Welcome to Math 007B!

Approximating areas

Idea: want to compute an area on the plane, by dividing it in small rectangular regions and summing their areas.

- Tool for summation? Sigma notation!

For any real numbers $a_{1}, a_{2}, \ldots, a_{n}$, we write

$$
\sum_{k=1}^{n} a_{k}=a_{1}+a_{2}+\ldots+a_{n}
$$

Properties of Sums

(1) $\sum_{k=1}^{n} 1=n$
(2) $\sum_{k=1}^{n}\left(a_{k}+b_{k}\right)=\sum_{k=1}^{n} a_{k}+\sum_{k=1}^{n} b_{k}$
(3) $\sum_{k=1}^{n} c \cdot a_{k}=c \cdot \sum_{k=1}^{n} a_{k}$
(9) $\sum_{k=1}^{n} k=\frac{n(n+1)}{2}$
sum of first n integers
(6) $\sum_{k=1}^{n} k^{2}=\frac{n(n+1)(2 n+1)}{6}$

A partition P of an interval $[a, b]$ is a collection of subintervals

$$
\left[a, x_{1}\right],\left[x_{1}, x_{2}\right], \ldots,\left[x_{n-1}, b\right]
$$

with $a<x_{1}<x_{2}<\ldots<x_{n-1}<b$.
 The length of k-th subinterval $\left[x_{k-1}, x_{k}\right]$ is written Δx_{k}; if all equal, Δx.

- We can use any point of the subinterval (e.g. left endpoint, midpoint, right endpoint etc.) to form the rectangles.
- The finer the partition, i.e. the larger the number n of subintervals the shorter their length, the better the area approximation.

Definite Integral

Let $P=\left[a, x_{1}, \ldots, x_{n-1}, b\right]$ partitions of $[a, b]$, and $c_{k} \in\left[x_{k-1}, x_{k}\right]$. The definite integral of a function f from a to b is

$$
\int_{a}^{b} f(x) d x=\lim _{n \rightarrow \infty} \sum_{k=1}^{n} f\left(c_{k}\right) \Delta x
$$

If the limit exists, f is (Riemann) integrable on $[a, b]$; e.g. all continuous f.

Integrals are signed areas

\star Geometrically, integrals are signed areas between curves and the x-axis: above or below changes the sign!
[POSITIVE] If f is integrable on $[a, b]$ and $f(x) \geq 0$ on $[a, b]$, then

$$
\int_{a}^{b} f(x) d x=\text { area between } f \text {-graph and } x \text {-axis, from } a \text { to } b
$$

[ANY] If f is integrable on $[a, b]$, then

$$
\int_{a}^{b} f(x) d x=[\text { area above } x \text {-axis }]-[\text { area below } x \text {-axis }]
$$

Properties of the Riemann Integral

> (1) $\int_{a}^{a} f(x) d x=0 \quad$ (2) $\int_{a}^{b} f(x) d x=-\int_{b}^{a} f(x) d x \quad$ (3) $\int_{a}^{b} k f(x) d x=k \int_{a}^{b} f(x) d x$ (1) $\int_{a}^{b}(f(x)+g(x)) d x=\int_{a}^{b} f(x) d x+\int_{a}^{b} g(x) d x$ (5) $\int_{a}^{b} f(x) d x=\int_{a}^{c} f(x) d x+\int_{c}^{b} f(x) d x$
\star All the proofs follow from properties of limits and Sigma notation!

Work out the following: (answers are now posted in green):
(1) Compute $\int_{-1}^{2}(x-1) d x$ by finding the respective area. $-\frac{3}{2}$

The Fundamental Theorem of Calculus

Idea: computing areas [integrals] is connected to tangents [derivatives]!

- If f continuous, then it is integrable: $\int_{a}^{x} f(u) d u$ exists, for arbitrary x.

Fundamental Theorem of Calculus (FTC), pt. 1

Suppose f is continuous on $[a, b]$. Then the function defined as

$$
F(x)=\int_{a}^{x} f(u) d u, \quad a \leq x \leq b
$$

is continuous on $[a, b]$ and differentiable on (a, b). Moreover,

$$
\left(\frac{d}{d x} F(x)=\right) F^{\prime}(x)=\mathrm{f}(\mathrm{x})
$$

* Integration and differentiation are 'inverses' to one another.

What if the upper and/or lower limits of the integral are more complicated functions of x ?

Leibniz's Rule

If $g(x)$ and $h(x)$ are differentiable, $f(u)$ continuous for $g(x) \leq u \leq h(x)$,

$$
\frac{d}{d x} \int_{g(x)}^{h(x)} f(u) d u=f[h(x)] h^{\prime}(x)-f[g(x)] g^{\prime}(x)
$$

Work out the following:
(1) Compute $\frac{d}{d x} \int_{-2 x}^{x^{2}} \frac{t}{2} d t . x^{3}-2 x$

Indefinite Integrals

Idea: FTC says $F^{\prime}(x)=f(x)$ where $F(x)=\int_{a}^{x} f(u) d u$, for arbitrary $a \in \mathbb{R}$!

- An antiderivative of $f(x)$ is any $F(x)$ for which $F^{\prime}(x)=f(x)$.

They are infinitely many, and differ from each other by a constant C.

Indefinite Integral

The general antiderivative of a function is denoted by

$$
\int f(x) d x=C+\int_{a}^{x} f(u) d u
$$

and is called an indefinite integral.
(1) $\int x^{n} d x=\frac{x^{n+1}}{n+1}+C_{(n \neq-1)}$
(3) $\int \frac{1}{x} d x=\ln |x|+C$
(2) $\int e^{x} d x=e^{x}+C$
(6) $\int a^{x} d x=\frac{a^{x}}{\ln a}+C$
(3) $\int \sin (x) d x=-\cos (x)+C$
(1) $\int \cos (x) d x=\sin (x)+C$
(9) $\int \frac{1}{x^{2}+1} d x=\arctan (x)+C$
(8) $\int \sec ^{2}(x) d x=\tan (x)+C$

What if we want to compute a definite integral, i.e. a specific area?

Fundamental Theorem of Calculus (FTC), pt. 2

If f is continuous on $[a, b]$, then

$$
\int_{a}^{b} f(x) d x=[F(x)]_{a}^{b}=F(b)-F(a)
$$

for $F(x)$ any antiderivative of $f(x)$, i.e. $F^{\prime}(x)=f(x)$.
\star Any antiderivative will do (and they all differ by C), so go for simplest.

Work out the following:
(1) Calculate the following antiderivative $\int x\left(1-x^{2}\right) d x \cdot \frac{x^{2}}{2}-\frac{x^{4}}{4}+C$
(2) Evaluate $\int_{0}^{\pi}\left(\sin (x)-e^{x}+\cos (x)\right) d x \cdot 3-e^{\pi}$

Substitution Rule, indefinite integrals

Idea: substitution rule is for integration what chain rule is for derivation!
Recall: if $f(x)$ and $u(x)$ are differentiable, then

$$
(f \circ u)^{\prime}(x)=f^{\prime}(u(x)) \cdot u^{\prime}(x) \text { or } \frac{d}{d x}(f(u(x)))=\frac{d f}{d u} \cdot \frac{d u}{d x}
$$

Substitution Rule for Indefinite Integrals

If $u=u(x)$, then $\int f(u(x)) u^{\prime}(x) d x=\int f(u) d u$.

Work out the following: evaluate, using the substitution rule,
(1) $\int x^{2} \sin \left(x^{3}\right) d x$
(2) $\begin{aligned} & \int x e^{1-3 x^{2}} d x \\ & -\frac{1}{6} e^{1-3 x^{2}}+C\end{aligned}$
(3) $\int_{3(x+4)} \frac{3 x}{x+4} d x$
$12 \ln |x+4|+C$

Substitution Rule, definite integrals

Idea: for definite integrals, also substitute limits of integration!

Substitution Rule for Definite Integrals

$$
\int_{a}^{b} f(u(x)) \cdot u^{\prime}(x) d x=\int_{u(a)}^{u(b)} f(u) d u
$$

Work out the following: evaluate, using the substitution rule,
(1) $\int_{1}^{2} \frac{3 x^{2}+1}{x^{3}+x} d x \ln (5)$
(2) $\int_{0}^{\pi / 6} \cos (x) e^{\sin (x)} d x \sqrt{e}-1$
(3) $\int_{0}^{1} \frac{x^{3}}{x^{2}+1} d x \frac{1-\ln 2}{2}$

Computing areas via integration

Idea: want to compute areas between two arbitrary curves on the plane!
If f and g are continuous on $[a, b]$, with $f(x) \geq g(x)$ for all $x \in[a, b]$, then the area of the region between the curves $y=f(x)$ and $y=g(x)$ from a to b is

$$
A=\int_{a}^{b}(f(x)-g(x)) d x
$$

* Always a positive number: the 'real' area between the graphs.

Always draw the corresponding graphs: finding intersecting points, or splitting areas in parts bounded only by two curves, may be necessary!
^ Sometimes convenient to compute areas, "form rectangles", from y-axis!
For a region bounded by $x=f(y)$ and $x=g(y), g(y) \leq f(y)$ in $[c, d]$,

$$
A=\int_{c}^{d}(f(y)-g(y)) d x
$$

Now $f(y)$ is to the right of $g(y)$.

- Next, compute the net or cumulative change of a quantity.

$$
\text { FTC,pt. } 2 \int_{a}^{b} F^{\prime}(x) d x=F(b)-F(a) \text { says that }
$$

the integral (sums) of instantaneous rate of change=net change

Average values and the Mean Value Theorem

Idea: use the 'summing rectangles' method to find average values.
Average value of a function
If $f(x)$ is continuous on $[a, b]$, its average value on that interval is

$$
f_{\mathrm{avg}}=\frac{1}{b-a} \int_{a}^{b} f(x) d x
$$

\star In fact, the value $f_{\text {avg }}$ is the output for some input of f !
Mean Value Theorem for Definite Integrals
If f is continuous on $[a, b]$, then there exists some $c \in[a, b]$ such that

$$
f(c)(b-a)=\int_{a}^{b} f(x) d x
$$

Work out the following:
(1) Average value of $f(x)=x^{2}-2+e^{3 x}$ over the interval $[0,2] ? \frac{e^{6}-5}{6}$

The Volume of a Solid

Idea: split a solid into partitioned cylinder 'slices' and sum volumes up! When their number $n \rightarrow \infty$, circular cylinders becomes disks...

- Cross-section: intersection of solid and plane perpendicular to x-axis.

The volume of a solid of cross-sectional area $A(x)$ from a to b is

$$
\int_{a}^{b} A(x) d x
$$

For any solid of revolution, obtained by rotating some curve $y=f(x)$ about the x-axis, compute its volume by the disk method:

$$
V=\int_{a}^{b} \pi(f(x))^{2} d x
$$

If cross-sectional area is between two curves, also called washer method.

Integration by Parts

Idea: integration by parts is what product rule is for derivation!
Recall: if $u=u(x)$ and $v=v(x)$ are differentiable, then

$$
(u v)^{\prime}=u^{\prime} v+u v^{\prime}
$$

Integration by parts rule

For $u(x)$ and $v(x)$ differentiable functions of x,

$$
\int v d u=u v-\int u d v
$$

* Product: choose $v(x)$ to be the factor whose derivative is 'easier'!
- Same way for definite integrals: evaluate $u v$ at the limits of integration.

Work out the following: evaluate, using integration by parts,
(1) $\int x \cos (x) d x x \sin x+\cos x+C$
(2) $\int_{1}^{e} \ln \left(x^{3}\right) d x 3$

Integration by parts, techniques

$$
\int v d u=u v-\int u d v
$$

- Multiply by $1(d u=1$ so $u=x)$, if derivative of integrand is easier
- Sometimes, need to apply IBP repeatedly: at every step, integral becomes easier
- Choice matters; if u and v do not work, check the other option
- Very often, first substitute and then integrate by parts

Work out the following: evaluate, using integration by parts,
(1) $\int \frac{\int^{x}(\sin (x)-\cos (x))}{2}+C$
(2) $\int_{0}^{1} e^{\sqrt{x}} d x$ (hint: first
substitution!) 2

Rational Functions

Idea: break up rational functions $f(x)=\frac{p(x)}{d(x)}$ into simpler fractions!

- Polynomial division algorithm $p(x)=d(x) \cdot q(x)+r(x)$

Method: to decompose $p(x) / d(x)$
(1) if $\operatorname{deg}(p(x)) \geq \operatorname{deg}(d(x))$, long division; then (2)-(4) for $r(x) / d(x)$
(2) if $d(x)$ is of higher degree, factor it into linear factors $(a x+b)^{n}$ and/or irreducible quadratic factors $\left(a x^{2}+b x+c\right)$ [no real zeros]
(3) to each linear factor $(a x+b)^{n}$, assign the sum of partial fractions

$$
\frac{A}{a x+b}+\frac{B}{(a x+b)^{2}}+\ldots+\frac{C}{(a x+b)^{n}}
$$

(9) to each quadratic factor $\left(a x^{2}+b x+c\right)^{m}$, assign the sum

$$
\frac{A x+B}{a x^{2}+b x+c}+\frac{C x+D}{\left(a x^{2}+b x+c\right)^{2}}+\ldots+\frac{Z x+W}{\left(a x^{2}+b x+c\right)^{n}}
$$

Then clear equation from fractions; use in values of x that easily give

$$
A, B, \ldots
$$

Integral parts will either be $\int \frac{1}{x+b} d x=\ln |x+b|$ or some form of $\int \frac{1}{x^{2}+1} d x=\arctan (x)$ after algebraic transformation of quadratics.

Work out the following: evaluate, using partial fraction decomposition,
(1) $\int \frac{2 x^{2}+5 x-1}{x+2} d x x^{2}+x-3 \ln |x+2|+C$
(2) $\int \frac{1}{x^{3}+x^{2}}-\frac{1}{x}+\ln \left|\frac{x+1}{x}\right|+C$

Improper integrals: Unbounded intervals

Idea: use limits to compute integrals whose endpoints are $\pm \infty$.
If $f(x)$ is continuous, we define the following improper integrals

$$
\begin{aligned}
\int_{a}^{\infty} f(x) d x & =\lim _{t \rightarrow \infty} \int_{a}^{t} f(x) d x \\
\int_{-\infty}^{b} f(x) d x & =\lim _{t \rightarrow-\infty} \int_{t}^{b} f(x) d x
\end{aligned}
$$

* The area of an unbounded region may, or may not, approach a number!

If $f(x)$ is continuous on $[a, \infty)$ (resp. $(-\infty, a])$, we say the improper

$$
\int_{a}^{\infty} f(x) d x\left(\text { resp. } \int_{-\infty}^{a} f(x) d x\right)
$$

converges when the limit exists and has a finite value. Otherwise the improper integral diverges.

What happens when both endpoints are infinite?

If $f(x)$ is continuous on $(-\infty, \infty)$, then

$$
\int_{-\infty}^{\infty} f(x) d x=\int_{-\infty}^{a} f(x) d x+\int_{a}^{\infty} f(x) d x
$$

for any real number a, when both right-hand side improper integrals converge; if any of them diverges, the left-hand side diverges as well.

$$
\text { Notice that } \int_{-\infty}^{\infty} f(x) d x \neq \lim _{b \rightarrow \infty} \int_{-b}^{b} f(x) d x!
$$

Work out the following: do these converge or diverge? If C , evaluate:
(1) $\int_{-\infty}^{0} \frac{1}{(x-1)^{2}} d x$ Converges, 1 (2) $\int_{-\infty}^{\infty} 3 e^{6 x} d x$ Diverges

Improper integrals: Unbounded Integrand

What about integrands being undefined on some part of interval?
[Left Endpoint] If $f(x)$ is continuous on $(a, b]$ and $\lim _{x \rightarrow a^{+}} f(x)= \pm \infty$, define

$$
\int_{a}^{b} f(x) d x=\lim _{c \rightarrow a^{+}} \int_{c}^{b} f(x) d x
$$

[Right Endpoint] If $f(x)$ is continuous on [a,b) and $\lim _{x \rightarrow b^{-}} f(x)= \pm \infty$,

$$
\int_{a}^{b} f(x) d x=\lim _{c \rightarrow b^{-}} \int_{a}^{c} f(x) d x
$$

If the limit exists, the imporoper integral converges; otherwise it diverges.
Work out the following: does this converge or diverge? If C , evaluate:
(1) $\int_{0}^{9} \frac{1}{\sqrt{9-x}} d x$ Converges, 6

Improper integrals: Comparison Theorems

\star If $f(x)$ is discontinuous on some $p \in[a, b]$, break up integral as

$$
\int_{a}^{b} f(x) d x=\int_{a}^{p} f(x) d x+\int_{p}^{b} f(x) d x
$$

Convergence and Divergence of improper integrals via Comparison
[Converge] If $0 \leq f(x) \leq g(x)$ for any $x \in[a, \infty)$,

$$
0 \leq \int_{a}^{\infty} f(x) d x \leq \int_{a}^{\infty} g(x) d x
$$

implies that if $\int_{a}^{\infty} g(x) d x$ converges, so does $\int_{a}^{\infty} f(x) d x$.
\Rightarrow [Diverge] If $0 \leq h(x) \leq f(x)$ for any $x \in[a, \infty)$,

$$
0 \leq \int_{a}^{\infty} h(x) d x \leq \int_{a}^{\infty} f(x) d x
$$

For $f(x)$, find 'easier' function bounding it either from above or below and compute!
implies that if $\int_{a}^{\infty} h(x) d x$ diverges, so does $\int_{a}^{\infty} f(x) d x$.

Trigonometric Integrals

Idea: use $\sin ^{2}(x)+\cos ^{2}(x)=1$ to antiderive trigonometric combinations.
Integrals of the form $\int \sin ^{m}(x) \cos ^{n}(x) d x$
(1) if m is odd, then $m=2 k+1$ for some integer k; rewrite

$$
\sin ^{m}(x)=\sin ^{2 k+1}(x)=\overbrace{\sin ^{2 k}(x)}^{\left(\sin ^{2}(x)\right)^{k}} \cdot \sin (x)=\left(1-\cos ^{2}(x)\right)^{k} \sin (x)
$$

and substutite $u=\cos (x), d u=-\sin (x) d x$.
(2) if n is odd, similarly rewrite $\cos ^{n}(x)=\left(1-\sin ^{2}(x)\right)^{k} \cos (x)$ and substitute $u=\sin (x), d u=\cos (x) d x$.
(3) if both m and n are even, use the 'power-reducing' identities

$$
\cos ^{2}(x)=\frac{1+\cos (2 x)}{2} \quad \sin ^{2}(x)=\frac{1-\cos (2 x)}{2}
$$

Work out the following: evaluate $\int_{0}^{\pi / 2} \sin ^{2}(x) \cos ^{3}(x) d x \frac{2}{15}$

Trigonometric Integrals, pt. 2

Integrals of the form $\int \tan ^{m}(x) \sec ^{n}(x) d x$
(1) if $n=2 k$ is even, rewrite
$\sec ^{n}(x)=\sec ^{2 k}(x)=\sec ^{2}(x) \cdot \sec ^{2 k-2}(x)=\sec ^{2}(x)\left(1+\tan ^{2}(x)\right)^{k-1}$ and substitute $u=\tan (x)$, with $d u=\sec ^{2}(x) d x$.
(2) if $n=0$, rewrite (and any method until all integrals are evaluated)

$$
\tan ^{m}(x)=\tan ^{m-2}(x) \tan ^{2}(x)=\tan ^{m-2}(x)\left(\sec ^{2}(x)-1\right)
$$

(0) if $m=2 k+1$ is odd, rewrite

$$
\tan ^{2 k+1}(x) \sec ^{n}(x)=\left(\sec ^{2}(x)-1\right)^{k} \sec ^{n-1}(x)(\tan (x) \sec (x))
$$

and substitute $u=\sec (x)$, with $d u=\tan (x) \sec (x) d x$.
Work out the following: $\int \tan ^{3}(x) d x=\tan ^{2}(x) / 2+\ln |\cos (x)|+C$

Trigonometric Substitution

Idea: substitute \times by some trig function of an angle θ to simplify square roots \& other integrands.

Trigonometric Substitution

- whenever $\sqrt{a^{2}-x^{2}}$, substitute $x=a \sin (\theta)$; by $(a \sin (\theta))^{2}+(a \cos (\theta))^{2}=a^{2}, \sqrt{a^{2}-x^{2}}=a \cos (\theta)$.

- whenever $\sqrt{x^{2}+a^{2}}$, substitute $x=a \tan (\theta)$; by $a^{2}+(a \tan (\theta))^{2}=(a \sec (\theta))^{2}, \sqrt{x^{2}+a^{2}}=a \sec (\theta)$.

a
- whenever $\sqrt{x^{2}-a^{2}}$, substitute $x=a \sec (\theta)$; then $\sqrt{x^{2}-a^{2}}=a \tan (\theta)$.

$\triangleright \sin (2 \theta)=2 \sin (\theta) \cos (\theta) \triangleright \int \sec (\theta) d \theta=\ln |\tan (\theta)+\sec (\theta)|+C$

Differential Equations

Idea: find a function $y(x)$ for which $\frac{d y}{d x}=$ some function of x and/or y.

Separable first-order differential equation

An equation including only first derivatives, of the general form

$$
\frac{d y}{d x}=f(x) \cdot g(y)
$$

Pure-Time Differential Equations are of the form $\frac{d y}{d x}=f(x)$. Then by the FTC, $y=\int f(x) d x$, an antiderivative of $f(x)$.
\star Use initial condition to determine the constant C for final answer.
Work out the following:
(1) $\frac{d y}{d x}=\frac{1}{3-x}, y(0)=0$ (simplify) $y=\ln \left(\frac{3}{|3-x|}\right)$

Autonomous Differential Equations

- $\frac{d y}{d x}=g(y)$: by separating variables, $\int \frac{1}{g(y)} d y=\int d x$.

Applications - Models

- Exponential Population Growth $\frac{d N}{d t}=r N$ where $N(t)=$ population size at time $t, N(0)>0$ and $r=\frac{1}{N} \frac{d N}{d t} \lessgtr 0$ per capita rate of growth.

- Restricted Growth $\frac{d L}{d t}=k(A-L)$ where $L(t)=$ length of fish at age t and $L(0)<A$, the asymptotic length of the fish.

- The Logistic Equation $\frac{d N}{d t}=r N\left(1-\frac{N}{K}\right) r, K>0$ where $K=$ carrying capacity and per capita rate of growth decreases.

Work out the following: $N^{\prime}(t)=4 N, N(0)=10 N(t)=10 e^{4 t}$

General separable equations of the form $\frac{d y}{d x}=g(y) f(x)$ are solved by separating variables: $\int \frac{1}{g(y)} d y=\int f(x) d x$.

Work out the following:
(1) $y^{\prime}(x)=y(y-1), y(0)=\frac{1}{2}$ $y(x)=\frac{1}{1+\mathrm{e}^{x}}$
(2) $\frac{d y}{d x}=2 \frac{y}{x}, y(1)=1 \quad y(x)=x^{2}$

Equilibria and their Stability

Idea: look for certain y 's where the system possibly 'balances'.
For an autonomous differential equation $\frac{d y}{d x}=g(y)$, an equilibrium is some \hat{y} such that $g(\hat{y})=0$, i.e. a solution of $\frac{d y}{d x}=0$.

- If $y(0)=\hat{y}$, then $y(x)=\hat{y}$ for all $x>0$; but in general, it is not guaranteed that the system will ever reach \hat{y}.
* What about their stability, i.e. endurance after a small pertrubation?

If \hat{y} is an equilibrium of $\frac{d y}{d x}=g(y)$, then

- \hat{y} is locally stable if $g^{\prime}(y)<0 \quad$ - \hat{y} is unstable if $g^{\prime}(y)>0$

Work out the following:
(1) Equilibria and stability for $y^{\prime}=2-3 y \cdot \hat{y}=2 / 3$, stable
(2) Solve the differential equation, with $y(0)=2 / 3 . y(x)=2 / 3$!!!
(3) Equilibria and for $y^{\prime}=y^{2}-2$. $\sqrt{2}$ unstable, $-\sqrt{2}$ stable

