

## Vectors

Idea: move from the real line to the plane and 3-dimensional space!

Cartesian coordinates for line, plane, space

- The real number line is  $\mathbb{R}^1 = \mathbb{R}$  (1-dim)
- The set of all ordered pairs (x, y) of real numbers is  $\mathbb{R}^2$  (2-dim)
- The set of all ordered triples (x, y, z) of real numbers is  $\mathbb{R}^3$  (3-dim)

 $\star$  In general,  $\mathbb{R}^n$  is the n-dimensional Euclidean space.

A vector, denoted **a** or  $\vec{a}$ , is a directed line segment in space with a beginning (tail) and an end (head).

★ To any point  $(a_1, a_2, a_3) \in \mathbb{R}^3$  associate the vector with tail=origin and head= $(a_1, a_2, a_3)$ : vectors thought of as arrows emanating from the origin!

▶ Two vectors are *equal* if and only if all their components are equal.

# Vector operations

Idea:  $\mathbb{R}^3$  inherits various standard operations from  $\mathbb{R}!$ 

Vector addition and scalar multiplication

The sum of two vectors  $\vec{a}$  and  $\vec{b}$  is a vector

$$ec{a}+ec{b}=(a_1,a_2,a_3)+(b_1,b_2,b_3):=(a_1+b_1,a_2+b_2,a_3+b_3)$$

The scalar multiple of a real number  $\kappa$  and a vector  $\vec{a}$  is a vector

$$\kappa \vec{a} = \kappa(a_1, a_2, a_3) := (\kappa a_1, \kappa a_2, \kappa a_3)$$

► The vector  $\vec{0} = (0, 0, 0)$  is the zero of  $\mathbb{R}^3$ ; the vector  $-\vec{a} = (-a_1, -a_2, -a_2)$  is the additive inverse of  $\vec{a}$ 

\* These have geometric interpretations: addition is placing vectors 'head to tail', scalar multiplication is 'stretching' (and possibly reversing).

Two key characteristics of vectors is their length and their direction.

#### Standard basis vectors

Define  $\vec{i} = (1, 0, 0)$ ,  $\vec{j} = (0, 1, 0)$ ,  $\vec{k} = (0, 0, 1)$ . Any vector in  $\mathbb{R}^3$  can be represented uniquely as a linear combination of these *standard basis vectors* 

$$\vec{a} = (a_1, a_2, a_3) = a_1 \vec{i} + a_2 \vec{j} + a_3 \vec{k}$$

Work out the following: suppose  $\vec{a} = (3, -1, -2)$  and  $\vec{b} = (0, 1, 1)$ .

- Compute the vector  $3\vec{a} 2\vec{b}$ . (9, -5, -8)
- **2** Express  $\vec{b}$  as a linear combination of the standard basis.  $\vec{b} = \vec{j} + \vec{k}$

#### Vector Joining two Points

If P = (x, y, z) and Q = (u, v, w) are two points in  $\mathbb{R}^3$ , there is a vector  $\overrightarrow{PQ} = (u - x, v - y, w - z)$  from the tip of P to the tip of Q.

\* Geometric interpretation of vector subtraction: 'join the two heads'.

# Line equations using vectors

Forms of lines

## $t \in \mathbb{R}$ is the parameter

• Point-Direction: a parametric equation of the line passing through the head of some  $\vec{a}$  and parallel to some  $\vec{v}$  is

$$\vec{\ell}(t) = \vec{a} + t\vec{v}$$
, with coordinates 
$$\begin{cases} x = a_1 + v_1 t \\ y = a_2 + v_2 t \\ z = a_3 + v_3 t \end{cases}$$

**2** *Point-Point*: an equation of the line passing through some  $P = (a_1, a_2, a_3)$  and  $Q = (b_1, b_2, b_3)$  is

$$\vec{\ell}(t) = \begin{cases} x = a_1 + (b_1 - a_1)t \\ y = a_2 + (b_2 - a_2)t \\ z = a_3 + (b_3 - a_3)t \end{cases}$$

 $\star$  In  $\mathbb{R}^3$ , two lines may NOT be parallel yet still NOT intersecting!

Christina Vasilakopoulou (MATH 10A, UCR)

5 / 49

Work out the following: suppose  

$$P = (-2, -1), Q = (-3, -3), R = (-1, -4)$$
 in  $\mathbb{R}^2$ .  
**3**  $\overrightarrow{PQ}$ ?  $\overrightarrow{QR}$ ?  $\overrightarrow{RP}$ ?  $(-1, -2), (2, -1), (-1, 3)$   
**4** Write an equation for the line that passes through *P* and *R*

2 Write an equation for the line that passes through *P* and *R*.  $\vec{\ell}(t) = (-2 - t, -1 + 3t)$ 

# Inner Product of vectors

The inner (or dot) product of  $\vec{a} = (a_1, a_2, a_3)$  and  $\vec{b} = (b_1, b_2, b_3)$  is

$$ec{a}\cdotec{b}=\langleec{a},ec{b}
angle:=a_1b_1+a_2b_2+a_3b_3$$

The norm of a vector  $\vec{a} = (a_1, a_2, a_3)$  is its length, given by

$$\|\vec{a}\| := \sqrt{a_1^2 + a_2^2 + a_3^2} = \sqrt{\langle \vec{a}, \vec{a} \rangle}$$

\* Operations: sum  $\mathbb{R}^3 \times \mathbb{R}^3 \xrightarrow{+} \mathbb{R}^3$ , scalar multiplication  $\mathbb{R} \times \mathbb{R}^3 \to \mathbb{R}^3$ , inner product  $\mathbb{R}^3 \times \mathbb{R}^3 \xrightarrow{\langle , , \rangle} \mathbb{R}$ , norm  $\mathbb{R}^3 \xrightarrow{\parallel \parallel} \mathbb{R}_+$ !

$$\begin{array}{l} \mathbf{1} \quad \langle \vec{a}, \vec{a} \rangle \geq 0 \\ \mathbf{2} \quad \kappa \langle \vec{a}, \vec{b} \rangle = \langle \kappa \vec{a}, \vec{b} \rangle \\ \mathbf{3} \quad \langle \vec{a}, \vec{b} + \vec{c} \rangle = \langle \vec{a}, \vec{b} \rangle + \langle \vec{a}, \vec{c} \rangle \\ \end{array}$$

A unit vector has norm one unit,  $\|\vec{a}\| = 1$ ; e.g.  $\vec{i}, \vec{j}, \vec{k}$ .

To normalize a non-zero vector  $\vec{a}$  amounts to keeping the same direction but making its length 1:

$$rac{ec{a}}{\|ec{a}\|} = rac{1}{\sqrt{a_1^2 + a_2^2 + a_3^2}}(a_1, a_2, a_3)$$

 $\star$  Geometrically, inner product relates to angle between vectors!

Inner product and angle between vectors If  $\vec{a}, \vec{b} \in \mathbb{R}^3$  and  $0 \le \theta \le \pi$  the angle between them,  $\langle \vec{a}, \vec{b} \rangle = \|\vec{a}\| \, ||\vec{b}|| \cos(\theta)$  $\vec{a} \perp \vec{b} \Leftrightarrow \langle \vec{a}, \vec{b} \rangle = 0$ 

Given two vectors  $\vec{a}$  and  $\vec{b} \neq \vec{0}$ , the *orthogonal projection* of  $\vec{a}$  along  $\vec{b}$  is

$$ec{p} = rac{\langle ec{a}, ec{b} 
angle}{\langle ec{b}, ec{b} 
angle} ec{b}$$

Christina Vasilakopoulou (MATH 10A, UCR)

Triangle Inequality

For any vectors  $\vec{a}$  and  $\vec{b}$ ,

$$\left\|\vec{a}+\vec{b}\right\| \leq \|\vec{a}\|+||\vec{b}||$$



Work out the following:

**1** Normalize the vector (0, 3, -4).  $(0, \frac{3}{5}, -\frac{4}{5})$ 

**②** What is the angle between the vectors  $\vec{i} - 2\vec{k}$  and  $2\vec{i} + 5\vec{j} + \vec{k}$ ?  $\theta = \frac{\pi}{2}$ , orthogonal

# Matrices and the Determinant

## Matrix

An  $m \times n$  matrix consists of m rows and n columns of real numbers; write

 $A = (a_{ij})$  where  $a_{ij}$  is the component in the position (i, j)

\* If the matrix is 
$$n \times n$$
, we can find its determinant.  

$$2 \times 2$$
For a matrix  $A$  with two rows and two columns,  

$$det \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} = \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} := a_{11}a_{22} - a_{12}a_{21}$$

$$3 \times 3$$
For a matrix  $A$  with three rows and three columns,  

$$\begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} := a_{11} \begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix} - a_{12} \begin{vmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{vmatrix} + a_{13} \begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix}$$

Christina Vasilakopoulou (MATH 10A, UCR)

#### Properties of determinants

also for  $3 \times 3$  matrices

• Swapping two lines or two columns changes the sign of det

$$\begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} = - \begin{vmatrix} a_{21} & a_{22} \\ a_{11} & a_{12} \end{vmatrix} \text{ and } \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} = - \begin{vmatrix} a_{12} & a_{11} \\ a_{22} & a_{21} \end{vmatrix}$$

Scalars can be factored out a single row or column

$$\kappa \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} = \begin{vmatrix} \kappa a_{11} & \kappa a_{12} \\ a_{21} & a_{22} \end{vmatrix} = \begin{vmatrix} \kappa a_{11} & a_{12} \\ \kappa a_{21} & a_{22} \end{vmatrix} = \begin{vmatrix} a_{11} & a_{12} \\ \kappa a_{21} & \kappa a_{22} \end{vmatrix} = \begin{vmatrix} a_{11} & \kappa a_{12} \\ \kappa a_{21} & \kappa a_{22} \end{vmatrix}$$

• Adding a row/column to an existing row/column does not change det

$$\begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} = \begin{vmatrix} a_{11} + a_{21} & a_{12} + a_{22} \\ a_{21} & a_{22} \end{vmatrix} \text{ and } \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} = \begin{vmatrix} a_{11} + a_{12} & a_{12} \\ a_{21} + a_{22} & a_{22} \end{vmatrix}$$

## Geometry of determinants

Idea: geometrically, det corresponds to area  $(2 \times 2)$  or volume  $(3 \times 3)$ 

 $2 \times 2$  The area of the parallelogram with adjacent sides the vectors

$$\vec{a} = (a_1, a_2)$$
 and  $\vec{b} = (b_1, b_2)$  is  $\det \begin{pmatrix} a_1 & a_2 \\ b_1 & b_2 \end{pmatrix}$ 

3×3 The volume of the parallelepiped with adjacent sides  $\vec{a}$ ,  $\vec{b}$  and  $\vec{c}$  is

$$\det \begin{pmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{pmatrix}$$

\* Absolute value due to physical meaning: area&volume always positive!

Work out the following: find the determinant of

$$\begin{pmatrix} -2 & 1 & 0 \\ 3 & -1 & 4 \\ 5 & 2 & -3 \end{pmatrix} 39$$

# The Cross Product

Idea: new vector operation,  $\times : \mathbb{R}^3 \times \mathbb{R}^3 \to \mathbb{R}^3$  (only like +).

## Cross Product

If  $\vec{a} = (a_1, a_2, a_3)$  and  $\vec{b} = (b_1, b_2, b_3)$ , their cross product is the vector

$$ec{a} imes ec{b} := egin{pmatrix} ``ec{i} & ec{j} & ec{k}'' \ a_1 & a_2 & a_3 \ b_1 & b_2 & b_3 \ \end{bmatrix} = egin{pmatrix} a_2 & a_3 \ b_2 & b_3 \ \end{vmatrix} ec{i} - egin{pmatrix} a_1 & a_3 \ b_1 & b_3 \ \end{vmatrix} ec{j} + egin{pmatrix} a_1 & a_2 \ b_1 & b_2 \ \end{vmatrix} ec{k}$$

 $\star$  The properties of this operation follow from those of the determinant.

#### Properties of cross product

• 
$$\vec{a} \times \vec{b} = -\vec{b} \times \vec{a}$$

• 
$$\vec{a} \times (\vec{b} + \vec{c}) = \vec{a} \times \vec{b} + \vec{a} \times \vec{c}$$

• 
$$\kappa(\vec{a} \times \vec{b}) = (\kappa \vec{a}) \times \vec{b} = \vec{a} \times (\kappa \vec{b})$$
  
•  $(\vec{b} + \vec{c}) \times \vec{d} = \vec{b} \times \vec{d} + \vec{c} \times \vec{d}$ 

# Geometry of cross product

## Direction and norm of cross product

- $\vec{a} \times \vec{b}$  is perpendicular to both  $\vec{a}$  and  $\vec{b}$  (right-hand rule)
- If  $\theta$  is the angle between  $\vec{a}$  and  $\vec{b}$ , then the norm of their cross product

 $\left\|\vec{a} \times \vec{b}\right\| = \|\vec{a}\| \|\vec{b}\| \sin(\theta)$  area of parallelogram spanned by  $\vec{a}, \vec{b}$ 

• 
$$ec{a} imesec{b}=ec{0}\Leftrightarrowec{a}=ec{0}$$
 or  $ec{b}=ec{0}$  or  $ec{a}||ec{b}$  (parallel)

 $\star$  In  $\mathbb{R}^2$ , the area  $\left\| \vec{a} \times \vec{b} \right\|$  reduces to the absolute value of det (as earlier!)

## Plane equations

An equation of the plane passing through the point  $P = (x_0, y_0, z_0)$  perpendicular to a vector  $\vec{n} = (A, B, C)$  is

$$A(x - x_0) + B(y - y_0) + C(z - z_0) = 0.$$

\* Notice that for any given plane Ax + By + Cz + D = 0, the vector  $\vec{n} = (A, B, C)$  is orthogonal/normal to the plane!

Work out the following: find a unit vector which is orthogonal to both  $-2\vec{i}+3\vec{k}$  and  $\vec{j}-5\vec{k}$ .  $\left(-\frac{3}{\sqrt{113}},-\frac{10}{\sqrt{113}},-\frac{2}{\sqrt{113}}\right)$ 

# Polar and Cylindrical Coordinates

Polar coordinates  $(r, \theta)$ express point in plane by positioning it on a circle of radius r and its angle  $0 \le \theta \le 2\pi$  from x-axis



## Cylindrical coordinates

The cylindrical coordinates  $(r, \theta, z)$  of a point (x, y, z) are

$$x = r\cos(\theta), \quad y = r\sin(\theta), \quad z = z$$

Conversely, the cartesian coordinates (x, y, z) of a point  $(r, \theta, z)$  are

$$r = \sqrt{x^2 + y^2}, \quad \theta = \arctan\left(\frac{y}{x}\right)(+\pi \text{ or } 2\pi...), \quad z = z$$

# Spherical Coordinates

What if we view a 3-D point as inhabiting the surface of a sphere?

## Spherical coordinates

The spherical coordinates  $(\rho, \theta, \phi)$  of a point (x, y, z) are

 $x = \rho \sin(\phi) \cos(\theta), \quad y = \rho \sin(\phi) \sin(\theta), \quad z = \rho \cos(\phi)$ 

where  $ho \geq$  0, 0  $\leq$   $heta < 2\pi$ , 0  $\leq$   $\phi$   $\leq$   $\pi$ . Conversely,

$$\rho = \sqrt{x^2 + y^2 + z^2}, \ \theta = \arctan\left(\frac{y}{x}\right)(+...), \ \phi = \arccos\left(\frac{z}{\sqrt{x^2 + y^2 + z^2}}\right)$$



Work out the following:

• What are the cartesian coordinates (x, y, z) for  $(4, \frac{\pi}{4}, \frac{\pi}{3})? (\sqrt{6}, \sqrt{6}, 2)$ 

**2** What are its cylindrical coordinates  $(r, \theta, z)$ ? $(2\sqrt{3}, \frac{\pi}{4}, 2)$ 

## Vectors in n-dim space

Idea: earlier operations in  $\mathbb{R}^2$  or  $\mathbb{R}^3$  generalize in higher dimensions!

For vectors 
$$\vec{a} = (a_1, a_2, \dots, a_n)$$
 and  $\vec{b} = (b_1, b_2, \dots, b_n)$  in  $\mathbb{R}^n$   
• their sum is the *n*-vector

$$\vec{a} + \vec{b} := (a_1 + b_1, a_2 + b_2, \dots, a_n + b_n)$$

• for  $\kappa \in \mathbb{R}$ , scalar multiplication gives the *n*-vector

$$\kappa \vec{a} := (\kappa a_1, \kappa a_2, \dots, \kappa a_n)$$

• their *inner* or *dot* product is the real number

$$\langle ec{a},ec{b}
angle = ec{a}\cdotec{b} := a_1b_1 + a_2b_2 + \ldots + a_nb_n$$

• the norm of any n-vector is its length, given by the real number

$$\|\vec{a}\| := \sqrt{a_1^2 + a_2^2 + \ldots + a_n^2}$$

Christina Vasilakopoulou (MATH 10A, UCR)

# Operations of general matrices

For general  $m \times n$  matrices  $\begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix} \in \mathbb{R}^{m \times n} \text{ we can add}$ 'componentwise'  $A + B = (a_{ij} + b_{ij})$ , or scalarly multiply  $\kappa A = (\kappa a_{ij})$ .

## Matrix multiplication

If  $A = (a_{ij})$  is an  $m \times n$ -matrix and  $B = (b_{ij})$  is an  $n \times p$ -matrix, their product is defined to be an  $m \times p$ -matrix AB = C with

$$c_{ij} := a_{i1}b_{1j} + a_{i2}b_{2j} + \ldots + a_{in}b_{np} = \sum_{k=1}^{n} a_{ik}b_{kj}$$

 $\star$  ...the inner product of the *i*-th row of A and the *j*-th column of B!

▶  $AB \neq BA$ , i.e. matrix mutliplication is NOT commutative.

## Invertible matrices

► The 
$$n \times n$$
-matrix  $I_n = \begin{pmatrix} 1 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \dots & 1 \end{pmatrix}$  is called the *identity* matrix:  
 $IA = A, BI = B$  whenever the multiplication is defined.

#### Invertible matrices

An  $n \times n$ -matrix A is *invertible* if there exists some  $n \times n$ -matrix B such that

 $AB = BA = I_n$ .  $|A \text{ is invertible } \Leftrightarrow \det(A) \neq 0|$ 

# Multivariable Functions

Idea: how to draw graphs of functions of multiple variables?

A function  $f: U \subseteq \mathbb{R}^n \to \mathbb{R}^m$ , namely  $f(x_1, \ldots, x_n) \in \mathbb{R}^m$ , is called *of* several variables. If m = 1, real-valued function; if m > 1, vector-valued.

▶ A *level set* for a real-valued function *f* of *n* variables is the collection

$$L_c = \{(x_1,\ldots,x_n) \in U \subseteq \mathbb{R}^n | f(x_1,\ldots,x_n) = c\}$$

for some constant c. If n = 2, level <u>curve</u>; if n = 3, level <u>surface</u>.

#### Graphs of multivariable functions

The graph of  $f: \mathbb{R}^n \to \mathbb{R}^m$  is the set of all  $(x_1, \ldots, x_n, f(x_1, \ldots, x_n))$  for any  $(x_1, \ldots, x_n)$  in the domain of f; to draw it, compute the level sets and then 'raise' them to the appropriate level!

# Limits of single-variable functions

Recall: 
$$\lim_{x \to c} f(x) = L \Leftrightarrow \text{if } |x - c| \to 0, |f(x) - L| \to 0.$$

One-sided limits: 
$$\lim_{x \to c} f(x) = L \iff \lim_{x \to c^-} f(x) = L = \lim_{x \to c^+} f(x)$$
  
We call  $f$  continuous at  $c$  if  $\lim_{x \to c} f(x) = f(c)$ .

 $\star$  The limit of a function at some input c, and the value/output f(c), are in principle unrelated. They coincide? Continuity!

Suppose  $\lim_{x\to c} f(x) = L$ ,  $\lim_{x\to c} g(x) = K$  for functions f, g and  $c, L, K \in \mathbb{R}$ .

$$\lim_{x \to c} (f(x) \pm g(x)) = L \pm K$$

$$\lim_{x \to c} (\kappa f(x)) = \kappa \cdot L$$

$$\lim_{x \to c} \frac{f(x)}{g(x)} = \frac{L}{K} \text{ for } K \neq 0$$

 Polynomials, rational functions, exponentials/logarithms and trigonometric functions are continuous at their domain.

# Limits of multivariable functions

Idea: distance in 
$$\mathbb{R}^n$$
 is now measured as  $\left\|ec{b}-ec{a}
ight\|=\sqrt{\sum\limits_{i=1}^n(b_i-a_i)^2}$ 

Let  $f: U \subset \mathbb{R}^n \to \mathbb{R}^m$ . We say a vector  $\vec{b} \in \mathbb{R}^m$  is the limit as  $\vec{x}$  approaches  $\vec{c} \in U$  when, for any  $\vec{x} \neq \vec{c}$ ,

if 
$$\|\vec{x} - \vec{c}\| \to 0$$
 then  $\|f(\vec{x}) - \vec{b}\| \to 0$ .

In that case, denote  $\lim_{\vec{x} \to \vec{c}} f(\vec{x}) = \vec{b}$ . Otherwise, the limit does not exist.

 $\star$  'One-sided' limits are now endless - from all possible directions! If any two particular ones disagree, DNE.

# Properties of multivariable limits

**1** (Uniqueness) If 
$$\lim_{\vec{x}\to\vec{c}} f(\vec{x}) = \vec{b_1}$$
 and  $\lim_{\vec{x}\to\vec{c}} f(\vec{x}) = \vec{b_2}$ , then  $\vec{b_1} = \vec{b_2}$ .
**2**  $\lim_{\vec{x}\to\vec{c}} (\kappa f(\vec{x})) = \kappa \lim_{\vec{x}\to\vec{c}} f(\vec{x})$  for  $\kappa \in \mathbb{R}$  when the limit exists
**3**  $\lim_{\vec{x}\to\vec{c}} (f(\vec{x}) \pm g(\vec{x})) = \lim_{\vec{x}\to\vec{c}} f(\vec{x}) + \lim_{\vec{x}\to\vec{c}} g(\vec{x})$  if both limits exist
**3**  $\lim_{\vec{x}\to\vec{c}} (f(\vec{x})g(\vec{x})) = \lim_{\vec{x}\to\vec{c}} f(\vec{x}) \cdot \lim_{\vec{x}\to\vec{c}} g(\vec{x})$  if both limits exist & are reals
**3**  $\lim_{\vec{x}\to\vec{c}} \left(\frac{f(\vec{x})}{g(\vec{x})}\right) = \frac{\lim_{\vec{x}\to\vec{c}} f(\vec{x})}{\lim_{\vec{x}\to\vec{c}} g(\vec{x})}$  if both limits exist & are reals

Work out the following: do the following exist? If so, evaluate.

$$Iim_{(x,y)\to(0,0)}\frac{y}{y+x} DNE$$

# Multivariable Continuity

A function  $f: U \subseteq \mathbb{R}^n \to \mathbb{R}^m$  is **continuous** at  $\vec{c} \in U$  if

•  $\lim_{\vec{x} \to \vec{c}} f(\vec{x})$  exists; •  $f(\vec{c})$  exists;

• 
$$\lim_{\vec{x}\to\vec{c}}f(\vec{x})=f(\vec{c}).$$

 $\star$  Multivariable polynomial, rational, trigonometric, exponential and logarithmic (real-valued) functions are continuous, at their domain.

Every vector-valued function with range  $\mathbb{R}^m$  can be written as  $f(\vec{x}) = (f_1(\vec{x}), f_2(\vec{x}), \dots, f_m(\vec{x}))$ . Its limit is

$$\lim_{\vec{x}\to\vec{c}}f(\vec{x})=(\vec{b}_1,\vec{b}_2,\ldots,\vec{b}_m) \text{ where } b_i=\lim_{\vec{x}\to\vec{c}}f_i(\vec{x})$$

If each  $f_i(\vec{x})$  is continuous, then so is  $f(\vec{x})$ .

## Limit of composition

If  $\lim_{\vec{x}\to\vec{c}} u(\vec{x}) = b$  and  $\lim_{\vec{x}\to\vec{b}} f(\vec{x}) = \vec{d}$ , the limit of the composite  $(f \circ u)(\vec{x})$  is

$$\lim_{\vec{x}\to\vec{c}}f(u(\vec{x}))=\vec{d}$$

Work out the following:

- $\lim_{(x,y)\to(1,1)} (x^2 + y^3) e^{x-y}$  2
- What value should we assign to  $\frac{e^{xy} e}{xy 1}$  to make it continuous at (1, 1)? *e*

# Single Variable Differentiation

Recall: 
$$f'(x_0) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = \lim_{t \to 0} \frac{f(x+t) - f(x)}{t}$$

Derivation Rules for single variable functions

If f(x), g(x), h(x) are differentiable functions with  $h(x) \neq 0$  and  $\kappa \in \mathbb{R}$ 

•  $(\kappa f(x))' = \kappa f'(x)$  scalar multiple • (f(x) + g(x))' = f'(x) + g'(x) sum • (f(x)g(x))' = f'(x)g(x) + f(x)g'(x) product •  $\left(\frac{f(x)}{h(x)}\right)' = \frac{f'(x)h(x) - f(x)h'(x)}{h^2(x)}$  quotient • (f(u(x)))' = f'(u(x))u'(x) chain rule

\* In the multivariable setting, consider all but one variables as constants and compute single-variable derivative!

# Partial Derivatives

If  $f: U \subseteq \mathbb{R}^n \to \mathbb{R}$  is a real-valued function, its *partial derivatives* are

$$\frac{\partial f}{\partial x_j}(x_1,\ldots,x_n) := \lim_{t\to 0} \frac{f(\vec{x}+t\vec{e_j})-f(\vec{x})}{t} = \lim_{t\to 0} \frac{f(x_1,\ldots,x_j+t,\ldots,x_n)}{t}$$

where  $\vec{e_j} = (0, \dots, \underbrace{1}_{jth}, 0, \dots, 0)$  are the standard basis vectors in  $\mathbb{R}^n$ .

If  $f : \mathbb{R}^n \to \mathbb{R}^m$  is given by  $f(\vec{x}) = (f_1(\vec{x}), \dots, f_m(\vec{x}))$ , its matrix of partial derivatives is the  $m \times n$  matrix

$$Df := \begin{pmatrix} \frac{\partial f_1}{\partial x_1} & \cdots & \frac{\partial f_1}{\partial x_n} \\ \cdots & \cdots \\ \frac{\partial f_m}{\partial x_1} & \cdots & \frac{\partial f_m}{\partial x_n} \end{pmatrix}$$

If f is real-valued, this  $1 \times n$  matrix a.k.a. *n*-vector is its *gradient* 

$$\nabla f := Df = \begin{pmatrix} \frac{\partial f}{\partial x_1} & \frac{\partial f}{\partial x_1} & \dots & \frac{\partial f}{\partial x_n} \end{pmatrix}$$

Christina Vasilakopoulou (MATH 10A, UCR)

# Multivariable Differentiability

A function  $f : \mathbb{R}^n \to \mathbb{R}^m$  with  $f(\vec{x}) = (f_1(\vec{x}), \dots, f_m(\vec{x}))$  is differentiable at  $\vec{x_0}$  if all partial derivatives exist at  $\vec{x_0}$  and

$$\lim_{\vec{x} \to \vec{x_0}} \frac{\left\| f(\vec{x}) - f(\vec{x_0}) - Df(\vec{x_0})(\vec{x} - \vec{x_0}) \right\|}{\|\vec{x} - \vec{x_0}\|} = 0$$

▶ If all  $\frac{\partial f_i}{\partial x_j}$  exist and are continuous at  $\vec{x_0}$ , then f is differentiable at  $\vec{x_0}$ .

For  $f : \mathbb{R}^2 \to \mathbb{R}$  differentiable at  $(x_0, y_0)$ , its **tangent plane** in  $\mathbb{R}^3$  is  $z = f(x_0, y_0) + f_x(x_0, y_0)(x - x_0) + f_y(x_0, y_0)(y - y_0) =: \mathcal{T}_{(x_0, y_0)}(x, y)$ 

\* Differentiability requires tangent plane to be a good approximation of output z = f(a, b) for any  $(a, b) \rightarrow (x_0, y_0)$ :  $f(a, b) \approx T_{(x_0, y_0)}(a, b)$ !

Work out the following: find  $\nabla f$  for  $f(x, y) = \cos(xy) + x\cos(3y)$ .  $(-y\sin(xy) + \cos(3y), -x\sin(xy) - 3x\sin(y))$ 

Christina Vasilakopoulou (MATH 10A, UCR)

# Iterated Partial Derivatives

\* If partial derivatives exist and are continuous, we say  $\left\lfloor f \text{ is of class } C^1 \right\rfloor$ . If the *second* partial derivatives exist and are continuous, *f* is of class  $C^2$ !

$$\frac{\partial^2 f}{\partial x^2} = \frac{\partial}{\partial x} \left( \frac{\partial f}{\partial x} \right), \frac{\partial^2 f}{\partial x \partial y} = \frac{\partial}{\partial x} \left( \frac{\partial f}{\partial y} \right), \frac{\partial^2 f}{\partial y \partial z} = \frac{\partial}{\partial y} \left( \frac{\partial f}{\partial z} \right) \text{ etc.}$$

#### Equality of Mixed Partials

If f is of class  $C^2$ , namely twice continuously differentiable, then its mixed partial derivatives are equal: e.g.  $f_{xy} = f_{yx}$ , or generally

$$\frac{\partial^2 f}{\partial x_i \partial x_j} = \frac{\partial^2 f}{\partial x_j \partial x_i}$$

Work out the following:

If f(x, y) = cos(3x) sin<sup>2</sup>(y), find f<sub>xy</sub>. -6 sin(3x) sin(y) cos(y)
 Approximate (0.98)<sup>2</sup> - (0.01)<sup>3</sup>. 0.96

# Paths and Curves

- A path in ℝ<sup>n</sup> is a function c: [a, b] → ℝ<sup>n</sup>. For n = 2, it is called path in plane and for n = 3 path in space.
- The collection of points C = {c(t) | t ∈ [a, b]} ⊆ ℝ<sup>n</sup> is called the curve traced out by c, with endpoints c(a) and c(b).
- For a path in space, write  $\vec{c}(t) = (x(t), y(t), z(t))$  for its component functions x(t), y(t), z(t).

\* We say that  $\vec{c}(t)$  traces or parameterizes the curve C.

If a path  $\vec{c}$  in  $\mathbb{R}^n$  is diff., its velocity or tangent vector at time t is

$$\vec{c}'(t) = \lim_{h \to 0} \frac{\vec{c}(t+h) - \vec{c}(t)}{h} = (x_1'(t), x_2'(t), ..., x_n'(t))$$

Its *speed* at each *t* is given by  $\|\vec{c}(t)\|$ , the length of its tangent vector.

 $\star$  If  $\vec{c}'(t_0) \neq 0$ , draw this vector with tail  $\vec{c}(t_0)$  tangent to the curve.

# ► The *tangent line* of a curve *C* traced by a path $\vec{c}(t)$ at time $t_0$ is $\vec{\ell}(t) = \vec{c}(t_0) + \vec{c}'(t_0)(t - t_0)$ with direction vector $\vec{c}'(t_0)$ .

\* Using  $t - t_0$  rather than just t in the line equation ensures that  $\vec{\ell}(t_0) = \vec{c}(t_0)$ , meaning the line goes through that point at time  $t_0$ .

Work out the following: suppose the position of a particle is given by  $\vec{c}(t)=(t,t^2,\sqrt{t}).$ 

**9** What is the particle's speed at time  $t = 1? \sqrt{6}$ 

If the particle flies off at its tangent at t = 1, what is its position at t = 2? (2, 3, 2)

# Derivation Rules for multivariable functions

Idea: rules for multivariable derivation are very similar to single variable, but now things are expressed using partial derivative matrices!

If 
$$f, g: \mathbb{R}^n \to \mathbb{R}^m$$
 and  $h, k: \mathbb{R}^n \to \mathbb{R}$  are differentiable at  $\vec{x}_0$  and  $\kappa \in \mathbb{R}$   
(a)  $D(\kappa f)(\vec{x}_0) = \kappa Df(\vec{x}_0)$  scalar multiple rule  
(b)  $D(f + g)(\vec{x}_0) = Df(\vec{x}_0) + Dg(\vec{x}_0)$  sum rule  
(c)  $D(hk)(\vec{x}_0) = Dh(\vec{x}_0)k(\vec{x}_0) + h(\vec{x}_0)Dk(\vec{x}_0)$  product rule  
(c)  $D\left(\frac{h}{k}\right)(\vec{x}_0) = \frac{Dh(\vec{x}_0)k(\vec{x}_0) - h(\vec{x}_0)Dk(\vec{x}_0)}{k^2(\vec{x}_0)}$  quotient rule  $(k \neq 0)$ 

## The Chain Rule

If  $f: \mathbb{R}^n \to \mathbb{R}^m$  and  $g: \mathbb{R}^m \to \mathbb{R}^p$  are differentiable functions, then  $g \circ f: \mathbb{R}^n \to \mathbb{R}^q$  is differentiable with

$$D(g \circ f)(\vec{x_0}) = Dg(f(\vec{x_0})) \cdot Df(\vec{x_0}).$$

Work out: f(x, y) = (x+1, y-1),  $g(x, y) = 3x - y^2$ .  $D(g \circ f)(9, 1)$ ? (3, 0)

Chain rule 
$$D(g \circ f)(\vec{x}) = Dg(f(\vec{x})) \cdot Df(\vec{x})$$

#### Special Cases of the Chain Rule

For path  $\vec{c} \colon \mathbb{R} \to \mathbb{R}^3$  and real-valued  $f \colon \mathbb{R}^3 \to \mathbb{R}$ ,  $f \circ \vec{c} \colon \mathbb{R} \to \mathbb{R}$  has

$$(f \circ \vec{c})'(t) = \langle \nabla f(\vec{c}(t)), \vec{c}'(t) \rangle = \frac{\partial f}{\partial x} \frac{dx}{dt} + \frac{\partial f}{\partial y} \frac{dy}{dt} + \frac{\partial f}{\partial z} \frac{dz}{dt}$$

For  $g: \mathbb{R}^3 \to \mathbb{R}^3$  with g(x, y, z) = (u(x, y, z), v(x, y, z), w(x, y, z)) and a real-valued  $f: \mathbb{R}^3 \to \mathbb{R}$ ,  $h:=(f \circ g): \mathbb{R}^3 \to \mathbb{R}$  has

| ∂h                      | ∂f∂u                                                            | ∂f∂v                                                               | ∂f ∂w                                         |
|-------------------------|-----------------------------------------------------------------|--------------------------------------------------------------------|-----------------------------------------------|
| <del>3x</del>           | $= \frac{\partial u}{\partial x} \frac{\partial x}{\partial x}$ | $+ \frac{\partial v}{\partial x} \frac{\partial x}{\partial x} +$  | $\frac{\partial w}{\partial x}$               |
| ∂h                      | _∂f∂u                                                           | ∂f∂v                                                               | ∂f ∂w                                         |
| $\overline{\partial y}$ | $= \overline{\partial u} \overline{\partial y}$                 | $\neg \frac{\partial v}{\partial y} \frac{\partial y}{\partial y}$ | $\overline{\partial w} \overline{\partial y}$ |
| ∂h                      | ∂f ∂u                                                           | ∂f ∂v                                                              | ∂f ∂w                                         |
| ðΖ                      | $= \frac{\partial u}{\partial u} \frac{\partial z}{\partial z}$ | $+ \frac{\partial v}{\partial z} \frac{\partial z}{\partial z} +$  | $\overline{\partial w} \overline{\partial z}$ |

\* These all arise from the matrix multiplication of the chain rule! Work out:  $(f \circ \vec{c})'(1)$  for f(x, y, z) = xy + z and  $\vec{c}(t) = (t + 1, t^2, 1 - t)$ ?

# **Directional Derivatives**

Idea: for an object moving on some line  $\vec{\ell}(t) = \vec{x} + \vec{v}t$ , how 'fast' are the values of some f(x, y, z) changing at a specific point?

The **directional derivative** of  $f \colon \mathbb{R}^3 \to \mathbb{R}$  at  $\vec{x}$  along the (unit) vector  $\vec{v}$  is

$$\frac{d}{dt}f(\vec{x}+t\vec{v})|_{t=0} = \langle \nabla f(\vec{x}), \vec{v} \rangle$$

namely  $D(f \circ \vec{c})(0)$  for any path  $\vec{c}$  with  $\vec{c}(0) = \vec{x} \& \vec{c}'(0) = \vec{v}$ , unit speed.

\* When is RoC 
$$\langle \nabla f(\vec{x}), \vec{v} \rangle = \| \nabla f(\vec{x}) \| \cos(\theta)$$
 maximum?  

$$\boxed{-1 \le \cos(\theta) \le 1}$$
 so when  $\theta = 0!$ 

Direction of fastest increase or decrease

If  $\nabla f(\vec{x}) \neq 0$ , the vector  $\nabla f(\vec{x})$  points in the direction along which f increases the fastest. Similarly, f decreases the fastest along  $-\nabla f(\vec{x})$ .

# **Tangent Planes**

If  $f : \mathbb{R}^3 \to \mathbb{R}$  is diff. &  $(x_0, y_0, z_0) \in L_c = \{(x, y, z) | f(x, y, z) = c\}$  level surface, then  $\nabla f(x_0, y_0, z_0)$  is orthogonal to  $L_c$  at  $(x_0, y_0, z_0)$ .

► Recall that A(x - x<sub>0</sub>)+B(y - y<sub>0</sub>)+C(z - z<sub>0</sub>)=0 is the plane passing from (x<sub>0</sub>, y<sub>0</sub>, z<sub>0</sub>) and is perpendicular to vector (A, B, C).

Tangent Plane on Level Surface

The tangent plane of surface  $L_c$  for f(x, y, z) at  $(x_0, y_0, z_0)$  is

$$f_x(x_0, y_0, z_0)(x - x_0) + f_y(x_0, y_0, z_0)(y - y_0) + f_z(x_0, y_0, z_0)(z - z_0) = 0$$

\* Reduces also to tangent plane for graph of some g(x, y)! Using level surface  $L_0$  for f(x, y, z) = g(x, y) - z ends up in previous

$$z = T_{(x_0, y_0)}(x, y) = g(x_0, y_0) + g_x(x_0, y_0)(x - x_0) + g_y(x_0, y_0)(y - y_0)$$

# Taylor's Theorem

Idea: earlier, used tangent plane Ax+By+Cz=D to *linearly* approximate some  $f(x_0, y_0)$ . Now, <u>quadratic</u> or higher-order approximations!

Single-Variable Taylor Theorem For a smooth function  $f : \mathbb{R} \to \mathbb{R}$ ,

$$\frac{f(x_0+h) = f(x_0) + f'(x_0)h}{\text{linear approximation}} + \frac{f''(x_0)}{2}h^2 + \ldots + \frac{f^{(k)}(x_0)}{k!}h^k + R_k(x_0,h)$$

where  $R_k(x_0, h)$  is the *k*-th order remainder (small error term). For k = 1 first-order Taylor formula, for k = 2 second-order Taylor formula.

 $\star$  Express either as above formula  $f(x_0+h),$  or as approximation function

$$f(x) = f(x_0) + f'(x_0) \underbrace{(x - x_0)}_{h} + \frac{1}{2} f''(x_0) (x - x_0)^2 + \dots$$

First-order for two variables is tangent plane approximation from 2.3.

### Multi-Variable Taylor Theorem

$$f:\mathbb{R}^n\to\mathbb{R}$$

• First-Order: 
$$f(\vec{x_0} + \vec{h}) = f(\vec{x_0}) + \sum_{i=1}^n \frac{\partial f}{\partial x_i}(\vec{x_0})h_i + R_1(\vec{x_0}, \vec{h})$$

• Second-Order:  $f(\vec{x_0} + \vec{h}) = f(\vec{x_0}) + \sum_{i=1}^n \frac{\partial f}{\partial x_i}(\vec{x_0})h_i + \frac{1}{2}\sum_{i,j=1}^n \frac{\partial^2 f}{\partial x_i \partial x_j}(\vec{x_0})h_ih_j + R_2(\vec{x_0}, \vec{h})$ 

Second-order for two variables f(x, y) at point  $P = (x_0, y_0)$  is

$$f(x_0+h_1, y_0+h_2) = f(x_0, y_0) + f_x(x_0, y_0)h_1 + f_y(x_0, y_0)h_2 + \frac{1}{2} \left( f_{xx}(x_0, y_0)h_1^2 + 2f_{xy}(x_0, y_0)h_1h_2 + f_{yy}(x_0, y_0)h_2^2 \right) + R_2$$

Work out: second-order Taylor for  $f(x, y) = e^x \cos(y)$  at (0, 0)?  $f(0 + h_1, 0 + h_2) = ...1 + h_1 + \frac{1}{2}h_1^2 - \frac{1}{2}h_2^2 + R_2((0, 0), (h_1, h_2))$ 

# Critical points and Extrema of Real-Valued Functions

Idea: similarly to single-variable case, derivatives relate to max/min values!

For a real-valued function  $f : \mathbb{R}^n \to \mathbb{R}$ , a point  $\vec{x_0}$  is

- a critical point if f is NOT differentiable at  $\vec{x_0}$ , or if  $Df(\vec{x_0}) = \vec{0}$
- a local minimum if  $f(\vec{x}) \ge f(\vec{x_0})$  for all  $\vec{x} \in V$ , a neighborhood of  $\vec{x_0}$
- a local maximum if  $f(\vec{x}) \leq f(\vec{x_0})$  for all  $\vec{x} \in V$ , a neighborhood of  $\vec{x_0}$
- a saddle if it is a critical point, but not an extremum.

#### First Derivative Test

Every local extremum  $\vec{x_0}$  (max or min) of  $f : \mathbb{R}^n \to \mathbb{R}$  has  $Df(\vec{x_0}) = \vec{0}$ , in particular is a critical point. Equivalently,

$$\frac{\partial f_i}{\partial x_i}(\vec{x_0}) = 0 \text{ for all } i = 1, \dots, n$$

## The Hessian of a function

Idea: like partial derivative matrix Df, but now including all second partial derivatives!

The **Hessian matrix** of a real-valued  $f : \mathbb{R}^n \to \mathbb{R}$  is an  $n \times n$  matrix  $Hf = \begin{pmatrix} f_{x_1x_1} & f_{x_1x_2} & \dots & f_{x_1x_n} \\ f_{x_2x_1} & f_{x_2x_2} & \dots & f_{x_2x_n} \\ \vdots & \vdots & \dots & \vdots \\ f_{x_nx_1} & f_{x_nx_2} & \dots & f_{x_nx_n} \end{pmatrix} = \begin{pmatrix} \nabla f_{x_1} \\ \nabla f_{x_2} \\ \vdots \\ \nabla f_{x_n} \end{pmatrix}$ 

\* By the law of mixed partials  $f_{x_ix_j} = f_{x_jx_i}$ , this matrix is symmetric: changing rows by columns (i.e. taking the *transpose*) gives same matrix!

$$= \frac{1}{2}(h_1, \dots, h_n) \cdot Hf(\vec{x_0}) \cdot \begin{pmatrix} h_1 \\ \vdots \\ h_n \end{pmatrix}$$
 is second-order Taylor for critical  $\vec{x_0}$ .

A symmetric  $n \times n$  matrix H is **positive-definite** when all diagonal sub-matrices  $H_k$  (from top left) for  $1 \le k \le n$  satisfy  $\det(H_k) > 0$ ; it is **negative-definite** when  $\det(H_1) < 0$  and the rest alternate signs.

#### Second Derivative Test

A critical point  $\vec{x_0}$  of  $f: \mathbb{R}^n \to \mathbb{R}$  is

- a local minimum, when  $Hf(\vec{x_0})$  is positive-definite;
- a local maximum, when  $Hf(\vec{x_0})$  is negative-definite;
- a saddle-type, when  $Hf(\vec{x_0})$  is neither of the two: it is a saddle point, unless det(H) = 0 when it is inconclusive.

Work out the following: consider  $f(x, y) = x^2 + xy$ .

- Find its critical points. (0, 0)
- Find its Hessian matrix.  $\begin{pmatrix} 2 & 1 \\ 1 & 0 \end{pmatrix}$

# Global Extrema

For a function  $f: A \to \mathbb{R}$  defined on  $A \subset \mathbb{R}^2$  or  $\mathbb{R}^3$ , a point  $\vec{x_0} \in A$  is

- an **absolute maximum** if  $f(\vec{x}) \le f(\vec{x_0})$  for all  $\vec{x} \in A$
- an **absolute minimum** if  $f(\vec{x}) \ge f(\vec{x_0})$  for all  $\vec{x} \in A$
- \* [Single-var] A continuous f on *closed* interval has global max and min!
  - A point x̄ is called a *boundary point* of A if every neighborhood of x̄ contains at least one point in A and at least one not in A.

A set A is **closed** if it contains all its boundary points. It is **bounded** if  $||\vec{x}|| < M$  for all  $\vec{x} \in A$  for some number M.

#### Global existence theorem

If a continuous real-valued f is defined on a bounded and closed subset of  $\mathbb{R}^2$  or  $\mathbb{R}^3$ , it has an absolute maximum and minimum value.

Methodology for global extrema for f(x, y)

- Find critical points in interior of A
- Ind critical points on boundary of A [reduce to single variable case]
- 3 Compute the values of *f* at all above points
- G Compare the values and select largest & smallest

\* A multivariable function, similarly to the single-variable case, does *not* need to have a global max or min in general; however, a function <u>restricted</u> to a bounded and closed set always does, by the existence theorem!

# Lagrange Multipliers

Idea: when a function is defined on some curve, can find critical points from viewing it as a level set of a different function!

Suppose  $f, g: U \subseteq \mathbb{R}^n \to \mathbb{R}$  are  $C^1$ , and  $L_c = \{\vec{x} \in \mathbb{R}^n | g(\vec{x}) = c\}$  is a level set for g. If  $\vec{x_0}$  is a local extremum of f restricted to  $L_c$  and  $\nabla g(\vec{x_0}) \neq 0$ , there exists some scalar  $\lambda$ , the **Lagrange multiplier**, with

$$\nabla f(\vec{x}_0) = \lambda \nabla g(\vec{x}_0)$$

▶ For finding global extrema, we can locate critical points on the *boundary* of a region in step (2) using Lagrange Multipliers.

Work out the following: find the critical points for f(x, y, z) = x - y + zunder the condition that  $\frac{1}{2}x^2 + y^2 + z^2 = 1$ .  $(1, -\frac{1}{2}, \frac{1}{2})$  and  $(-1, \frac{1}{2}, -\frac{1}{2})$ 

## Arc Length

Idea: what is the length of a path  $\vec{c} \colon [a, b] \subseteq \mathbb{R} \to \mathbb{R}^3$ ?

The length of the path  $\vec{c}(t) = (x(t), y(t), z(t))$  for  $a \le t \le b$  is

$$L(\vec{c}) = \int_{a}^{b} \sqrt{(x'(t))^{2} + (y'(t))^{2} + (z'(t))^{2}}$$

namely the integral of its speed  $\|\vec{c}'(t)\|$ .

Some useful identities  
• Power-reducing: 
$$\sin^2(\theta) = \frac{1 - \cos(2\theta)}{2}, \ \cos^2(\theta) = \frac{1 + \cos(2\theta)}{2}$$
  
• Trig-sub:  $\int \sqrt{x^2 + a^2} dx = \frac{1}{2} \left( x \sqrt{x^2 + a^2} + a^2 \ln(x + \sqrt{x^2 + a^2}) \right) + C$ 

Work out the following: what is the arc length of the path  $\vec{c}(t) = (3\cos(t), 3\sin(t))$  for  $t \in [0, 2\pi]$ ?  $6\pi = 2\pi * 3$ , circle's circumference!

Christina Vasilakopoulou (MATH 10A, UCR)

# Vector Fields

A vector field in  $\mathbb{R}^n$  is a function  $\vec{F}: A \subseteq \mathbb{R}^n \to \mathbb{R}^n$  that assigns to each point  $\vec{x}$  a vector  $\vec{F}(\vec{x})$ . If n=2, vector field in the plane; if n=3, in space.

For any  $f : \mathbb{R}^3 \to \mathbb{R}$ , its gradient gives rise to the gradient vector field

$$\nabla f: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$$
$$(x, y, z) \longmapsto (f_x(x, y, z), f_y(x, y, z), f_z(x, y, z))$$

A flow line for a vector field  $\vec{F}$  is a (same-dimension) path  $\vec{c}(t)$  such that

$$\vec{c}'(t) = \vec{F}(\vec{c}(t))$$
 for all  $t$ 

namely for curve traced out by  $\vec{c}(t)$ , all tangent vectors are values of  $\vec{F}$ .

Work out the following: find some function whose gradient vector field is  $\vec{F}(x, y, z) = (3yz - 1, 3xz, 3xy)$ . f(x, y, z) = 3xyz - x

Christina Vasilakopoulou (MATH 10A, UCR)

## Divergence

[Single var calc] The differentiation operator  $\frac{d}{dx}$  applies to f and gives f'.

▶ The **del** or **nabla operator** in the *n*-dimensional space is given by

$$\nabla = \left(\frac{\partial}{\partial x_1}, \frac{\partial}{\partial x_2}, \dots, \frac{\partial}{\partial x_n}\right)$$

The **divergence** of a vector field  $\vec{F} = F_1 \vec{i} + F_2 \vec{j} + F_3 \vec{k}$  is

$$\operatorname{div}\vec{F} = \frac{\partial F_1}{\partial x} + \frac{\partial F_2}{\partial y} + \frac{\partial F_3}{\partial z} = \langle \nabla, \vec{F} \rangle$$

\* Physically: if  $\vec{F}$  is the flow of fluid, its div represents rate of expansion per unit volume in  $\mathbb{R}^3$  or unit area in  $\mathbb{R}^2$ .

•  $\operatorname{div} \vec{F} > 0$ ?expand •  $\operatorname{div} \vec{F} < 0$ ?compress •  $\operatorname{div} \vec{F} = 0$ ?same

### Laplacian

Idea: for gradiant vector fields, their divergence involves second derivatives.

The **Laplacian** of a function  $f : \mathbb{R}^3 \to \mathbb{R}$  is

$$\Delta f = \nabla^2 f = \operatorname{div}(\nabla f) = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} + \frac{\partial^2 f}{\partial z^2}$$

• A function f is called *harmonic* if  $\Delta f = 0$ .

Work out the following: suppose  $\vec{F} = (5xy, y^2 + 1, 3x - z)$ .

- Find its divergence. 7y 1
- **2** Is  $\vec{c}(t) = (5t, t^2 + 1, \sqrt{t})$  a flow line for  $\vec{F}$ ? No

# Curl

 $\star$  Divergence=inner product of  $\nabla$  & vector field; curl=cross product!

The **curl** of a vector field  $\vec{F} = (F_1, F_2, F_3)$  is

$$\operatorname{curl} \vec{F} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ F_1 & F_2 & F_3 \end{vmatrix} = \nabla \times \vec{F}$$

### Gradients are curl free

For any  $f: \mathbb{R}^3 \to \mathbb{R}$ , its gradient vector field has zero curl:  $\nabla \times \nabla f = \vec{0}$ 

#### Curls are divergence free

For any 
$$C^2$$
-vector field  $\vec{F}$ , div curl  $\vec{F} = \langle \nabla, \nabla \times \vec{F} \rangle = 0$ .

Work out the following: consider the vector field  $\vec{F}(x, y, z) = (x^2y, \cos(yz), e^{z+y}).$ 

**()** Find the divergence.  $\operatorname{div} \vec{F} = 2xy - z \sin(yz) + e^{z+y}$ 

- **2** Find the curl.  $(e^{x+z} y \sin(yz), 0, -x^2)$
- S Is  $\vec{F}$  a gradient vector field? No: its curl is not 0!