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Vectors

Idea: move from the real line to the plane and 3-dimensional space!

Cartesian coordinates for line, plane, space

* In general, R" is the n-dimensional Euclidean space.

x To any point (a1, a2, a3) € R3 associate the vector with tail=origin and
head=(ay, a2, a3): vectors thought of as arrows emanating from the origin!

» Two vectors are equal if and only if all their components are equal.
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Vector operations
Idea: R3 inherits various standard operations from R!
Vector addition and scalar multiplication
The sum of two vectors 3 and b is a vector
3+ b= (a1, a,a3) + (b1, b, b3) := (a1 + b1, a» + bo, a3 + b3)

The scalar multiple of a real number x and a vector 3 is a vector

k3 = x(a1, ap, a3) := (kay, Kap, kas)

The vector G = (0,0, 0) is the zero of IR3; the vector
—3 = (—a1, —ax, —ap) is the additive inverse of 3

* These have geometric interpretations: addition is placing vectors ‘head
to tail’, scalar multiplication is ‘stretching’ (and possibly reversing).

Two key characteristics of vectors is their length and their direction.
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Standard basis vectors

Work out the following: suppose 3 = (3, —1, —2) and b= (0,1,1).
@ Compute the vector 33 — 2b. (9, 5, 8)

@ Express b as a linear combination of the standard basis. b — | + k

Vector Joining two Points

* Geometric interpretation of vector subtraction: ‘join the two heads'.
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Line equations using vectors

Forms of lines t € R is the parameter

@ Point-Direction: a parametric equation of the line passing through the
head of some 3 and parallel to some Vv is

X =a; +wvit
{(t) = 3+ tv, with coordinates { y = a, + wot
z = a3 + v3t
@ Point-Point: an equation of the line passing through some
P = (a1, a2, a3) and Q = (by, by, b3) is
X = a1+(b1 —al)t
Ut)=qy=ar+ (b — a)t
z= a3+ (b3 —a3)t

* In R3, two lines may NOT be parallel yet still NOT intersecting!
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Work out the following: suppose
P=(-2-1),Q=(-3,-3),R=(-1,-4) in R?
© PO? QR RP? (1, 2).(2, 1),( 1.3)
Q Write an equation for the line that passes through P and R.
l(t) =(—2—t,—1+3t)
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Inner Product of vectors

% Operations: sum R3 x R3 % R3, scalar multiplication R x R3 — R3,

inner product R3 x R3 -5 L R, norm R3 — I R




To normalize a non-zero vector 3 amounts to keeping the same
direction but making its length 1:

1
—(311 as, 33)
\/ a3 +aj+ a3

* Geometrically, inner product relates to angle between vectors!

|

Ll

Inner product and angle between vectors

If 3,6 € R3and 0 <0< 7 the angle between them,

(3,b) = 13| || cos(8) 31b< (3,b)=0
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Triangle Inequality

For any vectors 3@ and b,

|3+B| <lizll + 112

Work out the following:

@ Normalize the vector (0,3, —4). (0, % —%)

@ What is the angle between the vectors T— 2k and 27 + 57-1- k?

0 = 7, orthogonal

Christina Vasilakopoulou (MATH 10A, UCR) 1.2: The Inner Product, Length and Distance 9 /49



Matrices and the Determinant

Matrix
An mxn matrix consists of m rows and n columns of real numbers; write

A= (a;j) where aj is the component in the position (7, j)

* If the matrix is n X n, we can find its determinant.

For a matrix A with two rows and two columns,

det ai1 d12 | _ |d11 d12|  _ 31139 — 12301
a1 a2 a1 a2

For a matrix A with three rows and three columns,

d11 412 413
ay axs a1 axs a1 ax

a1 axp ag|i=ai — a2 + a3
a31 4a32 as3

da32 4a33 da31 4a33 a3l 432
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Properties of determinants also for 3 x 3 matrices
@ Swapping two lines or two columns changes the sign of det

di1  4d12 ap1 a2 . 411 a12| a2 91l

a1 a2 dil 412 dp1 A2 az  a

@ Scalars can be factored out a single row or column

. a11 d12| _ |Kai1 Kaiz2|  (Kai1 ad12| | 411 a12 | _ |d11 Ka12

a1 a2 a1 a2 Kaz1 a2 Kax1 Kaz a21 Kax
@ Adding a row/column to an existing row/column does not change det

11 a1z| |41+ a1 a2+ ax and 11 a12|  |a11+a12 aw
a1 ax» a1 an a1 dx» a1 +ax» ax»

y
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Geometry of determinants

Idea: geometrically, det corresponds to area (2 x 2) or volume (3 x 3)

2x2 The area of the parallelogram with adjacent sides the vectors

dy ar
det

3x3 The volume of the parallelepiped with adjacent sides 3, b and € is

3= (a1,a) and b= (b1, by) is

dp a2 a3
det | by by b3
i & G

* Absolute value due to physical meaning: area&volume always positive!

Work out the following: find the determinantof | 3 —1 4 | 39
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The Cross Product

Idea: new vector operation, x: R3 x R3 — R3 (only like +).

Cross Product

* The properties of this operation follow from those of the determinant.

Properties of cross product
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Geometry of cross product

Direction and norm of cross product

e 3 x b is perpendicular to both 3 and b (right-hand rule)

@ If 6 is the angle between 3 and b, then the norm of their cross product

Hé’ X BH = ||3]| ||B]| sin(8) |area of parallelogram spanned by 3, b

0 3xb=0<3=0o0r b=0or 3||b (parallel)

% In IR?, the area Hé’ X BH reduces to the absolute value of det (as earlier!)

Plane equations
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* Notice that for any given plane Ax 4+ By + Cz 4+ D = 0, the vector
n = (A, B, C) is orthogonal /normal to the plane!

Work out the following: find a unit vector which is orthogonal to both

—27+ 3k and ] — 5k. (5 s —7s)
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Polar and Cylindrical Coordinates

Polar coordinates (r,0) {reos(®). ein(6))

express point in plane by
positioning it on a circle
of radius r and its angle
0 <0 <27 from x-axis

~

Cylindrical coordinates
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Spherical Coordinates
What if we view a 3-D point as inhabiting the surface of a sphere?

Spherical coordinates

(©0.1) 5 Work out the following:
(?é)ﬁ @ What are the cartesian coordinates (x, y, z) for

(4. 7.3)? wever
@ What are its cylindrical coordinates(r, 8, z)?>.5 ;.2

1.4: Cylindrical and Spherical Coordinates 17 / 49
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Vectors in n-dim space

Idea: earlier operations in IR? or R® generalize in higher dimensions!
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Operations of general matrices

alil di2 ... din
. ani dp2 ... ap mxn
For general m x n matrices ) ) . eR we can add
dmi dm2 -.- Admn

‘componentwise’ A+ B = (aj; + bjj), or scalarly multiply kA = (kaj;).

Matrix multiplication

* ...the inner product of the i-th row of A and the j-th column of B!

» AB # BA, i.e. matrix mutliplication is NOT commutative.
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Invertible matrices

1 0 ... 0
01 ...
» The nxn—matrix I, = . . .| is called the identity matrix:
00 ... 1
IA = A, Bl = B whenever the multiplication is defined.

Invertible matrices
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Multivariable Functions

Idea: how to draw graphs of functions of multiple variables?

» A level set for a real-valued function f of n variables is the collection
Le={0a,....,xn) € UCR"|f(x1,...,xp) =c}

for some constant c. If n = 2, level curve; if n = 3, level surface.

Graphs of multivariable functions

The graph of f: R” — IR™ is the set of all (x1,..., X f(x1,...,%,)) for
any (x1,...,Xp) in the domain of f; to draw it, compute the level sets and
then ‘raise’ them to the appropriate level!
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Limits of single-variable functions

Recall: lim f(x) =L < if [x —c| = 0, |f(x) — L| — 0.

X—C

One-sided limits: lim f(x) = L <= lim f(x)=L= lim f(x)
x—c xX—c~ x—ct
We call f continuous at c if IiLn f(x) = f(c).
X—C

* The limit of a function at some input ¢, and the value/output f(c), are
in principle unrelated. They coincide? Continuity!

Suppose lim f(x)= L,)I(L’ncg(x) = K for functions f,g and ¢, L, K € R.

@ lim(f(x) £ g(x) = L£K Q lim (f(x)-g(x)) =L-K
e J@c(Kf(X)):K.L Q JimrﬁzﬁforK#O

Polynomials, rational functions, exponentials/logarithms and
trigonometric functions are continuous at their domain.
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Limits of multivariable functions

Idea: distance in R” is now measured as Hb - ‘a’H = (bi — ai)?

n
i=1

* ‘One-sided’ limits are now endless - from all possible directions! If any
two particular ones disagree, DNE.
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Properties of multivariable limits

@ (Uniqueness) If I|m f(X) = by and lim f(X) = by, then by = by.
X—C
Q lim (kf(X)) =« I| 1 f(X) for k € R when the limit exists
X—C X—¢
Q lim (f(X) +g(X)) =
X—C

i
X—¢
Q lim (f(X)g(X)) = lim f(X) - lim g(X) if both limits exist & are reals
X—C X—C
Q lim L | =27 if both limits exist (bottom= 0) & are reals
x—e \ g(X) lim g(X) N
X—C

v

Work out the following: do the following exist? If so, evaluate.

(1) lim DNE
(x,y)=(0,0) ¥y + X
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Multivariable Continuity

* Multivariable polynomial, rational, trigonometric, exponential and
logarithmic (real-valued) functions are continuous, at their domain.

Every vector-valued function with range R™ can be written as
f(X) = (A(X), L(X), ..., fm(X)). Its limit is

—

lim f(X) = (b, by, ..., byy) where b; = lim £(X)
X—C X—C

If each f;(X) is continuous, then so is f(X).
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Limit of composition

If lim u(X)=>b and lim f(X)=d, the limit of the composite (f o u)(X) is
X—¢c X—b

Work out the following:
QO lim (xP+ydHe 2

(xy)—=(11)
ey —e
@ What value should we assign to ———— to make it continuous at
Xy —
(1,1)? e
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Single Variable Differentiation
Recall: f'(xg) = lim M — lim f(x+1t)—f(x)

X—Xo X — Xo t—0 t

Derivation Rules for single variable functions
If £(x),g(x), h(x) are differentiable functions with h(x) # 0 and ¥ € R

o (xf(x)) =«f'(x) scalar multiple
o (f(x)+g(x)) =f(x)+4g'(x) sum
o (f(x)g(x)) = f'(x)g(x) +f(x)g'(x)  product
F)\ _ PR = FOOH (x) .
o (h(x)) h2(x) quotient
° (f(u(x)))l = f'(u(x))d'(x) chain rule

* In the multivariable setting, consider all but one variables as constants
and compute single-variable derivative!
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Partial Derivatives

If f: R" — R™ is given by f(X) = (A(X),..., (X)), its matrix
of partial derivatives is the m X n matrix

of of
Ix1 Tt X,
Df := | ...
9fm 9fm
dx; " Odxp

If f is real-valued, this 1 X n matrix a.k.a. n-vector is its gradient

. _ of of of
w._Df_(371 a 37)

2.3: Differentiation
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Multivariable Differentiability

- If all g—)‘z exist and are continuous at xg, then f is differentiable at xg.

For f: R? — R differentiable at (xo, yo), its tangent plane in R3 is

z = f(x0, y0) + fx(x0, ¥0) (x = x0) + £, (%0, Y0) (¥ — ¥0) = T 1) (. V)

* Differentiability requires tangent plane to be a good approximation of
output z = f(a, b) for any (a, b) — (x0,¥0): f(a, b) = T, o) (a, b)!
Work out the following: find V£ for f(x, y) = cos(xy) + x cos(3y).

(—ysin(xy) + cos(3y), —xsin(xy) — 3xsin(y))
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[terated Partial Derivatives

* If partial derivatives exist and are continuous, we say ‘ f is of class C1 ‘
If the second partial derivatives exist and are continuous, f is of class C?!

Pr_ o (ar\ @ _a (o) #r_ o (or)
d0x2  9dx \dx /) 'oxdy ox \dy /) dydz 9y \ oz et

Equality of Mixed Partials

If f is of class C?, namely twice continuously differentiable, then its mixed
partial derivatives are equal: e.g. f,, = f,, or generally
0*f o°f

0x;0X; - 0xjoX;

Work out the following:
O If f(x,y) = cos(3x) sin?(y), find f,. —6sin(3x)sin(y)cos(y)
@ Approximate (0.98)% — (0.01)3. 0.96
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Paths and Curves

* We say that €(t) traces or parameterizes the curve C.

If a path ¢ in IR" is diff., its velocity or tangent vector at time t is

é(t+ h/)7 =) _ (1) 5(8), X (1)

=/ — I.
0=

Its speed at each t is given by ||E(t)” the length of its tangent vector.

* If ¢(tp) # 0, draw this vector with tail ¢(y) tangent to the curve.
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The tangent line of a curve C traced by a path ¢(t) at time tg is
0(t) = 2(to) + & (o) (t — to) | with direction vector & (tp).

* Using t — tp rather than just t in the line equation ensures that
{(ty) = ¢(to), meaning the line goes through that point at time ty.

Work out the following: suppose the position of a particle is given by
¢(t) = (t, t2,V/t).
@ What is the particle’s speed at time t = 1? /6

@ If the particle flies off at its tangent at t = 1, what is its position at
t=27(2,32)
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Derivation Rules for multivariable functions

Idea: rules for multivariable derivation are very similar to single variable,
but now things are expressed using partial derivative matrices!

If f,g: R" — IR™ and h, k: R” — R are differentiable at Xy and x € R

@ D(xf) (%) = xDf (Xo) scalar multiple rule
Q@ D(f +g)(x0) = Df(x0) + Dg(x0) sum rule

© D(hk)(x0) = Dh(xp)k(x0) + h(x0)Dk(xo)  product rule

QD (g) %) — Dh(%)k(%k)Q(—)?oh)(%)Dk(%)

quotient rule (k # 0)

The Chain Rule

If f: R" — R™ and g: R™ — IRP are differentiable functions, then
gof:R" — RY is differentiable with

D(g o f)(x0) = Dg(f(x)) - DFf (%)

v

Work out: f(x,y)=(x+1,y—1), g(x,y)=3x—y?. D(gof)(9,1)? (3,0)
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Chain rule | D(g o f)(X) = Dg(f(X)) - Df(X)

Special Cases of the Chain Rule
For path ¢: R — R3 and real-valued f: R3 = R, fo¢: R — R has

(Foe)(6) = (VI(EW). € (0) = o+ 5 2+ 55

Jorg: R rgdth Vy?o;%wyﬁzxyz)(x”””m
oh - of ou Of dv of ow
9 209 9var awox
oh - of ou Of dv of ow
3, audy ovay Toway
oh _ of ou odfdv  Jf ow
3. 9u9. "avor Tawar

* These all arise from the matrix multiplication of the chain rule!
Work out: (fo¢)'(1) for f(x,y,z)=xy +zand E(t)=(t+1,t2,1—t)? 4
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Directional Derivatives

Idea: for an object moving on some line £(t) = X + Vt, how ‘fast’ are the
values of some f(x, y, z) changing at a specific point?

* When is RoC (V£ (X), V) =||V(X)|| cos(f) maximum?
—1<cos(0)<1|so when 6 = 0!

Direction of fastest increase or decrease

If VF(X) # 0, the vector Vf(X) points in the direction along which f
increases the fastest. Similarly, f decreases the fastest along —V7(X).
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Tangent Planes

If £: R® — Ris diff. & (x0,¥0,20) € Lc = {(x,y,2)|f(x,y,2) = c} level
surface, then V£ (xo, yo, 20) is orthogonal to L. at (xo, yo0, 20)-

» Recall that A(x — xp)+B(y — yo)+C(z — z9)=0 is the plane passing
from (xo, y0, 20) and is perpendicular to vector (A, B, C).

Tangent Plane on Level Surface

* Reduces also to tangent plane for graph of some g(x, y)!
Using level surface Lo for f(x,y,z) = g(x,y) — z ends up in previous

z = Tio00) (X, ¥) = g(x0, ¥0) + 8x(x0, Y0) (x — x0) + & (0, 0) (¥ — y0)
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Taylor's Theorem
Idea: earlier, used tangent plane Ax+By+Cz=D to linearly approximate
some f(xo, o). Now, quadratic or higher-order approximations!
Single-Variable Taylor Theorem
For a smooth function f: R — IR,
1 f"(x0) ,2 F(K) (x0)
f(xo+h)="Ff(x)+f (xo)h+Th +...+ Th + Rk (xo, h)

linear approximation

where Ry (xo, h) is the k-th order remainder (small error term). For k =1
first-order Taylor formula, for k = 2 second-order Taylor formula.

v

* Express either as above formula f(xp + h), or as approximation function

f(x) =f(x)+ f,(XO)(i;XL) —l—%f"(xo)(x —x0)? +...
h
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First-order for two variables is tangent plane approximation from 2.3.

Multi-Variable Taylor Theorem f: R" = R
o First-Order: f(x5+ h) = () + i g—xf(%)h,- + Ri(%, h)
i=1 90X
e Second-Order:
no 9°f

hihj 4+ Ry (%0, h)

v

o n of 1
f(X0+h) = f(Xo) Z a—(Xo)h + - 5 1aXa ( 0)
i=1 ij= i

Second-order for two variables f(x, y) at point P = (xo, yo) is

f(xo+h1, yo+h2)=f(x0, o) + fi(x0, yo) h1 + £, (x0, yo) h2

1
+5 (fxx(xo,YO)h%+27‘xy(Xo.YO)h1h2+fyy(X0.YO)h%> +R>

Work out: second-order Taylor for f(x,y) = e*cos(y) at (0,0)?
F(O4 h1, 04 hp) = .1+ hy + 5h? — Lh3 + Ro((0,0), (1, o))
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Critical points and Extrema of Real-Valued Functions

Idea: similarly to single-variable case, derivatives relate to max/min values!

First Derivative Test

Every local extremum X5 (max or min) of f: R” — R has Df (xp) = 0, in
particular is a critical point. Equivalently,

of

a—Xl_()?E))ZOforallizl,...,n
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The Hessian of a function

Idea: like partial derivative matrix Df,
but now including all second partial derivatives!

The Hessian matrix of a real-valued f: R™ — R is an n X n matrix
ﬂqxl fX1X2 .. f;qxn fol
Hf _ ﬁQ.Xl fX2.X2 L f;Q.X,, _ v.fxz
fx,,xl f;(nXQ e fX,,X,, Vf;(,-,

* By the law of mixed partials f,x, = fyx,, this matrix is symmetric:
changing rows by columns (i.e. taking the transpose) gives same matrix!

h
I(hi,... hy) - HF(x5) - | : | is second-order Taylor for critical 5.
hy
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Second Derivative Test

A critical point xp of f: R” — R is
@ a local minimum, when Hf (xg) is positive-definite;
@ a local maximum, when Hf (xg) is negative-definite;

@ a saddle-type, when Hf(xp) is neither of the two: it is a saddle point,
unless det(H) = 0 when it is inconclusive.

Work out the following: consider f(x, y) = x? + xy.
@ Find its critical points. (0,0)

@ Find its Hessian matrix. (i é)

© Classify the critical points. (0,0) saddle point
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Global Extrema

For a function f: A — R defined on A C R? or R3, a point xj € A is
o an absolute maximum if (X) < f(xp) for all X € A
@ an absolute minimum if f(X) > f(xp) for all X € A

* [Single-var] A continuous f on closed interval has global max and min!

A point X is called a boundary point of A if every neighborhood of X
contains at least one point in A and at least one not in A.

A set Ais closed if it contains all its boundary points. It is bounded
if || X]| < M for all X € A for some number M.

Global existence theorem

If a continuous real-valued f is defined on a bounded and closed subset of
R2 or R3, it has an absolute maximum and minimum value.
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Methodology for global extrema for f(x, y)

@ Find critical points in interior of A
@ Find critical points on boundary of A [reduce to single variable case]
© Compute the values of f at all above points

@ Compare the values and select largest & smallest

* A multivariable function, similarly to the single-variable case, does not
need to have a global max or min in general; however, a function restricted
to a bounded and closed set always does, by the existence theorem!
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Lagrange Multipliers

Idea: when a function is defined on some curve, can find critical points
from viewing it as a level set of a different function!

Suppose f,g: UCR" = R are C!, and L. = {X e R"|g(X) =c} is a
level set for g. If xp is a local extremum of f restricted to L. and
Vg(xp)#0, there exists some scalar A, the Lagrange multiplier, with

V(%) = AVe(x)

For finding global extrema, we can locate critical points on the
boundary of a region in step (2) using Lagrange Multipliers.

Work out the following: find the critical points for f(x,y,z) = x—y +z
under the condition that 3x2 4+ y2 42> =1. (1,1 1) and (—1,1 1)
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Arc Length
Idea: what is the length of a path ¢: [a, b] C R — IR3?

The length of the path ¢(t) = (x(t),y(t),z(t)) fora<t < bis

L(@) = /ab JEOP+ O+ 1)

namely the integral of its speed ||¢/(¢)]|.

Some useful identities

- 1 20
o Power-reducing: sin(f) = 1cc2)s(29) cos® () = Jrczs()
o Trig-sub: [Vx2+a%dx=1 (xx/x2+32 +a%In(x + \/x2+a2)) +C

Work out the following: what is the arc length of the path
¢(t) = (3cos(t),3sin(t)) for t € [0,27]? 671 = 271+ 3, circle’s

C
circumference!
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Vector Fields

» For any f: R® — R, its gradient gives rise to the gradient vector field

VAR ——— R3

(x.y,2) — (h(xy,2) f(xy.2), f2(x,y, 2))

Work out the following: find some function whose gradient vector field is
F(x,y,z) = (Byz—1,3xz,3xy). f(x,y, z) = 3xyz — x
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Divergence

d
[Single var calc] The differentiation operator o applies to f and gives f'.
Ix

» The del or nabla operator in the n-dimensional space is given by

Jd d 0

* Physically: if F is the flow of fluid, its div represents rate of expansion
per unit volume in R® or unit area in R?.

° divl-f>0?expand ° divl_f<0?compress o divF=0?same
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Laplacian

Idea: for gradiant vector fields, their divergence involves second derivatives.

» A function f is called harmonic if Af = 0.

Work out the following: suppose F = (5xy, y2+1,3x — z).
@ Find its divergence. 7y — 1
Q Is &(t) = (5t,t2 +1,/t) a flow line for F? No
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Curl

* Divergence=inner product of V & vector field; curl=cross product!

Gradients are curl free
For any f: R® — R, its gradient vector field has zero curl: V x Vf =0

Curls are divergence free
For any C2-vector field F, div curl F = (V,V x F) = 0.
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Work out the following: consider the vector field
F(x,y,z) = (x?y,cos(yz), e*Y).
© Find the divergence. divF — 2xy — zsin(yz) + e”
@ Find the curl. (e*'% — ysin(yz),0, —x?)
Q Is F a gradient vector field? No: its curl is not 0!
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