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What is the limit of a function?

Intuitively, expresses the behavior of y = f (x) near a particular value of x .

Notation “The limit of y as x approaches c is L”

lim
x→c

y = lim
x→c

f (x) = L

In general, that is NOT f (c); this will be true only for a class
of specific cases (later). In fact, f (c) may not even be defined!

Before providing the formal definition, we shall approximate limits.

I Graphically: observe where f (x) tends to when x tends to c.
I Numerically: create a table of x and f (x) values for x near c.
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Example: For f (x) = sin x
x , approximate lim

x→1
f (x) and lim

x→0
f (x).

0.6 0.8 1 1.2 1.4

0.7

0.8

0.9

1

≈ 0.84

x

y

x sin x
x

0.99 0.844471
0.999 0.841772
1 0.841471

1.001 0.84117
1.0001 0.838447

so lim
x→1

f (x) ≈ 0.84.
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0.9
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1.1

≈ 1◦

x

y

x sin x
x

-0.01 0.999983
-0.001 0.9999998

0 NOT defined
0.001 0.9999998
0.01 0.999983

so lim
x→0

f (x) ≈ 1.
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Non-existence of limits

I When x approaches some c, lim
x→c

f (x) may not exist.

For example, when the function f (x)

approaches different values on either side of c;

grows without upper/lower bound;

oscillates.
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Difference Quotients

For any function f (x), the “difference quotient” formula

f (x + h)− f (x)
h

computes the slope of the secant line through two points on the graph.

1 2 3 4
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h = 1

h = 2

•

•

•

x = 0

By making h smaller, shrinking towards 0, the interval (x , x + h)
‘approaches the point’ x ! The secant line approaches the tangent line ...
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Formal definition of a limit

Typically, ε and δ stand for very small positive values; they help formalise
the nearness of a variable x to a chosen number c, expressing that their

distance tends to 0, e.g. |x − c| < δ.
I Think that x is near c when for small δ > 0, “x is within δ units of c”.

Definition: The limit of a function
Let I be an open interval containing c, and let f be a function defined on I
except possibly at c. The limit of f (x) as x approaches c is L , iff

given any ε > 0, there exists some δ > 0 such that for all x 6= c, if
|x − c| < δ then |f (x)− L| < ε.

Succinctly, ∀ε > 0,∃δ > 0 s.t. |x − c| < δ ⇒ |f (x)− L| < ε.
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In practice, certain rules allow us to find limits more easily and efficiently.

Basic Limit Properties
Suppose lim

x→c
f (x) = L, lim

x→c
g(x) = K for functions f , g and c, L,K ∈ R.

lim
x→c

a = a for any a ∈ R (constants)

lim
x→c

x = c (identity)

lim
x→c

(f (x)± g(x)) = L± K (sum/difference)

lim
x→c

a · f (x) = a · L (scalar multiples)

lim
x→c

(f (x) · g(x)) = L · K (products)

lim
x→c

f (x)
g(x) = L

K for K 6= 0 (quotients)

lim
x→c

f (x)n = Ln for n ∈ Z+ (powers)

lim
x→c

n
√
f (x) = n√L (roots)

lim
x→c

h(f (x)) = M for lim
x→L

h(x) = M (composition)
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Limits of Polynomials and Rational Functions
Suppose p(x), q(x) are polynomials, and c ∈ R.

lim
x→c

p(x) = p(c)

lim
x→c

p(x)
q(x) = p(c)

q(c) when q(c) 6= 0

Trigonometric, Logarithmic, Power and Root functions
For c ∈ R in the domain of each function, and n ∈ Z+,

lim
x→c

sin x = sin c
lim
x→c

cos x = cos c
lim
x→c

tan x = tan c

lim
x→c

cot x = cot c
lim
x→c

sec x = sec c
lim
x→c

csc x = csc c

lim
x→c

ax = ac

lim
x→c

log x = log c

lim
x→c

n
√
x = n
√
c
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All the above theorems help “find unknown limits using known”.

However, how do we handle the indeterminate forms, 00?

Theorem: functions equal at all but one point
Suppose g(x) = f (x) for all x in an open interval, except possibly at one
value c. If lim

x→c
g(x) = L, then lim

x→c
f (x) = L.

As a result, if we have a rational function p(x)
q(x) for which both p(c) and

q(c) are 0, then (x − c) is necessarily a factor of both polynomials. Then

lim
x→c

p(x)
q(x) = lim

x→c
(x − c) · p̃(x)
(x − c) · q̃(x)

(thm)= lim
x→c

p̃(x)
q̃(x)

(rat fnc)= p̃(c)
q̃(c) , if q̃(c) 6= 0.
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Squeeze Theorem
Suppose f , g , h are functions on some open interval I 3 c such that

f (x) ≤ g(x) ≤ h(x) for all x ∈ I, x 6= c.

If lim
x→c

f (x) = L = lim
x→c

h(x), then lim
x→c

g(x) = L.

? Useful for sin and cos functions: they can be bounded (amplitude=1)!

Some special limits to remember:

lim
x→0

sin x
x = 1 lim

x→0

cosx − 1
x = 0
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Work out the following examples: (Answers in red)
1 If lim

x→2
f (x) = 2, lim

x→2
g(x) = 3, find -3

lim
x→2

( f (x)− 2g(x)
g(x) − 5

3

)
2 Find 2

lim
x→1

x2 − 1
x − 1

3 If 1 ≤ f (x) ≤ x2 + 2x + 2 for all x , find 1

lim
x→(−1)

f (x)

4 Find 0
lim

x→0+

(
sin x · cos( 1

x2 )
)
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One sided limits

Definition: Left-hand limit
Let I 3 c be an open interval, and f a function defined on I except possibly
at c. The limit of f (x) as x approaches c from the left is L, denoted by

lim
x→c−

f (x) = L,

if and only if ∀ε > 0, ∃δ > 0 s.t. ∀x < c, |x − c| < δ ⇒ |f (x)− L| < ε.

Similarly (∀x > c replaces ∀x < c) right-hand limits lim
x→c+

f (c) are defined.

Theorem
Let f be a function defined on an open I 3 c. Then

lim
x→c

f (x) = L ⇐⇒ lim
x→c−

f (x) = L = lim
x→c+

f (x)
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Continuous functions

Idea: a ‘continuous’ process is one that takes place gradually, without
interruption or abrupt change. For functions, limits are a good indicator of

where f is heading, whereas evaluating says where f actually is.

Definition: Continuous function
Left f be a function defined on an open I 3 c.

f is continuous at c if lim
x→c

f (x) = f (c).
f is continuous on I if f is continuous for all c in I.
f is continuous everywhere if f is continuous on (−∞,∞).

? Have to first check if both lim
x→c

f (x) and f (c) exist – then if they agree.
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Definition: continuity on a closed interval
If f is defined on a closed [a, b], a, b ∈ R, then f is continuous on [a, b] if

1 f cntns on (a, b) 2 lim
x→a+

f (x)=f (a) 3 lim
x→b−

f (x)=f (b)

It is important to identify the intervals on which a function is continuous.
Start from known functions and build up to more complicated expressions.

Theorem: Continuous functions + properties
The following functions are continuous on their domains:

sin x , cos x , tan x , cot x , sec x , csc x , ln x , n√x , ax (a > 0), p(x) poly

If f and g are continuous on I, the following functions are also:

f ± g , r · f , f · g , f /g (g 6=0), f n,
n√f (f≥0 if n even ), composition...

? Essentially, the previous limit theorems extended for continuity!
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Work out the following examples:
1 Find lim

x→1+
f (x), lim

x→1−
f (x) and lim

x→1
f (x) for 8,1,DNE

f (x) =
{
10− x − x2 if x ≤ 1
2x − 1 if x > 1

2 Find lim
x→0+

f (x), lim
x→0−

f (x), f (0) and the continuity interval:

−4 −2 2 4

−4

−2

2

4

◦

◦ ◦

•

•
•

−4, 4, 0, [−4, 0) ∪ (0, 4)

3 What is lim
x→8

f (x)? Is f (x) continuous? 16
5 , No

f (x) =
{ x2−64

x2−11x+24 if x 6= 8
3 if x = 8

4 On which interval is f (t) =
√
5t2 − 30 continuous? (−∞,−

√
6] ∪ [

√
6, +∞)
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Root finding and approximation

Intermediate Value Theorem
Let f be continuous on [a, b] and (without loss of generality) f (a) < f (b).
For every value y with f (a) < y < f (b), there exists a value a < c < b
such that f (c) = y .

? Particularly useful for root finding! Look for f (c) = 0...

Choosing an interval [a, b] with f (a) < 0, f (b) > 0 and successively
replacing an endpoint by the midpoint with the same sign is called the
Bisection Method.
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Infinity Limits
Idea: the usual ε-δ definition says that for x δ-close to c, f (x) is

guaranteed to be ε-close to lim
x→c

f (x).
Now, for some (large) M, f (x) is guaranteed to be larger than M!

Limit of Infinity
We say that lim

x→c
f (x) =∞ if for every M > 0, there exists δ > 0 such

that if 0 < |x − c| < δ, then f (x) ≥ M. For −∞, M < 0 and f (x) ≤ M.

I If lim
x→c±

f (x) = ±∞, the function has a vertical asymptote x = c.

? Implicitly, the limit does not exist; it is not a numerical value L. Typical
examples: those functions where f (c) = 0, but not always.

Indeterminate forms need more work to compute the limit; symbolically
they can be expressed 0

0 ,∞·0,∞−∞,
∞
∞
, 00,∞0, 1∞ after evaluation.
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Work out the following examples:
1 On which interval is g(t) = 1√

1− t2
continuous? (−1, 1)

2 Does the equation x8 − 3x = 5 have a solution at [0, 2]? At [0, 1]?
Yes, No

3 For f (x) = 1
(x−3)(x−5)2 , find lim

x→3−
f (x), lim

x→3+
f (x), lim

x→3
f (x) and

lim
x→5−

f (x), lim
x→5+

f (x), lim
x→5

f (x).

1 2 3 4 5 6

−5

5

−∞,+∞,DNE ,∞,∞,∞

4 Find the vertical asymptotes of f (x) = x3
x2 + 3x − 10.

x = −5, x = 2
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Idea: what happens when x itself grows very large or very small?
Limits at Infinity

1 lim
x→∞

f (x) = L ⇐⇒ ∀ε > 0,∃M > 0 s.t. x ≥ M ⇒ |f (x)− L| < ε.
2 lim

x→−∞
f (x) = L ⇐⇒ ∀ε > 0, ∃M < 0 s.t. x ≤ M ⇒ |f (x)− L| < ε.

I If lim
x→±∞

f (x) = L, the function has a horizontal asymptote y = L.

Limits of Rational Functions at Infinity
Suppose that f (x) is a rational function, for an, bm 6= 0,

f (x) = anxn + an−1xn−1 + . . .+ a1x + a0
bmxm + bm−1xm−1 + . . .+ b1x + b0

.

If n = m, lim
x→+∞

f (x) = lim
x→−∞

f (x) = an
bn

.

If n < m, lim
x→+∞

f (x) = lim
x→−∞

f (x) = 0.

If n > m, lim
x→+∞

f (x) and lim
x→−∞

f (x) are infinite (sign of an
bm

).
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Work out the following examples:

1 Compute lim
x→∞

9x − x3
2x3 − x2 + 6. −1/2

2 Find the vertical and horizontal asymptotes, if they exist, of

f (x) = x2 + x − 12
7x3 − 14x2 − 21x x = 0, x = −1, y = 0

3 Find the vertical and horizontal asymptotes, if they exist, of

f (x) = x2 − 9
9x + 27 no vertical, no horizontal

4 Find lim
x→0

f (x), lim
x→1−

f (x), lim
x→1+

f (x) and interval of continuity of

f (x) =
{
x3 − x , if x < 1
x − 2, if x ≥ 1

0, 0,−1, (−∞, 1) ∪ (1,+∞)
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The Derivative

? Recall the ‘difference quotient’ formula for any function, that computes
the slope of the secant line on its graph = average rate of change.

Definition: Derivative at a Point
Let f be continuous on an open I 3 c. The derivative of f at c is

f ′(c) = lim
h→0

f (c + h)− f (c)
h

if the limit exists. Then we say that f is differentiable at c.

If f is differentiable at every point in I, we say that f is differentiable on I.

? Think of the derivative at a point as the instantaneous rate of change =
a ‘special slope’ of a line approximating the graph at that point!

Christina Vasilakopoulou (MATH 9A, UCR) Instantaneous Rates of Change: The Derivative 21 / 62



Definition: Tangent Line
Let f be coninuous on an open I 3 c and differentiable at c. The line

`(x) = f ′(c)(x − c) + f (c)

is the tangent line to the graph of f at c.

I Tangent-line approximation of function graph is useful (...not for lines).

? Let’s allow the value c to vary: in this way, we can make the process
“taking the derivative at” into a function itself!

Definition: Derivative Function
Let f be differentiable on an open I. The derivative of f is the function

f ′(x) = lim
h→0

f (x + h)− f (x)
h .

I Can be denoted as f ′(x) = df
dx = d

dx (f ) = y ′ = dy
dx = d

dx (y).
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Work out the following examples:
1 Find the derivative function of f (x) = 6, and of g(x) = 3

2x .
f ′(x) = 0, g ′(x) = 3/2

2 What is the tangent line of h(x) = x2 at x = −1?
`(x) = −2x − 1

3 What is the tangent line of f (x) = sin x at x = 0? `(x) = x
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Instantaneous Rate of Change

Idea: for a function f , its derivative f ′(x) becomes a new function of its
own. It answers: ‘when x changes, at what rate does f change?’

The Derivative and Motion
If s(t) is the position function of an object, its derivative function
s ′(t) is the velocity function of the object.

If v(t) is the velocity function of an object, its derivative function
v ′(t) is the acceleration function of the object.

I The units of the derivative dy
dx correspond to units of y

units of x (e.g. ft/s).
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Slope of the Tangent Line

The slope of the secant line through
P and Q is f (x + h)− f (x)

x + h − x .

As h shrinks to 0, i.e. taking
the limit h → 0, we find f ′(x) as the
slope of the tangent line.

The tangent line at a point shows how fast the function is growing at
that instance: the steeper the tangent line, the bigger the change.

I Use the tangent lines to approximate the functions: for values a close
to c, where the tangent is `c(x), we have that f (a) ≈ `c(a).
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Differentiation Rules
Idea: abstractions which capture large classes of functions at one go.

Derivatives of Common Functions
1 (Constant Rule) d

dx (c) = 0
2 (Power Rule) d

dx (xn) = n · xn−1

3 d
dx (sin x) = cos x

4 d
dx (cos x) = − sin x

5 d
dx (ex ) = ex

6 d
dx (ln x) = 1

x

? What about combinations of the above functions?
Properties of the Derivative
Let f , g be differentiable on open I and r ∈ R.

d
dx (f (x)± g(x)) = df

dx ±
dg
dx = f ′(x)± g ′(x) Sum/Difference Rule

d
dx (r · f (x)) = r · dfdx = r · f ′(x) Scalar Multiple Rule
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Higher Order Derivatives

? The derivative of a function became a new function on its own.
What is the latter’s derivative?

Let y = f (x) be a differentiable function on an open I.
f ′′(x) = d

dx (f ′(x)) = d
dx

(
dy
dx

)
= d2y

dx2 = y ′′ : second derivative of f

f ′′′(x) = d
dx (f ′′(x)) = d

dx

(
d2y
dx2

)
= d3y

dx3 = y ′′′ : third derivative of f

f (n)(x) = d
dx (f (n-1)(x)) = d

dx

(
dn-1y
dx (n-1)

)
= dny

dxn = y (n) : nth derivative

Note: the above only when each new function is differentiable!

I The second derivative is ‘the rate of change of the rate of change’ of f .
E.g. for a position function f , f ′ is the velocity and f ′′ is the acceleration!

Christina Vasilakopoulou (MATH 9A, UCR) 2.3: Basic Differentiation Rules 27 / 62



Work out the following examples:

1 After computing the first and second derivative of

f (t) = 9 cos t − t6 + 2et + ln(17)

find f ′(0) and f ′′(π). f ′(0) = 2, f ′′(π) = 9− 30π4 + 2eπ

2 Find the tangent line to y = 3x2 − x3 at (1, 2). `(x) = 3x − 1

3 Approximate e0.1 using the tangent line to f (x) = ex at x = 0.
e0.1 = f (0.1) ≈ `0(0.1) = 1.1

4 Find the tangent line to y = 2x + 3 at x = 375.2. y = 2x + 3
the same!
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The Product Rule for Derivation
Idea: sum/difference of functions works nicely for derivatives – product?

Product Rule
Let f and g be differentiable functions on an open I. Then f · g is
differentiable on I, with

d
dx (f (x)g(x)) = f ′(x)g(x) + f (x)g ′(x).

? So beware: (f (x)g(x))′ 6= f ′(x)g ′(x)!

I This rule (as well as the others) is in fact a Theorem. To prove it, we
use the derivative definition and we algebraically manipulate it:

d
dx ((f · g)(x)) := lim

h→0

f (x + h)g(x + h)− f (x)g(x)
h = . . .

=f ′(x)g(x) + f (x)g ′(x)
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The Quotient Rule for Derivation

Quotient Rule
Let f and g be differentiable functions on an open I, where g(x) 6= 0.
Then f /g is differentiable on I, and

d
dx

( f (x)
g(x)

)
= f ′(x)g(x)− f (x)g ′(x)

g2(x)

? Useful in many examples; in particular, trigonometric functions.

Derivatives of Trigonometric Functions
(sin(x))′ = cos(x)
(cos(x))′ = − sin(x)
(tan(x))′ = sec2(x)

(cot(x))′ = − csc2(x)
(sec(x))′ = sec(x) tan(x)
(csc(x))′ = − csc(x) cot(x)
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Work out the following examples:
1 Find the derivative of

y = (x2 + 5)(x3 + 9)

(either by the product rule or by expanding). x(5x3 + 15x + 18)

2 Find the derivative of

f (x) = x2 + 3
x f ′(x) = 1− 3

x2

3 Find s ′(π), for s(t) = 1
π4 t

5(cos t + et). (5 + π)eπ − 5

4 Find the derivative of h(x) = e2(sin(π/4)− 1). 0, constant rule!
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Power Rule revisited

? Power Rule earlier was for n ∈ Z+; it now extends to negative integers!

Power Rule with Integer Exponents
Let f (x) = xn where x 6= 0 is an integer. Then

f ′(x) = n · xn−1

There might be different choices of rules that apply to compute
a derivative. There is no ‘right’ way! Each one leads to the one
and only result→the function’s derivative.

? Looking for the point(s) where the graph has a horizontal tangent line?
Need to solve f ′(x) = 0.
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Work out the following examples:

1 Find the derivative of f (x) = 7ex sin(x). 7ex (sin x + cos x)

2 Find the tangent line of y = x cos(x) at the point (π,−π).
y = −x

3 Find the derivative of x + 7
x − 5 . −12

(x−5)2

4 Find where the graph of f (x) = x2
x + 1 has a horizontal tangent line.

At x = −2 and x = 0
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Chain Rule
Idea: so far, have seen derivative rules relative to basic combinations of

functions (addition, multiplication etc). What about composition?

The Chain Rule
If f and g are differentiable functions, then f ◦ g is differentiable with

(f ◦ g)′(x) = f ′ (g(x)) · g ′(x).

? Viewing a function as a composition of two others is not uniquely
determined; however, in practice there is usually a natural choice.

Generalized Power Rule
Let g(x) be a differentiable function, n 6= 0 an integer. Then

d
dx (gn(x)) = n · gn−1(x) · g ′(x).
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Work out the following examples:

1 Differentiate y = sin(ex ). ex cos(ex )

2 Differentiate y = (2− x2)10. −20x(2− x2)9

3 Find an equation of the tangent line to f (x) = 6 cos(x) + sin2(x) at
(π2 , 1). −6x + 3π + 1

4 Use the above tangent line, in order to approximate the value
6 cos(1.5) + sin2(1.5), i.e. f (1.5). (Hint: 1.5 = 3

2 is very close to π

2 !)
3π − 8
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? Chain rule is very powerful; finds also new derivatives!

Derivatives of Exponential Functions
Let f (x) = ax , a > 0, a 6= 1. The f is differentiable, with

f ′(x) = ln a · ax .

Idea: ‘pattern’ recognition for taking derivatives makes us faster.

If u = g(x) denotes an arbitrary function of x , we have that
(un)′ = n · un−1 · u′

(ln(u))′ = u′
u , (eu)′ = eu · u′

(sin(u))′ = cos(u) · u′

(cos(u))′ = − sin(u) · u′

(tan(u))′ = sec2(u) · u′

(au)′ = ln a · au · u′

I Notation: for y = f (u) a function of u and u = g(x) a function of x ,

dy
dx = dy

du ·
du
dx [equivalent to f ′(g(x)) · g ′(x)]
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Work out the following examples:

1 Differentiate y = ln(cos(x)). − tan(x)

2 Differentiate y = 5cos(t). − ln 5 sin(t)5cos(t)

3 Differentiate x2 · e 1
x . e 1

x (2x − 1)

4 Differentiate sin4(2t). 8 sin3(2t) cos(2t)
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Implicit Differentiation
Idea: so far, we know how to find the derivative of any y = f (x), which

explicitly expresses y in terms of x .
What about when the relationship between x and y is implicit?

Methodology for Implicit Differentiation: for equation involving x & y
take the derivative of each term of the equation; use chain rule
approach for the derivative of the y -terms
separate y ′ terms on one side, and remaining terms on the other
solve for y ′; the result might very well be in terms of both x and y

? Contrary to explicit functions, for implicit we can usually only check if a
pair (x0, y0) satisfies the equation, rather than

:::
find some y0 = f (x0)!

I Implicit differentiation works nicely for finding tangent lines at given
points (x0, y0).
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Work out the following examples:

1 Differentiate x2 + y2 = 16. −x
y

2 Use implicit differentiation to find an equation of the tangent line to
the curve at (1, 1)

x2 + xy + y2 = 3. `1(t) = −t + 2

3 Differentiate sin(x) + cos(y) = sin(x) cos(y). cos(x)(cos(y)− 1)
sin(y)(sin(x)− 1)
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Power Rule for Differentiation
Let f (x) = xn, where n 6= 0 is a real number. Then f is differentiable, with

f ′(x) = n · xn−1.

I To obtain higher derivatives via implicit differentiation, just take one
more derivative d

dx (y ′) - in practice, uses derivation rules and algebra.

Logarithmic Differentiation
In order differentiate expressions like y = f (x)g(x), first apply the natural
logarithm and then differentiate implicitly:

d
dx (ln(y)) = d

dx (g(x) ln(f (x)))
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Work out the following examples:

1 Find the derivative of f (x) = √x + 1√
x +√π. Express it only in

terms of powers of x (no radicals). 1
2x
−1/2 − 1

2x
−3/2

2 Find dy2
dx2 using implicit differentiation:

x
y = 10 y ′′ = 0

3 Find the tangent line at (1, 1) for y = (x)x2 , using logarithmic
differentiation. `1(x) = x
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Inverse Functions

Idea: any one to one function f has an inverse function f -1.
How to compute its derivative?

I f (f -1(x)) = f -1(f (x)) = x says that if (a, b) is on f -graph, then (b, a)
is on f -1-graph! So their graphs are symmetric with respect to y = x .

Derivatives of Inverse Functions
Suppose: f differentiable, 1-1 on open I, f ′(x) 6= 0, J its range, g = f -1
and f (a) = b. Then g is differentiable on J , with

1
(
f -1
)′ (b) = g ′(b) = 1

f ′(a)
2
(
f -1
)′ (x) = g ′(x) = 1

f ′(g(x))
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Inverse Trigonometric Functions
These are differentiables on open subsets of their domains, with

1 (sin-1(x))′ = 1√
1− x2

2 (tan-1(x))′ = 1
1 + x2

3 (cos-1(x))′ = −1√
1− x2

4 (cot-1(x))′ = −1
1 + x2

Work out the following examples:

1 For f (x) = 1
1 + x2 x ≥ 0, with the point (1, 1/2) lying on its graph,

find
(
f -1
)′ (1/2). −2

2 Find the derivative of f (x) = tan-1(sin(5x)). 5 cos(5x)
1 + sin2(5x)
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L’Hopital Rule
Idea: a method to tackle indeterminate forms like "00" and "∞∞" for limits.

L’Hopital’s Rule (LHR)
I Let lim

x→c
f (x) = 0 and lim

x→c
g(x) = 0, for f , g differentiable functions on

open I 3 c, and g ′(x) 6= 0 except maybe at c. Then

lim
x→c

f (x)
g(x) = lim

x→c
f ′(x)
g ′(x)

I lim
x→a

f (x) = ±∞, lim
x→a

g(x) = ±∞, f , g differentiable on I 3 a. Then

lim
x→a

f (x)
g(x) = lim

x→a
f ′(x)
g ′(x)

I f , g differentiable on (c,∞), g ′(x) 6= 0 and lim
x→∞

f (x)
g(x) is 0

0 or ∞∞ . Then

lim
x→∞

f (x)
g(x) = lim

x→∞
f ′(x)
g ′(x) (similarly for −∞)
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? Can use these rules to handle also other indeterminate forms, like
”0 · ∞” or ”∞−∞”. Usually rewrite them, to bring into previous forms!

I LHR helps with even more indeterminate forms: 00, 1∞, ∞0.

If lim
x→c

ln (f (x)) = L, then lim
x→c

f (x) = lim
x→c

eln(f (x)) = eL.

Work out the following examples:

1 Find lim
x→1

x3 − 1
x8 − 1.

3
8

2 Find lim
x→π

sin(x)
x − π . −1

3 Find lim
x→0

sin(2x)
x + 2 . 0, NO LHR WAS NEEDED!

4 Find lim
x→∞

ex
√
x . +∞
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Extreme Values
Idea: what are the largest or smaller values (outputs) of a given function?

Extreme Values
Let f defined on I 3 c. Then [not necessarily open I!]

f (c) is the (absolute) minimum of f on I iff f (c) ≤ f (x) ∀x ∈ I
f (c) is the (absolute) maximum of f on I iff f (c) ≥ f (x) ∀x ∈ I

The Extreme Value Theorem
Let f be a continuous function on a closed interval I. Then f has both a
maximum and a minimum value on I.

Relative Minima and Maxima
Let f defined on I 3 c. Then

f (c) is a relative minimum iff f (c) ≤ f (x), ∀x ∈ (c − ε, c + ε) (ε>0)
f (c) is a relative maximum iff f (c) ≥ f (x) ∀x ∈ (c − ε, c + ε)
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I Notice how at relative extrema, the tangent line is horizontal!

Critical points
Let f defined at c. Value c is critical if f ′(c)=0 or f ′(c) not defined .
The point (c, f (c)) is called a critical point.

Work out the following examples:

1 Find lim
x→0

6x − 12x

x . ln(12)

2 Find lim
x→∞

x 3
x . 1

3 Find the critical points of f (x) = 2
x2 + 1. (0, 2), ONLY real numbers!
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Finding Extrema

Relative Extrema and Critical Points
If f has a relative extremum at (c, f (c)), then that is a critical point.

? This doesn’t mean that ALL critical points are relative extrema!

Extrema on a closed interval: if f is continuous on a closed [a, b]
1 evaluate f at the endpoints of the interval
2 find the critical points of f in [a, b]
3 absolute maximum=largest of outputs, absolute minimum=least

of outputs
The Extreme Value Theorem ensures that they always exist!
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The Mean Value Theorem
Idea: is instantanous rate of change ever same as average rate of change?

The Mean Value Theorem of Differentiation
Let f (x) be continuous on [a, b] and differentiable on (a, b).
There exists some c with a < c < b (i.e. c is between a and b) such that

f ′(c) = f (b)− f (a)
b − a

Work out the following examples:

1 Find the absolute extrema of 4x
x2 + 1 at [−4, 0]. maximum is 0

for x = 0, minimum is -2 for x = −1

2 Find the absolute extrema of 4cos(x) + 4sin(x) at [−π
2 , 0].

maximum is 4 for x = 0, minimum is -4 for x = −π
2

Christina Vasilakopoulou (MATH 9A, UCR) 3.2: The Mean Value Theorem 49 / 62



Mean Value Theorem, Part 2

I MVT states that the average slope is the same as f ′(c) for some c.

Rolle’s Theorem
Let f be continuous on [a, b] and differentiable on (a, b), and f (a) = f (b).
Then there exists some c ∈ (a, b) such that f ′(c) = 0.

? It looks like a special case of MVT; it is needed for its proof!

Work out the following:
Consider the function f (x) = 4− 2x2 on the interval [−6, 7].

1 What is the average slope of the function on this interval? −2
2 Which is the c ∈ (−6, 7) that satisfies the MTV? c = 1/2
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Increasing and Decreasing Functions
Idea: so far, interested in ‘special points’ (e.g. extrema). What about the

general shape of functions?

Increasing and Decreasing Functions
Let f function defined on interval I.

f is increasing on I iff for every a < b, f (a) ≤ f (b).
f is decreasing on I iff for every a < b, f (a) ≥ f (b).

A function is strictly increasing/decreasing when ≤,≥ are <,>.

? [MVT] Looks like f ′ positive for increasing f (negative for decreasing).

Conditions for Increasing/Decreasing Functions
Let f be continuous on [a, b] and differentiable on (a, b).

1 If f ′(c) > 0 for all c ∈ (a, b), then f is increasing on (a, b).
2 If f ′(c) < 0 for all c ∈ (a, b), then f is decreasing on (a, b).
3 If f ′(c) = 0 for all c ∈ (a, b), then f is constant on (a, b).

Christina Vasilakopoulou (MATH 9A, UCR) 3.3: Increasing and Decreasing Functions 51 / 62



Finding increasing and decreasing intervals: let f be differentiable on I.

1 Find the critical inputs of f on I (f ′(c) = 0 or f ′(c) not defined)
2 Divide I in subintervals using the critical inputs
3 Pick any p in each subinterval and determine the sign of f ′:

I If f ′(p) > 0, f is increasing on that subinterval
I If f ′(p) < 0, f is decreasing on that subinterval

Work out the following examples:

1 Let f (x) = 6− x − x2. Find the open intervals on which f is
increasing or decreasing. Increasing at (−∞,−1

2), decreasing at
(−1

2 ,∞)

2 Let g(x) = x + 4
x . Find the open intervals on which f is increasing or

decreasing. Increasing at (−∞,−2) ∪ (2,+∞), decreasing at
(−2, 0) ∪ (0, 2)
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Relative Extrema and Concativity

First Derivative Test
Let f be differentiable on I, and c ∈ I critical input.

1 If the sign of f ′ changes from + to − at c, then f (c) is a relative max.
2 If the sign of f ′ changes from − to + at c, then f (c) is a relative min.
3 If the sign of f ′ doesn’t change at c, f (c) is not relative extremum.

? The next step is to study properties of f ′ itself. f ′′ will be useful!

Concave Up and Concave Down
Let f be differentiable on an interval I.

The graph of f is concave up on I if f ′ is increasing.
The graph of f is concave down on I if f ′ is decreasing.
f has no concativity if f ′ is constant.
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Test for Concativity
Let f be twice differentiable on an interval I. The graph of f is concave up
if f ′′ > 0 on I, and is concave down if f ′′ < 0 on I.

? Similarly to relative extrema where f changes from increasing to
decreasing [look for critical points, f ′ = 0 or undefined],

would like to know when f ’s concativity changes from up to down!

Points of Inflection
A point of inflection is a point on the f graph where concativity changes.

If (c, f (c)) point of inflection, then either f ′′ = 0 or f ′′ is not defined at c.

Work out the following: let f (x) = 8x2 − x4. Solution at .pdf
1 Find the open intervals on which f is increasing or decreasing.
2 Identify the relative extrema of f .
3 Find the (possible) inflection points (only the x-coordinate) of f .
4 Find the open intervals on which f is concave up or down.
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Inflection points and Second Derivative Test

Idea: start processing all information at the same time!

? Critical inputs (f ′(x) = 0 or f ′ not defined) and possible inflection points
(f ′′(x) = 0 or f ′′ not defined) together on the real line.

I Notice that inflection points are in fact the relative extrema of f ′(x)!
And they expess the points where f is increasing/decreasing the most.

The Second Derivative Test
Let c be a critical input of f , where f ′′(c) is defined.

If f ′′(c) > 0, f has a relative minimum at (c, f (c)).
If f ′′(c) < 0, f has a relative maximum at (c, f (c)).

E.g. if a critical x is in a concave up region, then it must be a minimum!
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Work out the following: for f (x) = 4x3 − 12x2 + 20,

1 find the increasing and decreasing open intervals Increasing at
(−∞, 0) ∪ (2,∞), decreasing at (0, 2)

2 find the relative maxima and minima Max at 20 for x = 0, min at 4
for x = 2

3 find the concave up and down open intervals concave up (1,+∞),
concave down (−∞, 1)

4 find the inflection point(s) (1, 12)
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Curve Sketching
Idea: using function’s core properties (monotonicity, concativity etc.),
produce an accurate graph of f . Behavior is mostly captured by f ′, f ′′!

Methodology for sketching f ’s graph
1 Specify the domain of f .
2 Find the vertical asymptotes of f .
3 Find the critical inputs of f .
4 Find the possible points of inflection of f .
5 Consider lim

x→−∞
f (x) and lim

x→∞
f (x) to determine end behavior.

6 Draw the real line with all of (1),(3),(4). For each created interval,
determine whether f is increasing or decreasing, concave up or down.

7 Determine the relative extrema and points of inflection, if they exist.
8 Find the y & x -intercepts ((0, f (0)) & (xi , 0) with f (xi )=0) [if asked].
9 Plot all points (critical, possible inflection, intercepts) and asymptotes

on a plane; use all above behavioral info to graph.
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? In general, the domain is all reals with certain restrictions, e.g. points
that make denominator 0, points that make the radicand negative.

? The vertical asymptotes are usually determined by the denominator, but
recall to first simplify if applicable.

? If any of lim
±∞

(f (x)) is a number, recall it gives horizontal asymptote.

? The intercepts dictate when the graph of the function crosses the axes.

Moral: we can sketch the graph of functions quite precisely, not by plot-
ting very many points (x , f (x)) but by understanding the function’s be-
havior at a few key places and with respect to a few key general properties.
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Related Rates

Idea: an equation may relate the value of two quantites.
Sometimes, the rate of change of a quantity determines the other!

I Usually, write equation including the quantities, say A and B, that
change through time. Then, implicitly differentiate to relate dA

dt with dB
dt .

Work out the following:
Water flows onto a flat surface at a rate of 5cm3/s forming a circular

puddle 10mm deep. How fast is the radius growing,
1 when the radius is 1cm? 5/2π ≈ 0.8cm/s
2 when the radius is 100cm? 5/200π ≈ 0.008cm/s
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Related Rates, continued
? It is always helpful to sketch a diagram with the known & unknown data.
Then, give names to quantites (which are functions of time) and relate

them via an equation; finally, implicit diff. and solve for the required rate.

A few notable formulas (non-exhaustive list!)
A = 1

2bh = 1
2ab sin(θ) area of triangle

A = πr2 area of a circle
A = πd2 = 4πr2 area of a sphere
V = 4

3πr
2 volume of a sphere

V = 1
3πr

2h volume of a cone

Work out the following:
A plane flying horizontally at an altitude of 1 mile and a speed of 500mi/h
passes directly over a radar station. Find the rate at which their distance
is increasing, when the plane is 2 miles away from the station. 250

√
3,

worked out at the end of notes
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Differentials
I Recall: use the tangent line `c(t) = f ′(c)(t − c) + f (c) at some input
c to approximate the f -value of an input a close to c, f (a) ≈ `c(a).

∆x

∆y
dy

≈

•

••

•

•

f (a)

`c(a)

•

•

f (c)

c a

Differentials of x and y
Let y = f (x) be differentiable. The differential of x , denoted dx , is any
nonzero (usually small) number. The differential of y , denoted dy , is

dy = f ′(x)dx

? The fact that f ′(x) is the differentiable of y divided by that of x is not
the alternate notation y ′ = dy

dx used earlier.
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Differential Notation, for y = f (x) differentiable
∆x represents a small, nonzero change in x value.
So does dx , hence ∆x = dx .
∆y is the y -value change as x changes by ∆x , ∆y=f (x + ∆x)−f (x).
Finally, dy = f ′(x)dx = f ′(x)∆x ≈ ∆y .

? Not only useful for approximations, also crucial for integration (later).

Error propagation: a value is measured to be x , when it could be x+∆x .

The propagated error is the difference between their outputs ∆y , which
can be well approximated by dy .

The relative error is a percentage given by the ratio between dy and the
output y = f (x).
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