
Welcome to Math 007B!



Approximating areas
Idea: want to compute an area on the plane, by

:::::::
dividing it in small

rectangular regions and
::::::::
summing their areas.

I Tool for summation? Sigma notation!

For any real numbers a1, a2, . . . , an, we write
n∑

k=1
ak = a1 + a2 + . . .+ an

Properties of Sums

1
n∑

k=1
1 = n

2
n∑

k=1
(ak + bk) =

n∑
k=1

ak +
n∑

k=1
bk

3
n∑

k=1
c · ak = c ·

n∑
k=1

ak

4
n∑

k=1
k = n(n + 1)

2
sum of first n integers

5
n∑

k=1
k2 = n(n + 1)(2n + 1)

6
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A partition P of an interval [a, b] is a collection of subintervals
[a, x1], [x1, x2], . . . , [xn−1, b]

with a < x1 < x2 < . . . < xn−1 < b.
a bx1 x2 xn-1...

The length of k-th subinterval [xk−1, xk ] is written ∆xk ; if all equal, ∆x .

We can use any point of the subinterval (e.g. left endpoint, midpoint,
right endpoint etc.) to form the rectangles.
The finer the partition, i.e. the larger the number n of subintervals -
the shorter their length, the better the area approximation.

Definite Integral
Let P = [a, x1, ..., xn−1, b] partitions of [a, b], and ck ∈ [xk−1, xk ]. The
definite integral of a function f from a to b is∫ b

a
f (x)dx = lim

n→∞

n∑
k=1

height︷ ︸︸ ︷
f (ck)

base︷︸︸︷
∆x

If the limit exists, f is (Riemann) integrable on [a, b]; e.g. all continuous f .
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Integrals are signed areas

? Geometrically, integrals are signed areas between curves and the x-axis:
above or below changes the sign!

[POSITIVE] If f is integrable on [a, b] and f (x) ≥ 0 on [a, b], then∫ b

a
f (x)dx = area between f -graph and x -axis, from a to b

[ANY] If f is integrable on [a, b], then∫ b

a
f (x)dx = [area above x -axis]− [area below x -axis]
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Properties of the Riemann Integral

1
a∫
a
f (x)dx = 0 2

b∫
a
f (x)dx=-

a∫
b
f (x)dx 3

b∫
a
kf (x)dx=k

b∫
a
f (x)dx

4

∫ b

a
(f (x) + g(x)) dx =

∫ b

a
f (x)dx +

∫ b

a
g(x)dx

5

∫ b

a
f (x)dx =

∫ c

a
f (x)dx +

∫ b

c
f (x)dx

? All the proofs follow from properties of limits and Sigma notation!

Work out the following: (answers are now posted in green):

1 Compute
∫ 2

−1
(x − 1)dx by finding the respective area. −3

2
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The Fundamental Theorem of Calculus

Idea: computing areas [integrals] is connected to tangents [derivatives]!

I If f continuous, then it is integrable:
∫ x

a
f (u)du exists, for arbitrary x .

Fundamental Theorem of Calculus (FTC), pt.1
Suppose f is continuous on [a, b]. Then the function defined as

F (x) =
∫ x

a
f (u)du, a ≤ x ≤ b

is continuous on [a, b] and differentiable on (a, b). Moreover,( d
dx F (x)=

)
F’(x)=f(x)

? Integration and differentiation are ‘inverses’ to one another.
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What if the upper and/or lower limits of the integral are more complicated
functions of x?

Leibniz’s Rule
If g(x) and h(x) are differentiable, f (u) continuous for g(x) ≤ u ≤ h(x),

d
dx

∫ h(x)

g(x)
f (u)du = f [h(x)]h′(x)− f [g(x)]g ′(x)

Work out the following:

1 Compute d
dx

∫ x2

−2x

t
2dt. x

3 − 2x
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Indefinite Integrals
Idea: FTC says F ′(x) = f (x) where F (x) =

x∫
a
f (u)du, for arbitrary a ∈ R!

I An antiderivative of f (x) is any F (x) for which F ′(x) = f (x).
They are infinitely many, and differ from each other by a constant C .

Indefinite Integral
The general antiderivative of a function is denoted by∫

f (x)dx = C +
∫ x

a
f (u)du

and is called an indefinite integral.

1
∫
xndx = xn+1

n+1 + C (n 6=−1)

2
∫
exdx = ex + C

3
∫

sin(x)dx = − cos(x) + C
4
∫ 1

x2+1dx = arctan(x) + C

5
∫ 1

x dx = ln |x |+ C
6
∫
axdx = ax

ln a + C
7
∫

cos(x)dx = sin(x) + C
8
∫

sec2(x)dx = tan(x) + C
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What if we want to compute a definite integral, i.e. a specific area?

Fundamental Theorem of Calculus (FTC), pt.2
If f is continuous on [a, b], then∫ b

a
f (x)dx = [F (x)]ba = F (b)− F (a)

for F (x) any antiderivative of f (x), i.e. F ′(x) = f (x).

? Any antiderivative will do (and they all differ by C), so go for simplest.

Work out the following:

1 Calculate the following antiderivative
∫

x(1− x2)dx . x2

2 −
x4

4 + C

2 Evaluate
∫ π

0
(sin(x)− ex + cos(x))dx . 3− eπ
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Substitution Rule, indefinite integrals
Idea: substitution rule is for integration what chain rule is for derivation!

Recall: if f (x) and u(x) are differentiable, then

(f ◦ u)′(x) = f ′(u(x)) · u′(x) or d
dx
(
f
(
u(x)

))
= df

du ·
du
dx

Substitution Rule for Indefinite Integrals

If u = u(x), then
∫

f
(
u(x)

)
u′(x)dx =

∫
f (u)du.

Work out the following: evaluate, using the substitution rule,

1

∫
x2 sin(x3)dx

−1
3 cos(x3) + C

2

∫
xe1−3x2dx

−1
6e

1−3x2 + C

3

∫ 3x
x + 4dx

3(x + 4)−
12 ln |x + 4|+ C
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Substitution Rule, definite integrals

Idea: for definite integrals, also substitute limits of integration!

Substitution Rule for Definite Integrals∫ b

a
f (u(x)) · u′(x)dx =

∫ u(b)

u(a)
f (u)du

Work out the following: evaluate, using the substitution rule,

1

∫ 2

1

3x2 + 1
x3 + x dx ln(5)

2

∫ π/6

0
cos(x)esin(x)dx

√
e − 1

3

∫ 1

0

x3
x2 + 1dx

1− ln 2
2
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Computing areas via integration

Idea: want to compute areas between two arbitrary curves on the plane!

If f and g are continuous on [a, b], with f (x) ≥ g(x) for all x ∈ [a, b],
then the area of the region between the curves

:::::::::
y = f (x) and

:::::::::
y = g(x)

from a to b is
A =

∫ b

a

(
f (x)− g(x)

)
dx

? Always a positive number: the ’real’ area between the graphs.

Always draw the corresponding graphs: finding intersecting points, or
splitting areas in parts bounded only by two curves, may be necessary!
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? Sometimes convenient to compute areas, “form rectangles”, from
::::::
y -axis!

For a region bounded by x = f (y) and x = g(y), g(y) ≤ f (y) in [c, d ],

A =
∫ d

c

(
f (y)− g(y)

)
dx

Now f (y) is to the right of g(y).

I Next, compute the net or cumulative change of a quantity.

FTC,pt.2
∫ b

a
F ′(x)dx = F (b)− F (a) says that

the integral (sums) of instantaneous rate of change=net change
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Average values and the Mean Value Theorem
Idea: use the ‘summing rectangles’ method to find average values.

Average value of a function
If f (x) is continuous on [a, b], its average value on that interval is

favg = 1
b − a

∫ b

a
f (x)dx

? In fact, the value favg is the output for some input of f !

Mean Value Theorem for Definite Integrals
If f is continuous on [a, b], then there exists some c ∈ [a, b] such that

f (c)(b − a) =
∫ b

a
f (x)dx

Work out the following:
1 Average value of f (x) = x2 − 2 + e3x over the interval [0, 2]? e6−5

6
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The Volume of a Solid

Idea: split a solid into partitioned cylinder ‘slices’ and sum volumes up!
When their number n→∞, circular cylinders becomes disks...

I
::::::::::::
Cross-section: intersection of solid and plane perpendicular to x -axis.

The volume of a solid of cross-sectional area A(x) from a to b is∫ b

a
A(x)dx

For any solid of revolution, obtained by rotating some curve y = f (x)
about the x -axis, compute its volume by the disk method:

V =
∫ b

a
π
(
f (x)

)2dx .
If cross-sectional area is between two curves, also called washer method.
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Integration by Parts
Idea: integration by parts is what product rule is for derivation!

Recall: if u = u(x) and v = v(x) are differentiable, then

(uv)′ = u′v + uv ′

Integration by parts rule
For u(x) and v(x) differentiable functions of x ,∫

vdu = uv −
∫

udv

? Product: choose v(x) to be the factor whose derivative is ‘easier’!
I Same way for definite integrals: evaluate uv at the limits of integration.

Work out the following: evaluate, using integration by parts,

1
∫
x cos(x)dx x sin x+ cos x+C 2

∫ e
1 ln(x3)dx 3
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Integration by parts, techniques∫
vdu = uv −

∫
udv

I Multiply by 1 (du = 1 so u = x), if derivative of integrand is easier

I Sometimes, need to apply IBP repeatedly: at every step, integral
becomes easier

I Choice matters; if u and v do not work, check the other option

I Very often, first substitute and then integrate by parts

Work out the following: evaluate, using integration by parts,

1

∫
ex sin(x)dx

ex (sin(x)−cos(x))
2 + C

2

∫ 1

0
e
√

xdx (hint: first
substitution!) 2
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Rational Functions
Idea: break up rational functions f (x) = p(x)

d(x) into simpler fractions!

I Polynomial division algorithm p(x) = d(x) · q(x) + r(x)

Method: to decompose p(x)/d(x)
1 if deg(p(x)) ≥ deg(d(x)),

::::
long

::::::::
division; then (2)-(4) for r(x)/d(x)

2 if d(x) is of higher degree, factor it into linear factors (ax + b)n

and/or irreducible quadratic factors (ax2 + bx + c) [no real zeros]
3 to each linear factor (ax + b)n, assign the sum of partial fractions

A
ax + b + B

(ax + b)2 + . . .+ C
(ax + b)n

4 to each quadratic factor (ax2 + bx + c)m, assign the sum
Ax + B

ax2 + bx + c + Cx + D
(ax2 + bx + c)2 + . . .+ Zx + W

(ax2 + bx + c)n
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I Then clear equation from fractions; use in values of x that easily give
A,B, ...

Integral parts will either be
∫ 1

x + b dx = ln |x + b| or some form of∫ 1
x2 + 1 dx = arctan(x) after algebraic transformation of quadratics.

Work out the following: evaluate, using partial fraction decomposition,

1

∫ 2x2 + 5x − 1
x + 2 dx x2 + x − 3 ln |x + 2|+ C

2
∫ 1

x3+x2 − 1
x + ln | x+1

x |+ C
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Improper integrals: Unbounded intervals
Idea: use limits to compute integrals whose endpoints are ±∞.

If f (x) is continuous, we define the following improper integrals∫ ∞
a

f (x)dx = lim
t→∞

∫ t

a
f (x)dx∫ b

−∞
f (x)dx = lim

t→−∞

∫ b

t
f (x)dx

? The area of an unbounded region may, or may not, approach a number!

If f (x) is continuous on [a,∞) (resp. (−∞, a]), we say the improper∫ ∞
a

f (x)dx (resp.
∫ a

-∞
f (x)dx)

converges when the limit exists and has a finite value. Otherwise the
improper integral diverges.
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What happens when both endpoints are infinite?

If f (x) is continuous on (−∞,∞), then∫ ∞
−∞

f (x)dx =
∫ a

−∞
f (x)dx +

∫ ∞
a

f (x)dx

for any real number a, when
::::
both right-hand side improper integrals

converge; if any of them diverges, the left-hand side diverges as well.

I Notice that
∫ ∞
−∞

f (x)dx 6= lim
b→∞

∫ b

−b
f (x)dx !

Work out the following: do these converge or diverge? If C, evaluate:

1

∫ 0

−∞

1
(x − 1)2 dx Converges, 1 2

∫ ∞
−∞

3e6x dx Diverges
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Improper integrals: Unbounded Integrand
What about integrands being undefined on some part of interval?

[Left Endpoint] If f (x) is continuous on (a, b] and lim
x→a+

f (x) = ±∞, define

∫ b

a
f (x)dx = lim

c→a+

∫ b

c
f (x)dx

[Right Endpoint] If f (x) is continuous on [a, b) and lim
x→b−

f (x) = ±∞,

∫ b

a
f (x)dx = lim

c→b−

∫ c

a
f (x)dx

If the limit exists, the imporoper integral converges; otherwise it diverges.

Work out the following: does this converge or diverge? If C, evaluate:

1

∫ 9

0

1√
9− x

dx Converges, 6
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Improper integrals: Comparison Theorems
? If f (x) is discontinuous on some p ∈ [a, b], break up integral as∫ b

a
f (x)dx =

∫ p

a
f (x)dx +

∫ b

p
f (x)dx

Convergence and Divergence of improper integrals via Comparison
I [Converge] If 0 ≤ f (x) ≤ g(x) for any x ∈ [a,∞),

0 ≤
∫ ∞

a
f (x)dx ≤

∫ ∞
a

g(x)dx

implies that if
∫∞

a g(x)dx converges, so does
∫∞

a f (x)dx .
I [Diverge] If 0 ≤ h(x) ≤ f (x) for any x ∈ [a,∞),

0 ≤
∫ ∞

a
h(x)dx ≤

∫ ∞
a

f (x)dx

implies that if
∫∞

a h(x)dx diverges, so does
∫∞

a f (x)dx .

For f (x),
find ‘easier’
function

bounding it
either from
above or
below and
compute!
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Trigonometric Integrals
Idea: use sin2(x) + cos2(x) = 1 to antiderive trigonometric combinations.

Integrals of the form
∫

sinm(x) cosn(x)dx

1 if m is odd, then m = 2k + 1 for some integer k; rewrite

sinm(x) = sin2k+1(x) =

(sin2(x))k︷ ︸︸ ︷
sin2k(x) · sin(x) = (1− cos2(x))k sin(x)

and substutite u = cos(x), du = − sin(x)dx .
2 if n is odd, similarly rewrite cosn(x) = (1− sin2(x))k cos(x) and

substitute u = sin(x), du = cos(x)dx .
3 if both m and n are even, use the ‘power-reducing’ identities

cos2(x) = 1 + cos(2x)
2 sin2(x) = 1− cos(2x)

2

Work out the following: evaluate
∫ π/2

0
sin2(x) cos3(x)dx 2

15
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Trigonometric Integrals, pt.2

Integrals of the form
∫

tanm(x) secn(x)dx

1 if n = 2k is even, rewrite

secn(x) = sec2k(x) = sec2(x) · sec2k−2(x) = sec2(x)
(
1 + tan2(x)

)k−1

and substitute u = tan(x), with du = sec2(x)dx .
2 if n = 0, rewrite (and any method until all integrals are evaluated)

tanm(x) = tanm−2(x) tan2(x) = tanm−2(x)(sec2(x)− 1)

3 if m = 2k + 1 is odd, rewrite

tan2k+1(x) secn(x) = (sec2(x)− 1)k secn−1(x)
(

tan(x) sec(x)
)

and substitute u = sec(x), with du = tan(x) sec(x)dx .

Work out the following:
∫

tan3(x)dx = tan2(x)/2 + ln | cos(x)|+ C
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Trigonometric Substitution

Idea: substitute x by some trig function of an angle θ
to simplify square roots & other integrands.

Trigonometric Substitution

whenever
√
a2 − x2, substitute x = a sin(θ); by

(a sin(θ))2+(a cos(θ))2=a2,
√
a2 − x2=a cos(θ).

whenever
√
x2 + a2, substitute x = a tan(θ); by

a2+(a tan(θ))2=(a sec(θ))2,
√
x2 + a2=a sec(θ).

whenever
√
x2 − a2, substitute x = a sec(θ);

then
√
x2 − a2 = a tan(θ).

√
a2 − x2

x
a

θ

a

x
√ x2 + a2

θ

a

√
x
2−

a 2

x

θ

I sin(2θ) = 2 sin(θ) cos(θ) I
∫

sec(θ)dθ = ln | tan(θ) + sec(θ)|+ C
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Differential Equations
Idea: find a function y(x) for which dy

dx =some function of x and/or y .

Separable first-order differential equation
An equation including only first derivatives, of the general form

dy
dx = f (x) · g(y)

::::::::::
Pure-Time

::::::::::
Differential

::::::::::
Equations are of the form dy

dx = f (x). Then

by the FTC, y =
∫

f (x) dx , an antiderivative of f (x).

? Use initial condition to determine the constant C for final answer.

Work out the following:

1
dy
dx = 1

3− x , y(0) = 0 (simplify) y = ln( 3
|3−x |)
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Autonomous Differential Equations
I

dy
dx = g(y): by separating variables,

∫ 1
g(y)dy =

∫
dx .

Applications - Models

Exponential Population Growth dN
dt = rN where

N(t)=population size at time t, N(0) > 0 and
r = 1

N
dN
dt ≶ 0

:::
per

::::::
capita

:::::
rate

::
of

:::::::
growth.

Restricted Growth dL
dt = k(A− L) where

L(t)=length of fish at age t and L(0) < A, the
::::::::::
asymptotic

::::::
length of the fish.

The Logistic Equation dN
dt = rN(1− N

K ) r ,K>0
where K=

:::::::
carrying

::::::::
capacity and per capita rate

of growth decreases.

r > 0

r < 0•N0

•
L0

A

K

N0 < K

N0 > K

•N0

Work out the following: N ′(t) = 4N, N(0) = 10 N(t) = 10e4t
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General separable equations of the form dy
dx = g(y)f (x) are solved

by separating variables:
∫ 1

g(y)dy =
∫

f (x)dx .

Work out the following:

1 y ′(x) = y(y − 1), y(0) = 1
2

y(x) = 1
1+ex

2
dy
dx = 2yx , y(1) = 1 y(x) = x2
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Equilibria and their Stability
Idea: look for certain y ’s where the system possibly ‘balances’.

For an autonomous differential equation dy
dx = g(y), an equilibrium is some

ŷ such that g(ŷ) = 0, i.e. a solution of dy
dx = 0 .

I If y(0) = ŷ , then y(x) = ŷ for all x > 0; but in general,
it is not guaranteed that the system will ever reach ŷ .

? What about their
:::::::
stability, i.e. endurance after a small pertrubation?

If ŷ is an equilibrium of dy
dx = g(y), then

ŷ is locally stable if g ′(y) < 0 ŷ is unstable if g ′(y) > 0

Work out the following:
1 Equilibria and stability for y ′=2−3y . ŷ=2/3, stable
2 Solve the differential equation, with y(0) = 2/3. y(x) = 2/3!!!
3 Equilibria and for y ′ = y2 − 2.

√
2 unstable, −

√
2 stable
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