

Vectors

Idea: move from the real line to the plane and 3-dimensional space!
Cartesian coordinates for line, plane, space

- The real number line is $\mathbb{R}^{1}=\mathbb{R}$ (1-dim)
- The set of all ordered pairs (x, y) of real numbers is \mathbb{R}^{2} (2-dim)
- The set of all ordered triples (x, y, z) of real numbers is \mathbb{R}^{3} (3-dim)
$\star \operatorname{In}$ general, \mathbb{R}^{n} is the n-dimensional Euclidean space.
A vector, denoted a or \vec{a}, is a directed line segment in space with a beginning (tail) and an end (head).
\star To any point $\left(a_{1}, a_{2}, a_{3}\right) \in \mathbb{R}^{3}$ associate the vector with tail=origin and head $=\left(a_{1}, a_{2}, a_{3}\right)$: vectors thought of as arrows emanating from the origin!
- Two vectors are equal if and only if all their components are equal.

Vector operations

Idea: \mathbb{R}^{3} inherits various standard operations from \mathbb{R} !

Vector addition and scalar multiplication

The sum of two vectors \vec{a} and \vec{b} is a vector

$$
\vec{a}+\vec{b}=\left(a_{1}, a_{2}, a_{3}\right)+\left(b_{1}, b_{2}, b_{3}\right):=\left(a_{1}+b_{1}, a_{2}+b_{2}, a_{3}+b_{3}\right)
$$

The scalar multiple of a real number κ and a vector \vec{a} is a vector

$$
\kappa \vec{a}=\kappa\left(a_{1}, a_{2}, a_{3}\right):=\left(\kappa a_{1}, \kappa a_{2}, \kappa a_{3}\right)
$$

\Rightarrow The vector $\overrightarrow{0}=(0,0,0)$ is the zero of \mathbb{R}^{3}; the vector $-\vec{a}=\left(-a_{1},-a_{2},-a_{2}\right)$ is the additive inverse of \vec{a}

* These have geometric interpretations: addition is placing vectors 'head to tail', scalar multiplication is 'stretching' (and possibly reversing).

Two key characteristics of vectors is their length and their direction.

Standard basis vectors

Define $\vec{i}=(1,0,0), \vec{j}=(0,1,0), \vec{k}=(0,0,1)$. Any vector in \mathbb{R}^{3} can be represented uniquely as a linear combination of these standard basis vectors

$$
\vec{a}=\left(a_{1}, a_{2}, a_{3}\right)=a_{1} \vec{i}+a_{2} \vec{j}+a_{3} \vec{k}
$$

Work out the following: suppose $\vec{a}=(3,-1,-2)$ and $\vec{b}=(0,1,1)$.
(1) Compute the vector $3 \vec{a}-2 \vec{b}$. $(9,-5,-8)$
(2) Express \vec{b} as a linear combination of the standard basis. $\vec{b}=\vec{j}+\vec{k}$

Vector Joining two Points

If $P=(x, y, z)$ and $Q=(u, v, w)$ are two points in \mathbb{R}^{3}, there is a vector $\overrightarrow{P Q}=(u-x, v-y, w-z)$ from the tip of P to the tip of Q.
\star Geometric interpretation of vector subtraction: 'join the two heads'.

Line equations using vectors

Forms of lines
 $t \in \mathbb{R}$ is the parameter

(1) Point-Direction: a parametric equation of the line passing through the head of some \vec{a} and parallel to some \vec{v} is

$$
\vec{\ell}(t)=\vec{a}+t \vec{v}, \text { with coordinates }\left\{\begin{array}{l}
x=a_{1}+v_{1} t \\
y=a_{2}+v_{2} t \\
z=a_{3}+v_{3} t
\end{array}\right.
$$

(2) Point-Point: an equation of the line passing through some

$$
P=\left(a_{1}, a_{2}, a_{3}\right) \text { and } Q=\left(b_{1}, b_{2}, b_{3}\right) \text { is }
$$

$$
\vec{\ell}(t)=\left\{\begin{array}{l}
x=a_{1}+\left(b_{1}-a_{1}\right) t \\
y=a_{2}+\left(b_{2}-a_{2}\right) t \\
z=a_{3}+\left(b_{3}-a_{3}\right) t
\end{array}\right.
$$

$\star \ln \mathbb{R}^{3}$, two lines may NOT be parallel yet still NOT intersecting!

Work out the following: suppose

$$
P=(-2,-1), Q=(-3,-3), R=(-1,-4) \text { in } \mathbb{R}^{2}
$$

(1) $\overrightarrow{P Q} ? \overrightarrow{Q R} ? \overrightarrow{R P}$? $(-1,-2),(2,-1),(-1,3)$
(2) Write an equation for the line that passes through P and R. $\vec{\ell}(t)=(-2-t,-1+3 t)$

Inner Product of vectors

The inner (or dot) product of $\vec{a}=\left(a_{1}, a_{2}, a_{3}\right)$ and $\vec{b}=\left(b_{1}, b_{2}, b_{3}\right)$ is

$$
\vec{a} \cdot \vec{b}=\langle\vec{a}, \vec{b}\rangle:=a_{1} b_{1}+a_{2} b_{2}+a_{3} b_{3}
$$

The norm of a vector $\vec{a}=\left(a_{1}, a_{2}, a_{3}\right)$ is its length, given by

$$
\|\vec{a}\|:=\sqrt{a_{1}^{2}+a_{2}^{2}+a_{3}^{2}}=\sqrt{\langle\vec{a}, \vec{a}\rangle}
$$

\star Operations: sum $\mathbb{R}^{3} \times \mathbb{R}^{3} \xrightarrow{+} \mathbb{R}^{3}$, scalar multiplication $\mathbb{R} \times \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$, inner product $\mathbb{R}^{3} \times \mathbb{R}^{3} \xrightarrow{\langle,\rangle} \mathbb{R}$, norm $\mathbb{R}^{3} \xrightarrow{\| \|} \mathbb{R}_{+}$!
(1) $\langle\vec{a}, \vec{a}\rangle \geq 0$
(9) $\langle\vec{a}, \vec{a}\rangle=0 \Leftrightarrow \vec{a}=\overrightarrow{0}$
(2) $\kappa\langle\vec{a}, \vec{b}\rangle=\langle\kappa \vec{a}, \vec{b}\rangle$
(0) $\kappa\langle\vec{a}, \vec{b}\rangle=\langle\vec{a}, \kappa \vec{b}\rangle$
(3) $\langle\vec{a}, \vec{b}+\vec{c}\rangle=\langle\vec{a}, \vec{b}\rangle+\langle\vec{a}, \vec{c}\rangle$
(0) $\langle\vec{a}, \vec{b}\rangle=\langle\vec{b}, \vec{a}\rangle$

- A unit vector has norm one unit, $\|\vec{a}\|=1$; e.g. $\vec{i}, \vec{j}, \vec{k}$.

To normalize a non-zero vector \vec{a} amounts to keeping the same direction but making its length 1 :

$$
\frac{\vec{a}}{\|\vec{a}\|}=\frac{1}{\sqrt{a_{1}^{2}+a_{2}^{2}+a_{3}^{2}}}\left(a_{1}, a_{2}, a_{3}\right)
$$

* Geometrically, inner product relates to angle between vectors!

Inner product and angle between vectors
If $\vec{a}, \vec{b} \in \mathbb{R}^{3}$ and $0 \leq \theta \leq \pi$ the angle between them,

$$
\langle\vec{a}, \vec{b}\rangle=\|\vec{a}\|\|\vec{b}\| \cos (\theta) \quad \vec{a} \perp \vec{b} \Leftrightarrow\langle\vec{a}, \vec{b}\rangle=0
$$

Given two vectors \vec{a} and $\vec{b} \neq \overrightarrow{0}$, the orthogonal projection of \vec{a} along \vec{b} is

$$
\vec{p}=\frac{\langle\vec{a}, \vec{b}\rangle}{\langle\vec{b}, \vec{b}\rangle} \vec{b}
$$

Triangle Inequality

For any vectors \vec{a} and \vec{b},

$$
\|\vec{a}+\vec{b}\| \leq\|\vec{a}\|+\|\vec{b}\|
$$

Work out the following:
(1) Normalize the vector $(0,3,-4)$. $\left(0, \frac{3}{5},-\frac{4}{5}\right)$
(2) What is the angle between the vectors $\vec{i}-2 \vec{k}$ and $2 \vec{i}+5 \vec{j}+\vec{k}$? $\theta=\frac{\pi}{2}$, orthogonal

Matrices and the Determinant

Matrix

An $m \times n$ matrix consists of m rows and n columns of real numbers; write
$A=\left(a_{i j}\right) \quad$ where $a_{i j}$ is the component in the position (i, j)
\star If the matrix is $n \times n$, we can find its determinant.
2×2 For a matrix A with two rows and two columns,

$$
\operatorname{det}\left(\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right)=\left|\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right|:=a_{11} a_{22}-a_{12} a_{21}
$$

3×3 For a matrix A with three rows and three columns,

$$
\left|\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right|:=a_{11}\left|\begin{array}{ll}
a_{22} & a_{23} \\
a_{32} & a_{33}
\end{array}\right|-a_{12}\left|\begin{array}{ll}
a_{21} & a_{23} \\
a_{31} & a_{33}
\end{array}\right|+a_{13}\left|\begin{array}{ll}
a_{21} & a_{22} \\
a_{31} & a_{32}
\end{array}\right|
$$

Properties of determinants also for 3×3 matrices

- Swapping two lines or two columns changes the sign of det

$$
\left|\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right|=-\left|\begin{array}{ll}
a_{21} & a_{22} \\
a_{11} & a_{12}
\end{array}\right| \text { and }\left|\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right|=-\left|\begin{array}{ll}
a_{12} & a_{11} \\
a_{22} & a_{21}
\end{array}\right|
$$

- Scalars can be factored out a single row or column

$$
\kappa\left|\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right|=\left|\begin{array}{cc}
\kappa a_{11} & \kappa a_{12} \\
a_{21} & a_{22}
\end{array}\right|=\left|\begin{array}{ll}
\kappa a_{11} & a_{12} \\
\kappa a_{21} & a_{22}
\end{array}\right|=\left|\begin{array}{cc}
a_{11} & a_{12} \\
\kappa a_{21} & \kappa a_{22}
\end{array}\right|=\left|\begin{array}{ll}
a_{11} & \kappa a_{12} \\
a_{21} & \kappa a_{22}
\end{array}\right|
$$

- Adding a row/column to an existing row/column does not change det

$$
\left|\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right|=\left|\begin{array}{cc}
a_{11}+a_{21} & a_{12}+a_{22} \\
a_{21} & a_{22}
\end{array}\right| \text { and }\left|\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right|=\left|\begin{array}{ll}
a_{11}+a_{12} & a_{12} \\
a_{21}+a_{22} & a_{22}
\end{array}\right|
$$

Geometry of determinants

Idea: geometrically, det corresponds to area (2×2) or volume (3×3)
2×2 The area of the parallelogram with adjacent sides the vectors

$$
\vec{a}=\left(a_{1}, a_{2}\right) \text { and } \vec{b}=\left(b_{1}, b_{2}\right) \text { is }\left|\operatorname{det}\left(\begin{array}{ll}
a_{1} & a_{2} \\
b_{1} & b_{2}
\end{array}\right)\right|
$$

3×3 The volume of the parallelepiped with adjacent sides \vec{a}, \vec{b} and \vec{c} is

$$
\left|\operatorname{det}\left(\begin{array}{lll}
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3} \\
c_{1} & c_{2} & c_{3}
\end{array}\right)\right|
$$

* Absolute value due to physical meaning: area\&volume always positive!

Work out the following: find the determinant of $\left(\begin{array}{ccc}-2 & 1 & 0 \\ 3 & -1 & 4 \\ 5 & 2 & -3\end{array}\right) 39$

The Cross Product

Idea: new vector operation, $\times: \mathbb{R}^{3} \times \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ (only like +).

Cross Product

If $\vec{a}=\left(a_{1}, a_{2}, a_{3}\right)$ and $\vec{b}=\left(b_{1}, b_{2}, b_{3}\right)$, their cross product is the vector

$$
\vec{a} \times \vec{b}:=\left|\begin{array}{ccc}
\cdots \vec{i} & \vec{j} & \vec{k} \\
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3}
\end{array}\right|=\left|\begin{array}{ll}
a_{2} & a_{3} \\
b_{2} & b_{3}
\end{array}\right| \vec{i}-\left|\begin{array}{ll}
a_{1} & a_{3} \\
b_{1} & b_{3}
\end{array}\right| \vec{j}+\left|\begin{array}{ll}
a_{1} & a_{2} \\
b_{1} & b_{2}
\end{array}\right| \vec{k}
$$

\star The properties of this operation follow from those of the determinant.

Properties of cross product

- $\vec{a} \times \vec{b}=-\vec{b} \times \vec{a}$
- $\kappa(\vec{a} \times \vec{b})=(\kappa \vec{a}) \times \vec{b}=\vec{a} \times(\kappa \vec{b})$
- $\vec{a} \times(\vec{b}+\vec{c})=\vec{a} \times \vec{b}+\vec{a} \times \vec{c}$
- $(\vec{b}+\vec{c}) \times \vec{d}=\vec{b} \times \vec{d}+\vec{c} \times \vec{d}$

Geometry of cross product

Direction and norm of cross product

- $\vec{a} \times \vec{b}$ is perpendicular to both \vec{a} and \vec{b} (right-hand rule)
- If θ is the angle between \vec{a} and \vec{b}, then the norm of their cross product

$$
\|\vec{a} \times \vec{b}\|=\|\vec{a}\|\|\vec{b}\| \sin (\theta) \quad \text { area of parallelogram spanned by } \vec{a}, \vec{b}
$$

- $\vec{a} \times \vec{b}=\overrightarrow{0} \Leftrightarrow \vec{a}=\overrightarrow{0}$ or $\vec{b}=\overrightarrow{0}$ or $\vec{a} \| \vec{b}$ (parallel)
$\star \ln \mathbb{R}^{2}$, the area $\|\vec{a} \times \vec{b}\|$ reduces to the absolute value of det (as earlier!)

Plane equations

An equation of the plane passing through the point $P=\left(x_{0}, y_{0}, z_{0}\right)$ perpendicular to a vector $\vec{n}=(A, B, C)$ is

$$
A\left(x-x_{0}\right)+B\left(y-y_{0}\right)+C\left(z-z_{0}\right)=0 .
$$

\star Notice that for any given plane $A x+B y+C z+D=0$, the vector $\vec{n}=(A, B, C)$ is orthogonal/normal to the plane!

Work out the following: find a unit vector which is orthogonal to both

$$
-2 \vec{i}+3 \vec{k} \text { and } \vec{j}-5 \vec{k} \cdot\left(-\frac{3}{\sqrt{113}},-\frac{10}{\sqrt{113}},-\frac{2}{\sqrt{113}}\right)
$$

Polar and Cylindrical Coordinates

> Polar coordinates (r, θ) express point in plane by positioning it on a circle of radius r and its angle $0 \leq \theta \leq 2 \pi$ from x-axis

Cylindrical coordinates

The cylindrical coordinates (r, θ, z) of a point (x, y, z) are

$$
x=r \cos (\theta), \quad y=r \sin (\theta), \quad z=z
$$

Conversely, the cartesian coordinates (x, y, z) of a point (r, θ, z) are

$$
r=\sqrt{x^{2}+y^{2}}, \quad \theta=\arctan \left(\frac{y}{x}\right)(+\pi \text { or } 2 \pi \ldots), \quad z=z
$$

Spherical Coordinates

What if we view a 3-D point as inhabiting the surface of a sphere?

Spherical coordinates

The spherical coordinates (ρ, θ, ϕ) of a point (x, y, z) are

$$
x=\rho \sin (\phi) \cos (\theta), \quad y=\rho \sin (\phi) \sin (\theta), \quad z=\rho \cos (\phi)
$$

where $\rho \geq 0,0 \leq \theta<2 \pi, 0 \leq \phi \leq \pi$. Conversely,
$\rho=\sqrt{x^{2}+y^{2}+z^{2}}, \theta=\arctan \left(\frac{y}{x}\right)(+\ldots), \phi=\arccos \left(\frac{z}{\sqrt{x^{2}+y^{2}+z^{2}}}\right)$

Work out the following:
(1) What are the cartesian coordinates (x, y, z) for $\left(4, \frac{\pi}{4}, \frac{\pi}{3}\right) ?(\sqrt{6}, \sqrt{6}, 2)$
(2) What are its cylindrical coordinates $(r, \theta, z) ?_{\left(2 \sqrt{3}, \frac{\pi}{4}, 2\right)}$

Vectors in n-dim space

Idea: earlier operations in \mathbb{R}^{2} or \mathbb{R}^{3} generalize in higher dimensions!
For vectors $\vec{a}=\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ and $\vec{b}=\left(b_{1}, b_{2}, \ldots, b_{n}\right)$ in \mathbb{R}^{n},

- their sum is the n-vector

$$
\vec{a}+\vec{b}:=\left(a_{1}+b_{1}, a_{2}+b_{2}, \ldots, a_{n}+b_{n}\right)
$$

- for $\kappa \in \mathbb{R}$, scalar multiplication gives the n-vector

$$
\kappa \vec{a}:=\left(\kappa a_{1}, \kappa a_{2}, \ldots, \kappa a_{n}\right)
$$

- their inner or dot product is the real number

$$
\langle\vec{a}, \vec{b}\rangle=\vec{a} \cdot \vec{b}:=a_{1} b_{1}+a_{2} b_{2}+\ldots+a_{n} b_{n}
$$

- the norm of any n-vector is its length, given by the real number

$$
\|\vec{a}\|:=\sqrt{a_{1}^{2}+a_{2}^{2}+\ldots+a_{n}^{2}}
$$

Operations of general matrices

For general $m \times n$ matrices $\left(\begin{array}{cccc}a_{11} & a_{12} & \ldots & a_{1 n} \\ a_{21} & a_{22} & \cdots & a_{2 n} \\ \vdots & \vdots & & \vdots \\ a_{m 1} & a_{m 2} & \cdots & a_{m n}\end{array}\right) \in \mathbb{R}^{m \times n}$ we can add 'componentwise' $A+B=\left(a_{i j}+b_{i j}\right)$, or scalarly multiply $\kappa A=\left(\kappa a_{i j}\right)$.

Matrix multiplication

If $A=\left(a_{i j}\right)$ is an $m \times n$-matrix and $B=\left(b_{i j}\right)$ is an $n \times p$-matrix, their product is defined to be an $m \times p$-matrix $A B=C$ with

$$
c_{i j}:=a_{i 1} b_{1 j}+a_{i 2} b_{2 j}+\ldots+a_{i n} b_{n p}=\sum_{k=1}^{n} a_{i k} b_{k j}
$$

\star...the inner product of the i-th row of A and the j-th column of B !
$\triangleright A B \neq B A$, i.e. matrix mutliplication is NOT commutative.

Invertible matrices

The $n \times n$-matrix $I_{n}=\left(\begin{array}{cccc}1 & 0 & \ldots & 0 \\ 0 & 1 & \ldots & 0 \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \ldots & 1\end{array}\right)$ is called the identity matrix: $I A=A, B I=B$ whenever the multiplication is defined.

Invertible matrices

An $n \times n$-matrix A is invertible if there exists some $n \times n$-matrix B such that

$$
A B=B A=I_{n} . \quad A \text { is invertible } \Leftrightarrow \operatorname{det}(A) \neq 0
$$

Multivariable Functions

Idea: how to draw graphs of functions of multiple variables?
A function $f: U \subseteq \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$, namely $f\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{m}$, is called of several variables. If $m=1$, real-valued function; if $m>1$, vector-valued.

- A level set for a real-valued function f of n variables is the collection

$$
L_{c}=\left\{\left(x_{1}, \ldots, x_{n}\right) \in U \subseteq \mathbb{R}^{n} \mid f\left(x_{1}, \ldots, x_{n}\right)=c\right\}
$$

for some constant c. If $n=2$, level curve; if $n=3$, level surface.

Graphs of multivariable functions

The graph of $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is the set of all $\left(x_{1}, \ldots, x_{n}, f\left(x_{1}, \ldots, x_{n}\right)\right)$ for any $\left(x_{1}, \ldots, x_{n}\right)$ in the domain of f; to draw it, compute the level sets and then 'raise' them to the appropriate level!

Limits of single-variable functions

Recall: $\lim _{x \rightarrow c} f(x)=L \Leftrightarrow$ if $|x-c| \rightarrow 0,|f(x)-L| \rightarrow 0$.

$$
\text { One-sided limits: } \lim _{x \rightarrow c} f(x)=L \Longleftrightarrow \lim _{x \rightarrow c^{-}} f(x)=L=\lim _{x \rightarrow c^{+}} f(x)
$$

$$
\text { We call } f \text { continuous at } c \text { if } \lim _{x \rightarrow c} f(x)=f(c) \text {. }
$$

* The limit of a function at some input c, and the value/output $f(c)$, are in principle unrelated. They coincide? Continuity!

Suppose $\lim _{x \rightarrow c} f(x)=L, \lim _{x \rightarrow c} g(x)=K$ for functions f, g and $c, L, K \in \mathbb{R}$.
(1) $\lim _{x \rightarrow c}(f(x) \pm g(x))=L \pm K$
(3) $\lim _{x \rightarrow c}(f(x) \cdot g(x))=L \cdot K$
(2) $\lim _{x \rightarrow c}(\kappa f(x))=\kappa \cdot L$
(c) $\lim _{x \rightarrow c} \frac{f(x)}{g(x)}=\frac{L}{K}$ for $K \neq 0$

- Polynomials, rational functions, exponentials/logarithms and trigonometric functions are continuous at their domain.

Limits of multivariable functions

Idea: distance in \mathbb{R}^{n} is now measured as $\|\vec{b}-\vec{a}\|=\sqrt{\sum_{i=1}^{n}\left(b_{i}-a_{i}\right)^{2}}$

Let $f: U \subset \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$. We say a vector $\vec{b} \in \mathbb{R}^{m}$ is the limit as \vec{x} approaches $\vec{c} \in U$ when, for any $\vec{x} \neq \vec{c}$,

$$
\text { if }\|\vec{x}-\vec{c}\| \rightarrow 0 \text { then }\|f(\vec{x})-\vec{b}\| \rightarrow 0
$$

In that case, denote $\lim _{\vec{x} \rightarrow \vec{c}} f(\vec{x})=\vec{b}$. Otherwise, the limit does not exist.

* 'One-sided' limits are now endless - from all possible directions! If any two particular ones disagree, DNE.

Properties of multivariable limits

(1) (Uniqueness) If $\lim _{\vec{x} \rightarrow \vec{c}} f(\vec{x})=\vec{b}_{1}$ and $\lim _{\vec{x} \rightarrow \vec{c}} f(\vec{x})=\overrightarrow{b_{2}}$, then $\overrightarrow{b_{1}}=\overrightarrow{b_{2}}$.
(2) $\lim _{\vec{x} \rightarrow \vec{c}}(\kappa f(\vec{x}))=\kappa \lim _{\vec{x} \rightarrow \vec{c}} f(\vec{x})$ for $\kappa \in \mathbb{R}$ when the limit exists
(3) $\lim _{\vec{x} \rightarrow \vec{c}}(f(\vec{x}) \pm g(\vec{x}))=\lim _{\vec{x} \rightarrow \vec{c}} f(\vec{x})+\lim _{\vec{x} \rightarrow \vec{c}} g(\vec{x})$ if both limits exist
(1) $\lim _{\vec{x} \rightarrow \vec{c}}(f(\vec{x}) g(\vec{x}))=\lim _{\vec{x} \rightarrow \vec{c}} f(\vec{x}) \cdot \lim _{\vec{x} \rightarrow \vec{c}} g(\vec{x})$ if both limits exist \& are reals
(5) $\lim _{\vec{x} \rightarrow \vec{c}}\left(\frac{f(\vec{x})}{g(\vec{x})}\right)=\frac{\lim _{\vec{x} \rightarrow \vec{c}} f(\vec{x})}{\lim _{\vec{x} \rightarrow \vec{c}} g(\vec{x})}$ if both limits exist (bottom $\neq 0$) \& are reals

Work out the following: do the following exist? If so, evaluate.
(1) $\lim _{(x, y) \rightarrow(0,0)} \frac{y}{y+x}$ DNE

Multivariable Continuity

A function $f: U \subseteq \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is continuous at $\vec{c} \in U$ if

- $\lim _{\vec{x} \rightarrow \vec{c}} f(\vec{x})$ exists;
- $f(\vec{c})$ exists;
- $\lim _{\vec{x} \rightarrow \vec{c}} f(\vec{x})=f(\vec{c})$.
* Multivariable polynomial, rational, trigonometric, exponential and logarithmic (real-valued) functions are continuous, at their domain.

Every vector-valued function with range \mathbb{R}^{m} can be written as $f(\vec{x})=\left(f_{1}(\vec{x}), f_{2}(\vec{x}), \ldots, f_{m}(\vec{x})\right)$. Its limit is

$$
\lim _{\vec{x} \rightarrow \vec{c}} f(\vec{x})=\left(\vec{b}_{1}, \vec{b}_{2}, \ldots, \vec{b}_{m}\right) \text { where } b_{i}=\lim _{\vec{x} \rightarrow \vec{c}} f_{i}(\vec{x})
$$

If each $f_{i}(\vec{x})$ is continuous, then so is $f(\vec{x})$.

Limit of composition

If $\lim _{\vec{x} \rightarrow \vec{c}} u(\vec{x})=b$ and $\lim _{\vec{x} \rightarrow \vec{b}} f(\vec{x})=\vec{d}$, the limit of the composite $(f \circ u)(\vec{x})$ is

$$
\lim _{\vec{x} \rightarrow \vec{c}} f(u(\vec{x}))=\vec{d}
$$

Work out the following:
(1) $\lim _{(x, y) \rightarrow(1,1)}\left(x^{2}+y^{3}\right) e^{x-y} 2$
(2) What value should we assign to $\frac{e^{x y}-e}{x y-1}$ to make it continuous at $(1,1)$? e

Single Variable Differentiation

$$
\text { Recall: } f^{\prime}\left(x_{0}\right)=\lim _{x \rightarrow x_{0}} \frac{f(x)-f\left(x_{0}\right)}{x-x_{0}}=\lim _{t \rightarrow 0} \frac{f(x+t)-f(x)}{t}
$$

Derivation Rules for single variable functions

 If $f(x), g(x), h(x)$ are differentiable functions with $h(x) \neq 0$ and $\kappa \in \mathbb{R}$- $(\kappa f(x))^{\prime}=\kappa f^{\prime}(x)$
- $(f(x)+g(x))^{\prime}=f^{\prime}(x)+g^{\prime}(x)$ scalar multiple
- $(f(x) g(x))^{\prime}=f^{\prime}(x) g(x)+f(x) g^{\prime}(x) \quad$ product
- $\left(\frac{f(x)}{h(x)}\right)^{\prime}=\frac{f^{\prime}(x) h(x)-f(x) h^{\prime}(x)}{h^{2}(x)}$
- $(f(u(x)))^{\prime}=f^{\prime}(u(x)) u^{\prime}(x)$
quotient
\star In the multivariable setting, consider all but one variables as constants and compute single-variable derivative!

Partial Derivatives

If $f: U \subseteq \mathbb{R}^{n} \rightarrow \mathbb{R}$ is a real-valued function, its partial derivatives are

$$
\frac{\partial f}{\partial x_{j}}\left(x_{1}, \ldots x_{n}\right):=\lim _{t \rightarrow 0} \frac{f\left(\vec{x}+t \vec{e}_{j}\right)-f(\vec{x})}{t}=\lim _{t \rightarrow 0} \frac{f\left(x_{1}, \ldots, x_{j}+t, \ldots, x_{n}\right)}{t}
$$

where $\vec{e}_{j}=(0, \ldots, \underbrace{1}, 0, \ldots, 0)$ are the standard basis vectors in \mathbb{R}^{n}.

If $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is given by $f(\vec{x})=\left(f_{1}(\vec{x}), \ldots, f_{m}(\vec{x})\right)$, its matrix of partial derivatives is the $m \times n$ matrix

$$
D f:=\left(\begin{array}{ccc}
\frac{\partial f_{1}}{\partial x_{1}} & \cdots & \frac{\partial f_{1}}{\partial x_{n}} \\
\cdots & & \dddot{n} \\
\frac{\partial f_{m}}{\partial x_{1}} & \cdots & \frac{\partial f_{m}}{\partial x_{n}}
\end{array}\right)
$$

If f is real-valued, this $1 \times n$ matrix a.k.a. n-vector is its gradient

$$
\nabla f:=D f=\left(\begin{array}{llll}
\frac{\partial f}{\partial x_{1}} & \frac{\partial f}{\partial x_{1}} & \cdots & \frac{\partial f}{\partial x_{n}}
\end{array}\right)
$$

Multivariable Differentiability

A function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ with $f(\vec{x})=\left(f_{1}(\vec{x}), \ldots, f_{m}(\vec{x})\right)$ is differentiable at $\overrightarrow{x_{0}}$ if all partial derivatives exist at $\overrightarrow{x_{0}}$ and

$$
\lim _{\vec{x} \rightarrow \vec{x}_{0}} \frac{\left\|f(\vec{x})-f\left(\vec{x}_{0}\right)-D f\left(\vec{x}_{0}\right)\left(\vec{x}-\vec{x}_{0}\right)\right\|}{\left\|\vec{x}-\vec{x}_{0}\right\|}=0
$$

- If all $\frac{\partial f_{i}}{\partial x_{j}}$ exist and are continuous at \vec{x}_{0}, then f is differentiable at \vec{x}_{0}.

For $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ differentiable at $\left(x_{0}, y_{0}\right)$, its tangent plane in \mathbb{R}^{3} is

$$
z=f\left(x_{0}, y_{0}\right)+f_{x}\left(x_{0}, y_{0}\right)\left(x-x_{0}\right)+f_{y}\left(x_{0}, y_{0}\right)\left(y-y_{0}\right)=: T_{\left(x_{0}, y_{0}\right)}(x, y)
$$

\star Differentiability requires tangent plane to be a good approximation of output $z=f(a, b)$ for any $(a, b) \rightarrow\left(x_{0}, y_{0}\right): f(a, b) \approx T_{\left(x_{0}, y_{0}\right)}(a, b)$! Work out the following: find ∇f for $f(x, y)=\cos (x y)+x \cos (3 y)$.

$$
(-y \sin (x y)+\cos (3 y),-x \sin (x y)-3 x \sin (y))
$$

Iterated Partial Derivatives

\star If partial derivatives exist and are continuous, we say f is of class C^{1} If the second partial derivatives exist and are continuous, f is of class C^{2} !

$$
\frac{\partial^{2} f}{\partial x^{2}}=\frac{\partial}{\partial x}\left(\frac{\partial f}{\partial x}\right), \frac{\partial^{2} f}{\partial x \partial y}=\frac{\partial}{\partial x}\left(\frac{\partial f}{\partial y}\right), \frac{\partial^{2} f}{\partial y \partial z}=\frac{\partial}{\partial y}\left(\frac{\partial f}{\partial z}\right) \text { etc. }
$$

Equality of Mixed Partials

If f is of class C^{2}, namely twice continuously differentiable, then its mixed partial derivatives are equal: e.g. $f_{x y}=f_{y x}$, or generally

$$
\frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}=\frac{\partial^{2} f}{\partial x_{j} \partial x_{i}}
$$

Work out the following:
(1) If $f(x, y)=\cos (3 x) \sin ^{2}(y)$, find $f_{x y}$. $-6 \sin (3 x) \sin (y) \cos (y)$
(2) Approximate $(0.98)^{2}-(0.01)^{3} .0 .96$

Paths and Curves

- A path in \mathbb{R}^{n} is a function $\vec{c}:[a, b] \rightarrow \mathbb{R}^{n}$. For $n=2$, it is called path in plane and for $n=3$ path in space.
- The collection of points $C=\{\vec{c}(t) \mid t \in[a, b]\} \subseteq \mathbb{R}^{n}$ is called the curve traced out by \vec{c}, with endpoints $\vec{c}(a)$ and $\vec{c}(b)$.
- For a path in space, write $\vec{c}(t)=(x(t), y(t), z(t))$ for its component functions $x(t), y(t), z(t)$.
\star We say that $\vec{c}(t)$ traces or parameterizes the curve C.
If a path \vec{c} in \mathbb{R}^{n} is diff., its velocity or tangent vector at time t is

$$
\vec{c}^{\prime}(t)=\lim _{h \rightarrow 0} \frac{\vec{c}(t+h)-\vec{c}(t)}{h}=\left(x_{1}^{\prime}(t), x_{2}^{\prime}(t), \ldots, x_{n}^{\prime}(t)\right)
$$

Its speed at each t is given by $\|\vec{c}(t)\|$, the length of its tangent vector.
\star If $\vec{c}^{\prime}\left(t_{0}\right) \neq 0$, draw this vector with tail $\vec{c}\left(t_{0}\right)$ tangent to the curve.

- The tangent line of a curve C traced by a path $\vec{c}(t)$ at time t_{0} is $\vec{\ell}(t)=\vec{c}\left(t_{0}\right)+\vec{c}^{\prime}\left(t_{0}\right)\left(t-t_{0}\right)$ with direction vector $\vec{c}^{\prime}\left(t_{0}\right)$.
\star Using $t-t_{0}$ rather than just t in the line equation ensures that $\vec{\ell}\left(t_{0}\right)=\vec{c}\left(t_{0}\right)$, meaning the line goes through that point at time t_{0}.

Work out the following: suppose the position of a particle is given by

$$
\vec{c}(t)=\left(t, t^{2}, \sqrt{t}\right)
$$

(1) What is the particle's speed at time $t=1$?
(2) If the particle flies off at its tangent at $t=1$, what is its position at $t=2 ?(2,3,2)$

Derivation Rules for multivariable functions

Idea: rules for multivariable derivation are very similar to single variable, but now things are expressed using partial derivative matrices!

If $f, g: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ and $h, k: \mathbb{R}^{n} \rightarrow \mathbb{R}$ are differentiable at \vec{x}_{0} and $\kappa \in \mathbb{R}$
(1) $D(\kappa f)\left(\vec{x}_{0}\right)=\kappa D f\left(\vec{x}_{0}\right)$
(2) $D(f+g)\left(\overrightarrow{x_{0}}\right)=D f\left(\overrightarrow{x_{0}}\right)+D g\left(\overrightarrow{x_{0}}\right)$
(3) $D(h k)\left(\overrightarrow{x_{0}}\right)=\operatorname{Dh}\left(\overrightarrow{x_{0}}\right) k\left(\overrightarrow{x_{0}}\right)+h\left(\overrightarrow{x_{0}}\right) D k\left(\overrightarrow{x_{0}}\right) \quad$ product rule
(0) $D\left(\frac{h}{k}\right)\left(\overrightarrow{x_{0}}\right)=\frac{D h\left(\overrightarrow{x_{0}}\right) k\left(\overrightarrow{x_{0}}\right)-h\left(\overrightarrow{x_{0}}\right) D k\left(\overrightarrow{x_{0}}\right)}{k^{2}\left(\overrightarrow{x_{0}}\right)}$ scalar multiple rule
sum rule
quotient rule $(k \neq 0)$

The Chain Rule

If $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ and $g: \mathbb{R}^{m} \rightarrow \mathbb{R}^{p}$ are differentiable functions, then $g \circ f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{q}$ is differentiable with

$$
D(g \circ f)\left(\overrightarrow{x_{0}}\right)=D g\left(f\left(\overrightarrow{x_{0}}\right)\right) \cdot D f\left(\overrightarrow{x_{0}}\right)
$$

Work out: $f(x, y)=(x+1, y-1), g(x, y)=3 x-y^{2} . D(g \circ f)(9,1) ?(3,0)$

$$
\text { Chain rule } D(g \circ f)(\vec{x})=D g(f(\vec{x})) \cdot D f(\vec{x})
$$

Special Cases of the Chain Rule

For path $\vec{c}: \mathbb{R} \rightarrow \mathbb{R}^{3}$ and real-valued $f: \mathbb{R}^{3} \rightarrow \mathbb{R}, f \circ \vec{c}: \mathbb{R} \rightarrow \mathbb{R}$ has

$$
(f \circ \vec{c})^{\prime}(t)=\left\langle\nabla f(\vec{c}(t)), \vec{c}^{\prime}(t)\right\rangle=\frac{\partial f}{\partial x} \frac{d x}{d t}+\frac{\partial f}{\partial y} \frac{d y}{d t}+\frac{\partial f}{\partial z} \frac{d z}{d t}
$$

For $g: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ with $g(x, y, z)=(u(x, y, z), v(x, y, z), w(x, y, z))$ and a real-valued $f: \mathbb{R}^{3} \rightarrow \mathbb{R}, h:=(f \circ g): \mathbb{R}^{3} \rightarrow \mathbb{R}$ has

$$
\begin{aligned}
& \frac{\partial h}{\partial x}=\frac{\partial f}{\partial u} \frac{\partial u}{\partial x}+\frac{\partial f}{\partial v} \frac{\partial v}{\partial x}+\frac{\partial f}{\partial w} \frac{\partial w}{\partial x} \\
& \frac{\partial h}{\partial y}=\frac{\partial f}{\partial u} \frac{\partial u}{\partial y}+\frac{\partial f}{\partial v} \frac{\partial v}{\partial y}+\frac{\partial f}{\partial w} \frac{\partial w}{\partial y} \\
& \frac{\partial h}{\partial z}=\frac{\partial f}{\partial u} \frac{\partial u}{\partial z}+\frac{\partial f}{\partial v} \frac{\partial v}{\partial z}+\frac{\partial f}{\partial w} \frac{\partial w}{\partial z}
\end{aligned}
$$

\star These all arise from the matrix multiplication of the chain rule!
Work out: $(f \circ \vec{c})^{\prime}(1)$ for $f(x, y, z)=x y+z$ and $\vec{c}(t)=\left(t+1, t^{2}, 1-t\right)$? 4

Directional Derivatives

Idea: for an object moving on some line $\vec{\ell}(t)=\vec{x}+\vec{v} t$, how 'fast' are the values of some $f(x, y, z)$ changing at a specific point?

The directional derivative of $f: \mathbb{R}^{3} \rightarrow \mathbb{R}$ at \vec{x} along the (unit) vector \vec{v} is

$$
\left.\frac{d}{d t} f(\vec{x}+t \vec{v})\right|_{t=0}=\langle\nabla f(\vec{x}), \vec{v}\rangle
$$

namely $D(f \circ \vec{c})(0)$ for any path \vec{c} with $\vec{c}(0)=\vec{x} \& \vec{c}^{\prime}(0)=\vec{v}$, unit speed.

$$
\begin{aligned}
& \star \text { When is } \operatorname{RoC}\langle\nabla f(\vec{x}), \vec{v}\rangle=\|\nabla f(\vec{x})\| \cos (\theta) \text { maximum? } \\
& \qquad-1 \leq \cos (\theta) \leq 1 \text { so when } \theta=0 \text { ! }
\end{aligned}
$$

Direction of fastest increase or decrease If $\nabla f(\vec{x}) \neq 0$, the vector $\nabla f(\vec{x})$ points in the direction along which f increases the fastest. Similarly, f decreases the fastest along $-\nabla f(\vec{x})$.

Tangent Planes

If $f: \mathbb{R}^{3} \rightarrow \mathbb{R}$ is diff. \& $\left(x_{0}, y_{0}, z_{0}\right) \in L_{c}=\{(x, y, z) \mid f(x, y, z)=c\}$ level surface, then $\nabla f\left(x_{0}, y_{0}, z_{0}\right)$ is orthogonal to L_{c} at $\left(x_{0}, y_{0}, z_{0}\right)$.

- Recall that $A\left(x-x_{0}\right)+B\left(y-y_{0}\right)+C\left(z-z_{0}\right)=0$ is the plane passing from $\left(x_{0}, y_{0}, z_{0}\right)$ and is perpendicular to vector (A, B, C).

Tangent Plane on Level Surface

The tangent plane of surface L_{c} for $f(x, y, z)$ at $\left(x_{0}, y_{0}, z_{0}\right)$ is

$$
f_{x}\left(x_{0}, y_{0}, z_{0}\right)\left(x-x_{0}\right)+f_{y}\left(x_{0}, y_{0}, z_{0}\right)\left(y-y_{0}\right)+f_{z}\left(x_{0}, y_{0}, z_{0}\right)\left(z-z_{0}\right)=0
$$

\star Reduces also to tangent plane for graph of some $g(x, y)$! Using level surface L_{0} for $f(x, y, z)=g(x, y)-z$ ends up in previous

$$
z=T_{\left(x_{0}, y_{0}\right)}(x, y)=g\left(x_{0}, y_{0}\right)+g_{x}\left(x_{0}, y_{0}\right)\left(x-x_{0}\right)+g_{y}\left(x_{0}, y_{0}\right)\left(y-y_{0}\right)
$$

Taylor's Theorem

Idea: earlier, used tangent plane $A x+B y+C z=D$ to linearly approximate some $f\left(x_{0}, y_{0}\right)$. Now, quadratic or higher-order approximations!

Single-Variable Taylor Theorem

For a smooth function $f: \mathbb{R} \rightarrow \mathbb{R}$,

$$
f\left(x_{0}+h\right)=f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right) h+\frac{f^{\prime \prime}\left(x_{0}\right)}{2} h^{2}+\ldots+\frac{f^{(k)}\left(x_{0}\right)}{k!} h^{k}+R_{k}\left(x_{0}, h\right)
$$

> linear approximation
where $R_{k}\left(x_{0}, h\right)$ is the k-th order remainder (small error term). For $k=1$ first-order Taylor formula, for $k=2$ second-order Taylor formula.
\star Express either as above formula $f\left(x_{0}+h\right)$, or as approximation function

$$
f(x)=f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right) \underbrace{\left(x-x_{0}\right)}_{h}+\frac{1}{2} f^{\prime \prime}\left(x_{0}\right)\left(x-x_{0}\right)^{2}+\ldots
$$

First-order for two variables is tangent plane approximation from 2.3.

Multi-Variable Taylor Theorem
 $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$

- First-Order: $f\left(\overrightarrow{x_{0}}+\vec{h}\right)=f\left(\overrightarrow{x_{0}}\right)+\sum_{i=1}^{n} \frac{\partial f}{\partial x_{i}}\left(\overrightarrow{x_{0}}\right) h_{i}+R_{1}\left(\overrightarrow{x_{0}}, \vec{h}\right)$
- Second-Order:

$$
f\left(\overrightarrow{x_{0}}+\vec{h}\right)=f\left(\overrightarrow{x_{0}}\right)+\sum_{i=1}^{n} \frac{\partial f}{\partial x_{i}}\left(\overrightarrow{x_{0}}\right) h_{i}+\frac{1}{2} \sum_{i, j=1}^{n} \frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}\left(\vec{x}_{0}\right) h_{i} h_{j}+R_{2}\left(\overrightarrow{x_{0}}, \vec{h}\right)
$$

\Rightarrow Second-order for two variables $f(x, y)$ at point $P=\left(x_{0}, y_{0}\right)$ is

$$
\begin{aligned}
f\left(x_{0}+h_{1}, y_{0}+h_{2}\right) & =f\left(x_{0}, y_{0}\right)+f_{x}\left(x_{0}, y_{0}\right) h_{1}+f_{y}\left(x_{0}, y_{0}\right) h_{2} \\
& +\frac{1}{2}\left(f_{x x}\left(x_{0}, y_{0}\right) h_{1}^{2}+2 f_{x y}\left(x_{0}, y_{0}\right) h_{1} h_{2}+f_{y y}\left(x_{0}, y_{0}\right) h_{2}^{2}\right)+R_{2}
\end{aligned}
$$

Work out: second-order Taylor for $f(x, y)=e^{x} \cos (y)$ at $(0,0)$?

$$
f\left(0+h_{1}, 0+h_{2}\right)=\ldots 1+h_{1}+\frac{1}{2} h_{1}^{2}-\frac{1}{2} h_{2}^{2}+R_{2}\left((0,0),\left(h_{1}, h_{2}\right)\right)
$$

Critical points and Extrema of Real-Valued Functions

Idea: similarly to single-variable case, derivatives relate to max/min values!
For a real-valued function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$, a point $\overrightarrow{x_{0}}$ is

- a critical point if f is NOT differentiable at \vec{x}_{0}, or if $\operatorname{Df}\left(\vec{x}_{0}\right)=\overrightarrow{0}$
- a local minimum if $f(\vec{x}) \geq f\left(\overrightarrow{x_{0}}\right)$ for all $\vec{x} \in V$, a neighborhood of $\overrightarrow{x_{0}}$
- a local maximum if $f(\vec{x}) \leq f\left(\overrightarrow{x_{0}}\right)$ for all $\vec{x} \in V$, a neighborhood of $\overrightarrow{x_{0}}$
- a saddle if it is a critical point, but not an extremum.

First Derivative Test

Every local extremum $\overrightarrow{x_{0}}$ (max or \min) of $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ has $\operatorname{Df}\left(\overrightarrow{x_{0}}\right)=\overrightarrow{0}$, in particular is a critical point. Equivalently,

$$
\frac{\partial f_{i}}{\partial x_{i}}\left(\overrightarrow{x_{0}}\right)=0 \text { for all } i=1, \ldots, n
$$

The Hessian of a function

Idea: like partial derivative matrix $D f$, but now including all second partial derivatives!

The Hessian matrix of a real-valued $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is an $n \times n$ matrix

$$
H f=\left(\begin{array}{cccc}
f_{x_{1} x_{1}} & f_{x_{1} x_{2}} & \ldots & f_{x_{1} x_{n}} \\
f_{x_{2} x_{1}} & f_{x_{2} x_{2}} & \ldots & f_{x_{2} x_{n}} \\
\vdots & \vdots & \ldots & \vdots \\
f_{x_{n} x_{1}} & f_{x_{n} x_{2}} & \ldots & f_{x_{n} x_{n}}
\end{array}\right)=\left(\begin{array}{c}
\nabla f_{x_{1}} \\
\nabla f_{x_{2}} \\
\vdots \\
\nabla f_{x_{n}}
\end{array}\right)
$$

\star By the law of mixed partials $f_{x_{i} x_{j}}=f_{x_{j} x_{i}}$, this matrix is symmetric: changing rows by columns (i.e. taking the transpose) gives same matrix!
$>\frac{1}{2}\left(h_{1}, \ldots, h_{n}\right) \cdot \operatorname{Hf}\left(\vec{x}_{0}\right) \cdot\left(\begin{array}{c}h_{1} \\ \vdots \\ h_{n}\end{array}\right)$ is second-order Taylor for critical $\overrightarrow{x_{0}}$.

A symmetric $n \times n$ matrix H is positive-definite when all diagonal sub-matrices H_{k} (from top left) for $1 \leq k \leq n \operatorname{satisfy} \operatorname{det}\left(H_{k}\right)>0$; it is negative-definite when $\operatorname{det}\left(H_{1}\right)<0$ and the rest alternate signs.

Second Derivative Test

A critical point $\overrightarrow{x_{0}}$ of $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is

- a local minimum, when $\operatorname{Hf}\left(\overrightarrow{x_{0}}\right)$ is positive-definite;
- a local maximum, when $\operatorname{Hf}\left(\vec{x}_{0}\right)$ is negative-definite;
- a saddle-type, when $\operatorname{Hf}\left(\vec{x}_{0}\right)$ is neither of the two: it is a saddle point, unless $\operatorname{det}(H)=0$ when it is inconclusive.

Work out the following: consider $f(x, y)=x^{2}+x y$.
(1) Find its critical points. $(0,0)$
(2) Find its Hessian matrix. $\left(\begin{array}{ll}2 & 1 \\ 1 & 0\end{array}\right)$
(3) Classify the critical points. $(0,0)$ saddle point

Global Extrema

For a function $f: A \rightarrow \mathbb{R}$ defined on $A \subset \mathbb{R}^{2}$ or \mathbb{R}^{3}, a point $\overrightarrow{x_{0}} \in A$ is

- an absolute maximum if $f(\vec{x}) \leq f\left(\vec{x}_{0}\right)$ for all $\vec{x} \in A$
- an absolute minimum if $f(\vec{x}) \geq f\left(\vec{x}_{0}\right)$ for all $\vec{x} \in A$
* [Single-var] A continuous f on closed interval has global max and min!
- A point \vec{x} is called a boundary point of A if every neighborhood of \vec{x} contains at least one point in A and at least one not in A.

A set A is closed if it contains all its boundary points. It is bounded if $\|\vec{x}\|<M$ for all $\vec{x} \in A$ for some number M.

Global existence theorem

If a continuous real-valued f is defined on a bounded and closed subset of \mathbb{R}^{2} or \mathbb{R}^{3}, it has an absolute maximum and minimum value.

Methodology for global extrema for $f(x, y)$
(1) Find critical points in interior of A
(2) Find critical points on boundary of A [reduce to single variable case]
(3) Compute the values of f at all above points
(9) Compare the values and select largest \& smallest
^ A multivariable function, similarly to the single-variable case, does not need to have a global max or min in general; however, a function restricted to a bounded and closed set always does, by the existence theorem!

Lagrange Multipliers

Idea: when a function is defined on some curve, can find critical points from viewing it as a level set of a different function!

Suppose $f, g: U \subseteq \mathbb{R}^{n} \rightarrow \mathbb{R}$ are C^{1}, and $L_{c}=\left\{\vec{x} \in \mathbb{R}^{n} \mid g(\vec{x})=c\right\}$ is a level set for g. If $\overrightarrow{x_{0}}$ is a local extremum of f restricted to L_{c} and $\nabla g\left(\overrightarrow{x_{0}}\right) \neq 0$, there exists some scalar λ, the Lagrange multiplier, with

$$
\nabla f\left(\vec{x}_{0}\right)=\lambda \nabla g\left(\vec{x}_{0}\right)
$$

- For finding global extrema, we can locate critical points on the boundary of a region in step (2) using Lagrange Multipliers.

Work out the following: find the critical points for $f(x, y, z)=x-y+z$ under the condition that $\frac{1}{2} x^{2}+y^{2}+z^{2}=1$. $\left(1,-\frac{1}{2}, \frac{1}{2}\right)$ and $\left(-1, \frac{1}{2},-\frac{1}{2}\right)$

Arc Length

Idea: what is the length of a path $\vec{c}:[a, b] \subseteq \mathbb{R} \rightarrow \mathbb{R}^{3}$?
The length of the path $\vec{c}(t)=(x(t), y(t), z(t))$ for $a \leq t \leq b$ is

$$
L(\vec{c})=\int_{a}^{b} \sqrt{\left(x^{\prime}(t)\right)^{2}+\left(y^{\prime}(t)\right)^{2}+\left(z^{\prime}(t)\right)^{2}}
$$

namely the integral of its speed $\left\|\vec{c}^{\prime}(t)\right\|$.

Some useful identities

- Power-reducing: $\sin ^{2}(\theta)=\frac{1-\cos (2 \theta)}{2}, \cos ^{2}(\theta)=\frac{1+\cos (2 \theta)}{2}$
- Trig-sub: $\int \sqrt{x^{2}+a^{2}} d x=\frac{1}{2}\left(x \sqrt{x^{2}+a^{2}}+a^{2} \ln \left(x+\sqrt{x^{2}+a^{2}}\right)\right)+C$

Work out the following: what is the arc length of the path

$$
\vec{c}(t)=(3 \cos (t), 3 \sin (t)) \text { for } t \in[0,2 \pi] ? 6 \pi=2 \pi * 3, \text { circle's }
$$

circumference!

Vector Fields

A vector field in \mathbb{R}^{n} is a function $\vec{F}: A \subseteq \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ that assigns to each point \vec{x} a vector $\vec{F}(\vec{x})$. If $n=2$, vector field in the plane; if $n=3$, in space.

- For any $f: \mathbb{R}^{3} \rightarrow \mathbb{R}$, its gradient gives rise to the gradient vector field

$$
\begin{aligned}
\nabla f: & \mathbb{R}^{3} \\
(x, y, z) & \longmapsto \mathbb{R}^{3} \\
& \left(f_{x}(x, y, z), f_{y}(x, y, z), f_{z}(x, y, z)\right)
\end{aligned}
$$

A flow line for a vector field \vec{F} is a (same-dimension) path $\vec{c}(t)$ such that

$$
\vec{c}^{\prime}(t)=\vec{F}(\vec{c}(t)) \quad \text { for all } t
$$

namely for curve traced out by $\vec{c}(t)$, all tangent vectors are values of \vec{F}.
Work out the following: find some function whose gradient vector field is

$$
\vec{F}(x, y, z)=(3 y z-1,3 x z, 3 x y) . f(x, y, z)=3 x y z-x
$$

Divergence

[Single var calc] The differentiation operator $\frac{d}{d x}$ applies to f and gives f^{\prime}. The del or nabla operator in the n-dimensional space is given by

$$
\nabla=\left(\frac{\partial}{\partial x_{1}}, \frac{\partial}{\partial x_{2}}, \ldots, \frac{\partial}{\partial x_{n}}\right)
$$

The divergence of a vector field $\vec{F}=F_{1} \vec{i}+F_{2} \vec{j}+F_{3} \vec{k}$ is

$$
\operatorname{div} \vec{F}=\frac{\partial F_{1}}{\partial x}+\frac{\partial F_{2}}{\partial y}+\frac{\partial F_{3}}{\partial z}=\langle\nabla, \vec{F}\rangle
$$

* Physically: if \vec{F} is the flow of fluid, its div represents rate of expansion per unit volume in \mathbb{R}^{3} or unit area in \mathbb{R}^{2}.
- $\operatorname{div} \vec{F}>0$?expand
- $\operatorname{div} \vec{F}<0$?compress
- $\operatorname{div} \vec{F}=0$?same

Laplacian

Idea: for gradiant vector fields, their divergence involves second derivatives.
The Laplacian of a function $f: \mathbb{R}^{3} \rightarrow \mathbb{R}$ is

$$
\Delta f=\nabla^{2} f=\operatorname{div}(\nabla f)=\frac{\partial^{2} f}{\partial x^{2}}+\frac{\partial^{2} f}{\partial y^{2}}+\frac{\partial^{2} f}{\partial z^{2}}
$$

\Rightarrow A function f is called harmonic if $\Delta f=0$.

Work out the following: suppose $\vec{F}=\left(5 x y, y^{2}+1,3 x-z\right)$.
(1) Find its divergence. $7 y-1$
(2) Is $\vec{c}(t)=\left(5 t, t^{2}+1, \sqrt{t}\right)$ a flow line for \vec{F} ? No

Curl

\star Divergence=inner product of ∇ \& vector field; curl=cross product!
The curl of a vector field $\vec{F}=\left(F_{1}, F_{2}, F_{3}\right)$ is

$$
\operatorname{curl} \vec{F}=\left|\begin{array}{ccc}
\vec{i} & \vec{j} & \vec{k} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
F_{1} & F_{2} & F_{3}
\end{array}\right|=\nabla \times \vec{F}
$$

Gradients are curl free

For any $f: \mathbb{R}^{3} \rightarrow \mathbb{R}$, its gradient vector field has zero curl: $\nabla \times \nabla f=\overrightarrow{0}$

Curls are divergence free

For any C^{2}-vector field \vec{F}, $\operatorname{div} \operatorname{curl} \vec{F}=\langle\nabla, \nabla \times \vec{F}\rangle=0$.

Work out the following: consider the vector field $\vec{F}(x, y, z)=\left(x^{2} y, \cos (y z), e^{z+y}\right)$.
(1) Find the divergence. $\operatorname{div} \vec{F}=2 x y-z \sin (y z)+e^{z+y}$
(2) Find the curl. $\left(e^{x+z}-y \sin (y z), 0,-x^{2}\right)$
(3) Is \vec{F} a gradient vector field? No: its curl is not 0 !

