(x) d x+\int_{c}^{b} f(x) d x$
If the limit exists, the imporoper integral converges; otherwise it diverges.

Improper integrals: Comparison Theorems

Convergence and Divergence of improper integrals via Comparison
[Converge] If $0 \leq f(x) \leq g(x)$ for any $x \in[a, \infty)$,

$$
0 \leq \int_{a}^{\infty} f(x) d x \leq \int_{a}^{\infty} g(x) d x
$$

implies that if $\int_{a}^{\infty} g(x) d x$ converges, so does $\int_{a}^{\infty} f(x) d x$.
\Rightarrow [Diverge] If $0 \leq h(x) \leq f(x)$ for any $x \in[a, \infty)$,

$$
0 \leq \int_{a}^{\infty} h(x) d x \leq \int_{a}^{\infty} f(x) d x
$$

For $f(x)$, find 'easier' function bounding it either from above or below and compute! implies that if $\int_{a}^{\infty} h(x) d x$ diverges, so does $\int_{a}^{\infty} f(x) d x$.

Work out the following: does this converge or diverge? If C , evaluate:
(1) $\int_{0}^{9} \frac{1}{\sqrt{9-x}} d x$ Converges, 6
(2) $\int_{0}^{\infty} e^{5-3 x} d x$ Converges, $\frac{e^{5}}{3}$

Areas between curves on the plane

If f and g continuous on $[a, b]$, with $f(x) \geq g(x)$ for all $x \in[a, b]$, the area of the region between the curves $y=f(x)$ and $y=g(x)$ from a to b is

$$
A=\int_{a}^{b}(f(x)-g(x)) d x
$$

* Always a positive number: the 'real' area between the graphs.
(1) Find endpoints (if bounds are not given, find interestecting points)
(2) Draw graphs on the plane, label endpoints, shade area
(3) Compute area; may need to split in parts bounded only by 2 curves
* Sometimes better compute areas wrt y-axis! Change perspective.

For a region bounded by $x=f(y)$ and $x=g(y), g(y) \leq f(y)$ in $[c, d]$,

$$
A=\int_{c}^{d}(f(y)-g(y)) d y \quad[f(y) \text { is to the 'right' of } g(y)]
$$

Work out the following:
(1) Find the area of the region bounded by $y=x^{2}-4$ and $y=x+2$. $\frac{125}{6}$
(2) Find the area of the region bounded by $x=y^{2}$ and $x=4$. $\frac{32}{3}$

The Volume of a Solid

Idea: split a solid into partitioned 'slices' and sum volumes up!

- Cross-section: intersection of solid and plane perpendicular to x-axis. Volume of solid of cross-sectional area $A(x)$ from a to b is $\int_{a}^{b} A(x) d x$.
* When slices are cylinders, cross-sectional areas are disks!
[Disk Method] For any solid of revolution, obtained by rotating some curve $y=f(x)$ about some axis, if $R(x)$ is the radius of a cross-section at x,

$$
V=\pi \int_{a}^{b} R^{2}(x) d x
$$

If cross-sectional area is between two curves, called washer method:

$$
V_{\text {total }}=V_{\text {out }}-V_{\text {in }}=\pi \int_{a}^{b}\left(R^{2}(x)-r^{2}(x)\right) d x
$$

Work out the following:
Volume of revolutionary solid between $y=\sqrt{x}, y=\frac{x}{2}$ about x-axis? $\frac{8 \pi}{3}$

The Shell Method

Idea: different 'slicing' of solid gives different method for finding volume!
[Shell method] For any solid of revolution around a vertical axis, bounded by $x=a$ and $x=b$, if $r(x)$ is the radius of some shell at x and $h(x)$ its height, the volume of the solid is

$$
V=2 \pi \int_{a}^{b} r(x) h(x) d x
$$

* Particularly useful when we cannot solve for x or y depending on axis.
- When the axis of rotation is the y-axis, then $r(x)=x$.
- If the region is bounded above by $y=f(x)$ and below by $y=g(x)$, then $h(x)=f(x)-g(x)$.

Washer VS Shell method

Ler R be a region with x-bounds $a \leq x \leq b$ and y-bounds $c \leq y \leq d$. The volume of the revolutionary solid is given by

	Washer	Shell
Horizontal axis	$\pi \int_{a}^{b}\left(R^{2}(x)-r^{2}(x)\right) d x$	$2 \pi \int_{c}^{d} r(y) h(y) d y$
Vertical axis	$\pi \int_{c}^{d}\left(R^{2}(y)-r^{2}(y)\right) d y$	$2 \pi \int_{a}^{b} r(x) h(x) d x$

Work out the following: find the volume of the solid formed by revolving the region bounded by $y=\sin (x)$ and the x-axis for $0 \leq x \leq \pi .2 \pi^{2}$

Arc lengths and surface areas

Idea: determine a curve's length by sums of short line segments.
If f is continuous on $[a, b]$ and differentiable on (a, b), the arc length of the curve $y=f(x)$ from a to b is given by

$$
L=\int_{a}^{b} \sqrt{1+\left(f^{\prime}(x)\right)^{2}} d x
$$

The surface area of revolutionary solid about the x-axis, for $f(x) \geq 0$, is

$$
S A=2 \pi \int_{a}^{b} f(x) \sqrt{1+\left(f^{\prime}(x)\right)^{2}} d x
$$

whereas about the y-axis, for $a, b \geq 0$, is

$$
S A=2 \pi \int_{a}^{b} x \sqrt{1+\left(f^{\prime}(x)\right)^{2}} d x
$$

Work out the following:
(1) Find the arc length of $y=x^{3 / 2}$ from $x=0$ to $x=4$ (approx). ≈ 9.07
(2) Set up integral for arc length of $y=\sqrt{1-x^{2}}$ on $0 \leq x \leq 1$. $\int_{0}^{1} \frac{1}{\sqrt{1-x^{2}}} d x$

